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On a duck solution and delay

in the FitzHugh-Nagumo equation
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and
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Abstract

The computing results of N.Kakiuchi on the FitzHugh-Nagumo equation (FHN)
suggested that the delayed phenomenon proved by J.Su (Journal of Differential
equations 105, 1993, 180-215) may occur with a duck solution. E.Benoit
(Societe Mathematique de France Asterisque 109-110, 1983, 159-191) proved the
existence of a duck solution under the condition that a pseudo singular point
is “saddle”. In this paper, using the result of E.Benoit, a rigorous proof of
the existence of a duck solution in the FHN equation is provided.

On the FHN equation, considering a necessary coﬁdition for the existence of
a solution which is jumping, it can be found that the coefficient b in the FHN
equation is 0(& ) where & is a very small positive number. This fact is
ensured via the experiment by R.FitzHugh and S.M.Baer etc.. The FHN equation
is newly formulated under keeping a qualitative feature of the solutions when
I=lo+&t and b=cé. Here ¢ is any constant. Then, it can be shown that there
exists a duck solution with a jumping solution in the FHN equation
As a result, the FHN equation gives us a new bifurcation system with an

injected control or a bifurcation parameter I.
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1. Introduction and delayed phenomena

In 1961, FitzHugh(2] and in 1962, Nagumo et al.[3] proposed a simplified
system which contains the main qualitative features of the original Hodgkin-
Huxley system in 1952([1]. These systems describe the generation and propaga- -
tion of the nerve impulse along the giant axon of the squid. The above systenm
so-called the FitzHﬁgh—Nagumo equation (FHN) for the space clamped segment of

the axon have the following autonomous form (1.1):

dv/dt=-p (v)-w+l, . (1.1a)
dw/dt=b(v-9 w), (1.1b)
p (v)=v(v-1) (v-a), (1.1¢)

where a (0<a<1/2), b, 7 are positive constants

Here v(t) denotes the potential difference at the time t across the membrane
of the axon and w(t) represents a recovery current which is often taken to be
th'e sum of all ion flows [1]. Furthérmore, I is an injected electric current
on the membrane, a control or bifurcation parameter. Equation (l.l1a) expresses
Kirchhoff's law applied to the membrane; (1.1b) relates the recovery current
with the potential. From biophysical considerations, it is reasonable to re-

strict 7 so that
2 .
71 =1/7v -(l-ata )/3>0, (1.2a)
2
72 = (l-a+a )/3-b7y >0. (1.2b)

If the current | is kept constant, equation (1.2a) ensures that the systenm
(1.1) has a unique steady state solution (vo{l), wo(l)). This solution called
the frame solution is determined by the equation

F(viw)= r-p (v)- = - . (1.3)
) TG

Its components vo(l) and wo(l) increase as | increases. The linearized system

of (1.1) for the frame solution is the following: '
dv/dt= -p " (vo(1))v-v, : (1.4a)
dw/dt= bv-b7 w, (1. 4b)
(vav=vo (1), w=w-wo (1)).

The stability of the system is determined by the two eigenvalues of the

Jacobian matrix M;
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M = (-p (vo (D)) -1 ] (p ' (v)=dp /dv) . (1.5)
b -by ~

There exist I- and |+ where [-<(a+1)/3<I. such that whenever I<I- or [>I].,

the eigenvalues of M have negative real parts, i.e., the frame equation (1.4)

is stable and the eigenvalues of M have positive real parts if [-<I<I[+, 1i.e.

the equation is unstable.

Assume that the current | which is treated as a bifurcation parameter
varies very slowly as the time goes by. Moreover, for simplicity, assume that
the current [(t) has the form of

[=1(t)=lote t, (1.6)
vhere 5‘50 is a.very small parameter and [o,<I-. The frame solution
(vo(l),wo (1)) is uniquely determined by the bifurcation parameter I, since F
in (1.3) is diffeomorphic. '
Using | as an independent variable, the system (1.1) becomes

the non-autonomous form (1.7):

edv/dl=-p (v)-w+l, (1.7a)
e dw/dl=bv-by w . (1. 7b)
Note that the conditions of o in (l.1¢) and 7 ,, 7 2 in (1.2) are still

satisfied.
If 1 is an independent bifurcation parameter, the following phenomenon will

occur. The solution of (1.7) with the initial conditions

v(lo)=voe(lo), W(Io)E\Vo(lo), 1(0)=1,, (1. 8)
stays close to the frame solution until | reaches |-, and then jumps away
from the frame solution shortly after | increases and passes |-. However, if

I is as in (1.6), this'phbnomenon does not occur.

