ON AUTOMORPHISMS OF GENERALIZED CUNTZ ALGEBRAS

YOSHIKAZU KATAYAMA AND HIROAKI TAKEHANA

1. X-APERIODICITY

Definition 1.1. Let X be a full right Hilbert B-bimodule of finite type. The C^* -algebra B is called to be X-aperiodic if for a non-zero positive element b of B, there exists $\{x_{i,j}\} \subset X, j = 1, 2, \ldots, m_i, i = 1, 2, \ldots, l$ such that

$$\sum_{i(1),\dots,i(l)}^{m_1,\dots,m_l} < x_{i(l),l},\dots < x_{i(2),2} < x_{i(1),1},bx_{i(1),1}, >_B x_{i(2),2}, >_B \dots x_{i(l),l}, >_B (1.1)$$

is invertible.

Note that, by functional calculus, the above equations (1.1) may be equal to an identity operator for the definition of X-aperiodicity. It is defined in [3] that B is X-simple if any non-zero X-invariant ideal J of B (i.e. $< x, Jy >_B \subset J$ for $x, y \in X$) must be the whole space B. It is clear that X-aperiodicity implies X-simplicity. Let α be an automorphism of B and its associated imprimitivity Hilbert B-bimodule αB is B as a vector space with

$$a \cdot x \cdot b = \alpha(a)xb,$$
 $B < x, y >= \alpha^{-1}(xy^*), < x, y >_B = x^*y$ (1.2)

for $a, b \in B$ and $x, y \in {}_{\alpha}B$. We note that the unital C^* -algebra B is ${}_{\alpha}B$ -aperodic if and only if B is simple (see Theorem 1.3). The notion of X-simple is related with its irreducible adjacent matrix in the case that B is finite abelian. The one of X-aperiodic is just related with its aperiodic adjacent matrix as follows.

Let X be full right Hilbert B-bimodule with finite dimensional abelian C^* -algebra B. Let Σ be a finite set such that $C(\Sigma)=B$ and $\{p_{\tau}\}_{\tau\in\Sigma}$ be all minimal projections of $C(\Sigma)$. as in [5]. We denote a matrix M by $(a_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ where $a_{\sigma,\tau}=\dim_{\mathbb{C}}p_{\sigma}Xp_{\tau}$. Let $\{\xi_{\sigma,\tau,l}\in X:\sigma,\tau\in\Sigma \text{ with }a_{\sigma,\tau}\geq 1,1\leq l\leq a_{\sigma,\tau}\}$ be a basis of vector space X:

$$\begin{cases}
p_{\sigma'}\xi_{\sigma,\tau,l} = \delta_{\sigma',\sigma}\xi_{\sigma,\tau,l}, \\
\xi_{\sigma,\tau,l}p_{\tau'} = \delta_{\tau,\tau'}\xi_{\sigma,\tau,l}, \\
< \xi_{\sigma,\tau,l}, \ \xi_{\sigma',\tau',l'} >_{B} = \delta_{\sigma',\sigma}\delta_{\tau,\tau'}\delta_{l,l'}p_{\tau}.
\end{cases} (1.3)$$

We note that $\{\xi_{\sigma,\tau,l}\}_{\sigma,\tau,l}$ is right B-basis. We set $\xi_{\sigma} := \sum_{\tau,l} \xi_{\sigma,\tau,l}$, then

$$<\xi_{\sigma}, \ \xi_{\sigma'}>_{B} = \delta_{\sigma,\sigma'} \sum_{\tau} a_{\sigma,\tau} p_{\tau}.$$
 (1.4)

Therefore we have

$$\sum_{\sigma(1)} < \xi_{\sigma(1)}, \ p_{\sigma} \xi_{\sigma(1)} >_{B} = \sum_{\tau} a_{\sigma,\tau} p_{\tau}. \tag{1.5}$$

Proposition 1.2. Let X be as above. The finite dimensional abelian C^* -algebra B is X-aperiodic if and only if the matrix M is aperiodic (i.e. there exists integer m such that $M^m(\sigma,\tau) > 0$ for all $\sigma,\tau \in \Sigma$ where $M^m(\sigma,\tau)$ is (σ,τ) -component of the matrix M^m).

