ON THE FATOU COMPONENT IN $P^{k}(C)$

Masaaki SUZUKI(鈴木正昭) Toyama University(富山大学)

1. Preliminaries Let P^k be the complex projective space of k dimension, and $f: P^k \to P^k$ be a holomorphic self map on P^k . Taking the homogeneous coordinates $[z_0: z_1: ...: z_k]$ of a point z of P^k , we can denote f by

$$f_1(z) = [f_0(z) : f_1(z) : ... : f_k(z)],$$

where $f_j(z)$ is a homogeneous polynomial of $z = (z_0, ..., z_k)$ and $f_j(z)$ has no common zeros. Corresponding to f, we have a nondegenerate homogeneous holomorphic map \tilde{f} on C^{k+1} , which is given by

$$f(z) = (f_0(z), f_1(z), ..., f_k(z)).$$

If π is the canonical projection $C^{k+1} \setminus \{0\} \to P^k$, then $\pi \circ \tilde{f} = f \circ \pi$. The homogeneous polynomials f_j have the same degree, for example d, hence f is called a

holomorphic map of degree d. Let $H_d(P^k)$ or simply H_d denote the space of all holomorphic self maps on P^k of degree d. Hereafter we assume $d \ge 2$. As usual f^n denotes the n fold iterate of a map f. About the fundamental properties of the space H_d , see [FS2].

According to [FS4], we shall give the definition of lth Julia set of f. (It was firstly given in [HP], see also [U2].) Let $f \in H_d$ $(d \ge 2)$, and \tilde{f} be a lifting of f to C^{k+1} . Since \tilde{f} is a homogeneous polynomial map with $\tilde{f}^{-1}(o) = \{o\}$, an attracting basin of f,

$$A = \{ z \in C^{k+1}; \lim_{n \to \infty} \tilde{f}^n(z) = o \}$$

is a complete circular domain. For A we have the Green function

$$G(z) = \lim_{n \to \infty} d^{-n} \log \left| f^n(z) \right|$$

which vanishes on A, is plurisubharmonic on C^{k+1} , and satisfies

 $G(\lambda z) = \log |\lambda| + G(z), \text{for any } \lambda \in C, \ G(\tilde{f}(z)) = d \cdot G(z).$

We can define a (1,1) positive closed current T on P^k by the relation $\pi^*T = dd^cG$. For the theory of current which is used in the theory of complex dynamics, see [HP], [FS 3], [FS 4].

Since T has a continuous potential function on any chart in P^k , there exists a closed positive current T^l of bidegree (l, l) such that $\pi^*T^l = (dd^cG)^l$ for l = 1, ..., k.

Definition 1.1. For l = 1, ..., k, $J_l = supp(T^l)$ is called the *l*-th Julia set of f. Setting $F_l = P^k \setminus J_l$, we call it the *l*-th Fatou set of f.

Fornaess-Sibony showed the following ([FS4]):

(1.1) J_l is a nonempty totally f-invariant set.

(1.2) We call simply $J_1 = J$ and $F_1 = F$ the Julia set of f and the Fatou set of f respectively.

(1.3) F is a domain of holomorpy, furthermore, for $l = 1, ..., k, F_l$ is (k - l)-pseudoconvex.

Also Ueda showed (see[U]);

(1.4) The Fatou set F is Kobayashi hyperbolic.

This means that each component of the Fatou set of f is Kobayashi hyperbolic.

2. Limit maps and Fatou components For a map $f \in H_d(P^2)$, let Ω be a forward invariant Fatou component of f. A map $\varphi: P^2 \to P^2$ is said to be a limit map on Ω if there exists a subsequence $\{f^{n_j}\}$ which locally uniformly converge to φ in Ω . Let $L(\Omega)$ denote the set of all limit maps on Ω . It is clear that $L(\Omega)$ is a commutative semigroup. If $L(\Omega)$ contains the identity map, we call Ω a rotation domain. Then $L(\Omega)$ is a group and f is holomorphic automorphim of Ω . In 1 dimensional case, the rotation domain is Siegel disc or Herman ring. Furthermore if $L(\Omega)$ contains only a constant map then Ω is an attractive component or parabolic component, and if $L(\Omega)$ contains a nonconstant map then Ω is a rotation domain. We try to extend these facts to the 2 dimensional case.