From a Hopf bifurcation structure, as | increases through I-, the solution
of (1.7) would turn to the large amplitude oscillations. Such a critical
point is observed, but the value I, of I at which it occurs is considerably
delayed beyond the value I-. In 1987, 1988, Neistadt[9], [10] and in 1989,
Baer, Erneux and Rinzel[5] proceeded an extensive computational experiment of

the FHN equation for the delayed phenomena and they began to consider the

corresponding mathematical problem.
In 1993, Sul[6] provided a rigorous proof of the results conjecturred in [4],

[5] by considering the Taylor expansion of the system (1.7) for the frame
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solution (v(Io),w(l,)). He showed that the solution of (1.7) starting from
any point near the frame solution at |.<I- stays near the frame solution
until [ reaches l¢>[-. Furthermore, in case that |, is close to .[-, a descr-
iption of how the solution moves from the frame solution to become a large
amplitude solution after I>I, was given.

Suppose that A (z(l)) is the eigenvalue of the linearization at [_-<I<lg;

A(z)=(3z%+9 ) (-322+32-%+((322-3z-%-2by )?*-4b)'7?)/2, (1.9a)

z=2 (1), z-=2(1-)=ve(l-)-(a+1)/3=-(37 .)'7%/3. (1.9b)

In the complex domain, on a path L, there exists the level curve-of the below
function ¢ satisfying Re(A (z(1)) (dz/d1))=0:

¢ (z)=Re [ Ll (t)de, =, z€C, (1.10a)

A(z)=0¢/ 0z -i 6/ dz =0, z=2z +iz . ‘ (1.10b)
1 2 1 2

To seek the path L leads us to draw a conclusion that the solution has a
delayed phenomena. If A (z) is analytic, the Cauchy-Riemann condition ensures

that ¢ (z) determined by A (z) of (1.9) is well defined.

FitzHugh[2] and Baer etc. [5] have already pointed out -that the very small
constant b in (1.7) keeps the qualitative features of k1.7) such as
b=ce (1.11)
where £ >0 is a very small parameter in (1.6) and c>0 is any constant. As the
bifurcation parameter | varies very slowly and b satisfies (1.11), the systenm
(1.7) becomes the non-autonomous form (1.12): ‘
e dv/dl= -p (v)-w+tl, (1.12a)
dw/dl= c(v-7w) . ' (1.12b)
Furthermore, by changing the coordinate [=X, w=Y and v=Z, equation (1.12)

becomes the following autonomous form (1.13):

dx/dli=1, (1.132a)
dY/dl=c(Z-7Y),. : (1.13b)
dZ/dl=(-p (2)-Y+X)/ €, (1.13¢)

where the condition (1.1c¢) and (1.2) are still satisfied.
In the following section, it will be seen that.the system of (1.13) gives

us a new type of bifurcations.
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2. Benoit's theorem concerning constrained systems

2.1 Standard ducks

First we consider a constrained system (2.1):

dx/dt=f(x,y.2), (2.1a)
dy/dt=g(x.y.z). ' ' (2. 1b)
h(x,y,z)=0, (2.1c)

where f,g and h are defined in BR® and satisfy the following conditions (Bl),

(B2) and (B3): '

(B1) f and g are of class C', and h is of class C?,

(B2) the set S={(p=(x,y.z)€R*]| h(x,y,2)=0} is a 2-dimensional
differentiable manifold and
the set PL={p=(x,y.2)€S| oh(x,y,2)/ 32z=0} is an l-dimensional
differentiable manifold, '

(B3) -either the value of f or that of g is nonzero at the same point
p=(x,v,z) €PL.

Let (x(t), y(t), z(t)) be a solution of (2.1), then the following equation

(2.1¢") holds by differentiating (2.1c) with respect to the time t:

hx(x,y,z)f(x.y.2)+h, (x,y,2)g(x,y,z)+h. (x,y, z)dz/dt=0, (2.1c¢")
where ha(x,y,2)= 0h(x,y.2z)/ da (a=x,y,2).
The above system (2.1) becomes the system (2.2):

dx/dt=f(x,y.2), (2. 2a)
dy/dt=g(x.vy,2), (2.2b)
dz/dt=-(h.«(x,y,2)f(x,y.2z)+h, (x,y,2)g(x,¥y.2))/h.(x,y.,2), (2.2¢)

vhere (x,y,z) € S\ PL.

Remark
The system (2.1) coincides with the system (2.2) at any point p€ S\ PL.

Secondly in order to study the system (2.2), we consider the newly revised

system (2.3):

dx/dt= -h.(x,y,2)f(x.y.2). (2. 3a)
dy/dt= -h.(x.y.2z)g(x.y,2), (2.3b)
dz/dt= h.(x,y.z)f(x,y.2z)+h,(x,y.2)g(x,v.2). (2. 3¢)

Note that equation (2.3) is well defined at any point of R®. Therefore, (2.3)

is well defined indeed‘on any point of PL.
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Compare the solutions of (2.83) with those of (2.1) on SN\ PL. The solutions of
(2.3) coincide with those of (2.1) except the velocity (+,-) and the orienta-
tion when they start from the same initial points. Thus, each phase path is
quite the same, that is, they have the very same solution curves.

Definition 2.1

A singular point of (2.3) is called a pseudo singular point of (2.1) and

a set of the pseudo singular points (PS) is denoted as follows:
PS={(x,y,2) €PL | ha(x,y,2)f(x,y,2z)+h,(x.,v,2)g(x,y,2)=0}. , (2.4)

Moreover, here, the next conditions (B4) and (B5) are assumed:

(B4) The surface S can be expressed as y=¢ (x,z), (or x=¢ (y,z))
in the neighborhood of PL, i.e.
for any (x,y.z)€S, h,(x,y,2)#0 or h.(x,y,2z)#0 hold.
When y=¢ (x,z), the following system (2.5), which restricts the system (2.3)
on the surface S, is obtained using (B4):
dx/dt=-h.(x, ¢ (x,2),2)f(x, & (x,2),2), (2.5a)
dz/dt=h.(x, ¢ (x,2),2)f(x, & (x,2),2)+h,(x, ¢ (x,2).2z)g(x, & (x.2).2). (2.5b)
(B5) All the singular points of (2.5) are nondegenerate, i.e.
the matrix induced from the linearized system of (2.5) at a singular
point has two nonzero eigenvalues.
Note that all the points contained in PS are the singular points of (2.5).
When x=¢ (y,z), a similar equation is obtained in the same manner.

Definition 2.2

If the two eigenvalues A , X mentioned in (BS5) have the property that

1
A 1<0<l - a pseudo singular point of (2.1) is called as a pseudo singular

saddle point.

PL

Fig.1. A pseudo singular saddle point p€PL
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Thirdly we consider the following new systems E.(n=1,2,--) (2.6):

dx/dt=f(x,vy.2), : (2.6a)
(Ea) dy/dt=g(x.vy,2), : (2.6b)
€ .dz/dt=h(x,y,2z), (2.6¢)

where f,g and h are the same as the system (2.1) and € o{(>0)—0 as n— .
For a fixed sufficiently large n, E. devides the surface S\ PL into two
parts: one consists of an attractive region and the other consists of

a repulsive region.

attractive|region

—>— :slow curve

2>~ :fast curve

repulsive region

Fig.2. Attractive, repulsive region

A solution which starts from a neighborhood of the attractive part goes
rapidly toward S perpendicularly and then goes slowly along S. A solution
which starts from a neighborhood of repulsive part leaves from S rapidly
unless it starts at pE SN\ PL. Now let us define a duck solution on a set of
the systems Ea. (n=1,2, ).

Definition 2.3 (a standard duck)

A standard duck solution (or simply standard duck) on the set of equations

{E« | n=1,2,--} is defined as follows: it is a sequence (xa(t),ya(t).za(t))

consisting of the solutions of E. (n=1,2,-) such that

(1) the sequence (xa(t),ya(t),za(t)) is defined for t€ (c.,da)

(2) there are two closed disjoint subintervals [ca ,da"] and [c.".d."]
of (ca,da) in which for any t€ [c. ,da’], (xa(t).ya(t),za(t)) lies in
the attractive part of S, and for any t€ [c.".da"].
(xa(t),ya(t),za(t)) lies in the repulsive part of §,