When $\{f^n\}$ is nonrecurrent on Ω , that is, for any compact set $K \subset \Omega$, $f^n(K) \cap K = \emptyset$ for all but finite set of n, we write $f^n \to \partial \Omega$, where $\partial \Omega$ is the boundary of Ω . Also if a limit map is a constant map with value ζ , we denote it by ζ^* , i.e. $\zeta^*(z) = \zeta$ on Ω .

We may assume a forward invariant component Ω of f is in the chart $(z_0 \neq 0)$ of P^2 and (z_1, z_2) is an inhomogeneous coordinate there.

We start with the result of Bedford [Bed]. Let f, Ω be the same as the above.

Lemma 2.1. For any map $\varphi \in L(\Omega)$ with $\varphi(\Omega) \subset \Omega$, there exists a complex submanifold V in Ω , a holomorphic retraction R and a map $\phi \in Aut(V)$ such that $\varphi = \phi R$. Furthermore dimV depends only on f.

When dimV = 0, $L(\Omega)$ contains only constant map.

Theorem 2.2. Let Ω be a forward invariant Fatou component of f. Suppose $L(\Omega)$ contains only constant maps. Then there is exactly one point $\zeta \in \overline{\Omega}$, which is attractive or parabolic fixed point of f and $f^n \to \zeta^*$ locally uniformly on Ω .

V is the set of fixed points of R. We assume $\varphi(\Omega) \subset \Omega$. If dimV = 2, then $V = \Omega$ and R = I (the identity map on Ω), thus $\varphi \in Aut(\Omega)$ and $f \in Aut(\Omega)$. Therefore Ω is a rotation domain.

Next we consider the case dimV = 1. If V is simply connected, then V is conformally equivalent to the disc Δ and each fiber $R^{-1}(z)$ for $z \in V$ is one of the Fatou components of dimension 1. If V is multiple connected, V must be doubly connected, since there is an analytic automorphism ϕ on V. Hence we have the following theorem:

Theorem 2.3. Let f belong to $H_d(P^2)$ and Ω be a forward invariant Fatou component of f. Suppose Ω is recurrent and $L(\Omega)$ contains a nonconstant map φ such that $\varphi(\Omega) \subset \Omega$. Then either

(1) Ω is a rotation domain, or

(2) there exist a complex submanifold V in Ω of dimension 1 and a holomorphic retraction $R : \Omega \to V$ such that $\varphi(\Omega) = V$ and $\varphi = \phi \circ R$ with $\phi \in Aut(V)$.

References

- [Bed] Bedford, E., On the automorphism group of a Stein manifold, Math. Ann., 226(1983), 215-227.
- [FS1] Fornaess, J.E. and Sibony, N., Complex Hénon mapping in C² and Fatou-Bieberbach domains, Duke Math.J., 65 (1992), 345-380.
- [FS2] Fornaess, J.E. and Sibony, N., Complex dynamics in higher dimension I, preprint.
- [FS3] Fornaess, J.E. and Sibony, N., Complex dynamics in higher dimension II, preprint.
- [FS4] Fornaess, J.E. and Sibony, N., Oka's inequality for currents and applications, preprint.

- [FS5] Fornaess, J.E. and Sibony, N., Classification of recurrent domains for some holomorphic maps, Math. Ann., 301 (1995), 813-820.
- [HP] Hubbard, J., and Papadopol, P., Superattractive fixed point in C^n , preprint
- [S] Suzuki, M. A note on the Fatou set in complex projective spacem, Math.J. of Toyama Univ., 18(1995),179-193.
- [U] Ueda, T., Fatou set in complex dynamics on projective space, J. Math. Soc. Japan, 46 (1994),545-555.