(3) as n—>o, the curves (xa(t),ya(t),2za(t)) (t€ (ca.,da)) converge to a

curve C of the finite length in S, and the curve C devides into two parts
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C', C". C' belongs to the attractive part of S, C" belongs to the

repulsive part and the lengths of C', C” arebﬁat,zeroes

VA (xn(t)..Yn(t).Zn(t))

p (Xa+x (t7), Yaru (t7), Zawu (t7))

Y

Fig.3. A duck solution on {E.}

2.2 Non-standard ducks
Let the set N be of all natural numbers. Let. ll o be the filter on N

consisting of all subsets of N whose complement is finite. Then we can extend
Lo to an w-incomplete ultrafilter U and define on N a probability measure
in the sense of [11], such that P(A)=1 for A€ Il and P(A)=0 for A¢ L. In what
follows the measure P is fixed. '

Let us introduce the set *R of a random numbers, which consists of equiva-
lence classes of maps N—R, whose two maps x', x":N—R are regarded as equi-
valent if x" (i)=x"(i) (€ U) almost everywhere (or briefly a.e.) on N. If
X€ *R, then any of the maps x  :N—1R defining x is called a version of the
element x. There is a natural embedding R C *R under which to every number
a €R there corresponds the class of the constant function.a on N. It is
easy to see that *R has the natural structure of an ordered field, that is,
the algebraic operations (addition and multiplication) are introduced by means
of the corresponding operations over versions, which is carried out for each
i€ N. The order is introduced as follows; if x,y€ *R and x', y are versions of
x and y, then N is devided into the subsets:

N =N,UNo,UN-, (2.7a)

Ne={i | x" (D)>y (D)), No={i | x" (i)=y (i)}, N-={i | x" (i)<y (i)). (2.17b)
Owing to the property of P, one of these subsets N+, N, and N- has measure 1
and the other two have measure 0. In accordance with this, we define either
a.e. x (i)>y (i) (x>y) or a.e. x (i)=y (i) (x=y) or a.e. x' (i)<y (i) (x<y)

This is an order relation in *R.
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Similarly, it is verified that if x€ *R\\ {0}, then there is an inverse
element 1/x. Put & .=1/n (n=1,2,-) and let & be the corresponding equival-
ence class in *R. It is clear that 0<e <& .o, € o€ R, since finite sets have
measure 0 in N. Thus, & € *R\\R# ¢, that is, *R is actually a non-trivial

extension of R. The number & € "R just construéted above is infinitésimally

small. Having one such number, by means of algebraic operations. we can
construct arbitrarily many other numbers belonging to *R\R. For instance, if
a €ERN (0}, a & is also infinitesimally small and differs from & for a #1.
The number 1/& is infinitely large. A halo of a is defined by adding to

@ €R all infinitesimally small numbers. The haloes of any two distinct
numbers @ ., a .€R do not intersect. An element x€ "R is called limited if
there is a number ¢€ R such that -c<x<c. Each limited x€ *R has a shadow ’x
i.e., a number *x€ 1R such that x-*x is infinitesimally small. It is well
defined and the following formula -holds,

*x=inf{a | «a €R, a>x}. (2.8)
Let x€ *R\\R be unlimited (not limited), then | x| >c for any standard ¢>0
from-which it follows that x is infinitely large and 1/x is infinitesimally
small.

Let ¥ be an infinite countable set. Fixing a numbering of its points, it can
be identified with the set N. For any infinite set X on W, a map f:X—Y is
given. Then it generates a natural map *f:*X—"Y such that if x€*X and
x"=x"(w) is a version of x, then *f(x) must be put equal to the class of the
map w—f(x" (w)) from ¥ to Y. Namely, *f is defined by applying f to each weE¥
on versions. It induces functors on many natural subcategories, for example,
the categories of groups, rings, fields, partialy ordered sets, e.t.c.

If a version w—A"(w) of any subset ACX (*AC *X) is given, then for any x€X
with x =x"(w), x€ A means that a.e. x (w)€A (w). Thus, *P (X) consisting of
any subset of *X is included in P (*X) of all subsets of *X. Eiements of

*P (X) are called internal subsets of *X. Elements of P (*X)\\"P (X) are

called external subsets of *X. For general statements restricted within set

theory, it can be allowed to use any sets, functions, quantifiers, the
implication sign, parentheses, the signs of equality, substitution of an
argument in a function, e.t.c.. Seee Davis[12], where the rigorous mathemati-

cal description is given. For given A€ P (X), applying the asterisk operation,

we get the statements referring only to internal sets and functions.
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In this way, the operation can be applied not only to R but any set X
restricted within set theory, and a set *X is obtained like as R* from R.
Considering the existence of the duck solution, the internal sets and

functions make an important role.

Now we consider the following system E:
dx/dt=f(x,y,2),
(E) dy/dt=g(x, vy, 2), (2.9)
€ dz/dt=h(x,y,z),
where & is infinitesimally small.
Here a definition of a non-standard duck solution and the transfer principle
are given as follows.

Definition 2.4 (a non-standard duck)

A solution (x(t),y(t),z(t)) of the system E on which € .=¢6 (&. is in Ea.

and & € *R) holds is called a non-standard duck solution (or simply non-

standard duck),
if there are standard t,<to,<t.; such that
(1) *(x(to), y(to),2(to)) €S,
(2) for t€ (t,,t,) the segment of the trajectory (x(t),y(t),z(t)) is

infinitesimally close to the attracting part of the slow curve,

(3) for t€ (t,,tz,) it is infinitesimally close to the repelling part of
the slow curve,

(4) the attracting and repelling pieces which the solutin covers are not

infinitesimally small.

Trénsfer principle:

Any statement Y restricted within set theory is equivalent to the
corresponding statement *¥ ; it is determined that their statements are

“true” or “false” simultaneously.

Theorem 2.1

There exists a standard duck on the systems {En} (n=1,2,--) if and only
if there exists a non-standard duck on the system E.

(proof)

If (xa(t),ya(t),2za(t)) is a standard duck, then taking an infinitely large
natural number M and putting (x(t).y(t),z(t))=(xn(t).yn(t).zn(t)). there is
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a non-standard duck corresponding to the parameter values & =¢ u.

Conversely, let (x(t),y(t),z(t)) be a non-standard duck. Two compact conne-
cted pieces of the attracting and repelling parts of the slow curve denoted
by ', and ' 2, respectively, where I'=[ ,UT . belongs to the shadow of the
duck. By choosing any standard & >0, there are positive number & € *R and
a solution (x(t),y(t),z(t)) of the system E such that & <&, and the compact
set I' lies in the & -neighborhood of the solution curve. In fact, for equa-
tions in *R®, we can take the duck itself. By the transfer principle, it is
true also in the standard sense. Taking &6 =1/n and denoting the resulting

solutions by (xa.(t).ya(t),z.(t)), a standard duck is obtained.
O

Benoit[7] investigated the relations between the system (2.1) and the systems
E. (n=1,2,--) by introducing a method of a non-standard analysis (Nelson's ve-
rsion) and got a result, which is essentially same as the following theoren.
Theorem 2.2 (Benoit)

If the system (2.1) has a pseudo s}ngular saddle point, then the systems
{Es | n=1,2,--} has a duck solution.

(Outline of proof)

Choose n sufficiently large so that & . is very small. Let P be the pseudo
singular point in PL. AP, PB are separatrices of P and PC is a vertiqal line
in Fig.4. In this situation, there exists a segment [X,Y] above § such that
the solution curve of E, which starts from X is very close to the curve A APC
and it starting from Y is very close to the curve A'APB, where A'A is vertic-
al to x-y plane and the length of [X,Y] is very small. Using the assumption
(B5), it can be proved that any solution of E. which starts from a neighborh-
ood of the point P does not ggjalong PL. From this fact and by the continuity
of the solution of E. with respect to an initial condition, it is ensured
that there exists a point Q€ [X;Y] such that the solution curve of E. which

starts from the point Q is very close to the curve A" APD.
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Fig. 4.

3. A duck solution in the FitzHugh-Nagumo equation

Now we return to the system (1.1). Let & be any constant appeared in
the equation (1.6) and let I=lo+te .t , b=ce ., for each integer n (=1),
then by using | as an independent variable, the system (1.1) becomes the new
systems Do (n=1,2,--) (3.1):
(Da) & adv/dl= -p (v)-w+l, (3.1a)

dw/dl=c(v-7 w), (3.1b)
where 0<e& .<& for each n.

Suppose that e be very small such that the conditions (1.2) are satisfied,
then delayed oscillation phenomena occur in each system Da (n=1,2,--) proved
by Sul6]. By changing the coordinate I=X, w=Y and v=Z, the system D, becomes
the system E. (3.2):

dX/dl=1, (3.2a)
(Ea) dY/dl=c(Z-7Y), (3.2b)
d2/d1=(-p (2)-Y+X)/ € .. (3.2¢)

Consider the constrained system (3.3) induced from the system (3.2):
dX/di=1, (3.3a)
dY/dI=c(Z-7 1Y), (3.3b)
-p (Z)-Y+X=0. - (8.3¢)

The conditons (B1)-(BS5) in the section2 are satisfied on the system (3.3).
The condition (B1) holds, since f(X,Y,2)=1, g(X,Y,Z)=c(Z-7Y) and
h(X,Y,Z)=-p (Z)-Y+X are all analytic. As the set S is expressed as

S={(X,Y,Z) €R* | Y=-p (2)+X}, (3.4)
the condition (B4) holds. It is obvious that S is a 2-dimensional, different-
iable manifold. Put a set U:

U=((X,Y,2)€R® | hz=3Z2%-2(a+1)I+a=0}, (3.5)
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then the set U is a differentiable manifold and S intersects U transversely
The condition (B2) holds, since PL=SNU. Also the condition (B3) holds, since
dX/d1=1#0 at any point in R® and the condition (BS) holds, since the eigen-
values associated with the linearized eduation (2.3) are not zeroes. As the
system (3.3) is restricted to the surface S, the system (2.3) in the section2
is described by choosing a local coordinate (X,Z) as equation (3.6):

dX/dl=p " (1), (3.6a)

d2/dl=1-cy X-c(Z+7 p (I)). (3.6b)
Let (Xo.Zo) be a singular point in the system (3.6), then the following

equation (3.7) holds:

o (Z4)=0, ' (3.7a)
1+cy Xotc(Zotr p (Zo))=0. (3.17b)
Consider the linearized system (3.8) for (Xo.Zo) in the system (3.6):
dX/dl=p "(Z4)1, (3. 8a)
dZ/dl=c7 X-cZ, (3.8b)

where X=X-Xo, Z=I-Zo-
As p (Z)=0 has two solutions Z.s=(atl£ (a®-a+1)'7?)/3, the system (3.6) has
the two singular points; (Xo+.Zo+) and (Xo-,Zo-). The linearized system for

(Xo+,Zo+) in the system (3.6) is given by equation (3.9):

dX/dl=2(a?=a+1) 7?7, (3.9a)

dZ/dl=c7 X-cI. (3.9b)
Similarly, the linearized system for (Xo-.Zo-) is given by equation (3.10):

dX/dl=-2(a?-a+1)'/?Z, (3.10a)

dZ/d1=c7 X-cI. (3.10b)
Theorem 3.1 '

There exists a duck solution on the system (3.2).

(proof)

OQur purpose is to show that the system (3.9) has a saddle point. By the
Benoit's results, it follows that there is a duck solution on the set of
the systems Ea (n=1,2,-+) in this situation. The characteristic equation for

the system (3.9) is given by

A2%4c A -cqy (a*-a+l)'7*=0. (3.11)
The solutions A ,, A of (3.11), which are the eigenvalues associated with
(3.10) are

A =(1/2) (et (-1) ' (c?+8c 7y (a*-atl)'7?)'7?) (i=1,12). : (3.12)
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It follows immediately A ;<0<A ,. This implies that the system (3.9) has

a saddle point. This completes the proof.

O
Remark
In the system (3.10), the characteristic equation is given by
A?+c A +2cy (a%-a+1)'7%=0.
Then the two solutions of (3.13) are
Aa=(1/2) (mc+(-1)"(c?-8c 7y (a®-a+l)'7%)17?) (i=1,2).
In this situation, there exist only two cases;
(i) 0<c<87 (a%*-a+1)'72,
(ii) c=287 (a*-at+1)'72.

(3.13)

(3.14)

(3.15)
(3.16)

In the case (i), the two solutions are complex. It can be easily proved that

the system {E. | n=1,2,-) does not have a duck solution. See Benoit[7]. In

the case (ii), the two solutions are negative. It remains unproved whether

the system {E. | n=1,2,:-} has a duck solution or not.
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