Proof. By (1.5), we have

$$\sum_{\substack{\sigma(1), \dots, \sigma(m) \\ = \sum_{\tau} M^{m}(\sigma, \tau) \ p_{\tau}.}} <\xi_{\sigma(m)}, \ \dots <\xi_{\sigma(2)}, <\xi_{\sigma(1)}, \ p_{\sigma}\xi_{\sigma(1)} >_{B} \xi_{\sigma(2)} >_{B} \dots \xi_{\sigma(m)} >_{B}$$

If M is aperiodic, then

$$\sum_{\sigma(1),\ldots,\sigma(m)} \langle \xi_{\sigma(m)}, \cdots \langle \xi_{\sigma(2)}, \langle \xi_{\sigma(1)}, p_{\sigma}\xi_{\sigma(1)} \rangle_B \xi_{\sigma(2)} \rangle_B \ldots \xi_{\sigma(m)} \rangle_B$$

is invertible. Since B is finite dimensional, the C^* -algebra B is X-aperiodic. Conversely for $x = \sum_{\sigma,\tau,l} c_{\sigma,\tau,l} \xi_{\sigma,\tau,l} \in B, c_{\sigma,\tau,l} \in \mathbb{C}$, by (1.3) we have

$$\langle x, p_{\sigma}x \rangle_{B} = \sum_{\tau, l, a_{\sigma, \tau} \neq 0} |c_{\sigma, \tau, l}|^{2} p_{\tau}.$$

If the equation (1.1) holds, for $\sigma, \tau \in \Sigma$, there exists $\{\tau(i)\}_{i=1}^m \subset \Sigma$ such that $a_{\tau(i),\tau(i+1)} \neq 0$ for $i = 1, 2, \ldots, m, \ \tau(1) = \sigma, \tau(m) = \tau$. Therefore $M^m(\sigma, \tau) > 0$ which implies that M is aperiodic.

Let $\mathcal{F}_m(X)$ be a relative tensor product $X \otimes_B X \otimes_B \cdots \otimes_B X$ for a full right Hilbert B-bimodule X and \mathcal{F}_m is a C^* -subalgebra of \mathcal{O}_X generated by

$$\{S_{x_1\otimes x_2\cdots\otimes x_m}S_{y_1\otimes y_2\cdots\otimes y_m}^*: x_1\otimes x_2\cdots\otimes x_m, \quad y_1\otimes y_2\cdots\otimes y_m\in\mathcal{F}_m(X)\}.$$

There exists a unital isomorphism $\psi_m: K_B(\mathcal{F}_m(X)_B) \longmapsto \mathcal{F}_m$ such that:

$$\psi_m(\theta_{x_1 \otimes x_2 \cdots \otimes x_m, \ y_1 \otimes y_2 \cdots \otimes y_m}) = S_{x_1 \otimes x_2 \cdots \otimes x_m} S_{y_1 \otimes y_2 \cdots \otimes y_m}^*$$

for finite rank operators $\theta_{x_1 \otimes x_2 \cdots \otimes x_m}$, $y_1 \otimes y_2 \cdots \otimes y_m \in K_B(\mathcal{F}_m(X)_B)$. Since X is of finite type, we have

$$\sum_{i=1}^{n} S_{u_i} S_{u_i}^* = 1 \quad \text{and} \quad \mathcal{F}_m \subset \mathcal{F}_{m+1}.$$

We set $\mathcal{F}_X := \overline{\bigcup_{m=1}^{\infty} \mathcal{F}_m}$. Moreover \mathcal{F}_X is the fixed point algebra $\mathcal{O}_X^{\mathbb{T}}$ for the gauge action. We define a complete positive map $\sigma : \mathcal{O}_X \longmapsto \mathcal{O}_X$ by

$$\sigma(T) = \sum_{i=1}^{n} S_{u_i} T S_{u_i}^{*}$$
 (1.6)

for $T \in \mathcal{O}_X$. In [3] Lemma 7.8, it is proved that the restriction of σ on $B' \cap \mathcal{O}_X$ is a unital isometric *-homomorphism and it does not depend on the choice of B-basis .Moreover $\sigma^m(T)$ commutes with \mathcal{F}_m for $T \in B' \cap \mathcal{O}_X$. There is an isomorphism $\pi_m : \mathcal{F}_m \longmapsto (B \otimes M_n)_{P_m}$ such that, for $x \in \mathcal{F}_m$,

$$\begin{cases}
 x = \sum_{\substack{i(1), \dots, i(m) \\ j(1), \dots, j(m)}} S_{u_{i(1)} \otimes u_{i(2)} \cdots \otimes u_{i(m)}} b_{i(1), \dots, i(m), j(1), \dots, j(m)} S_{u_{j(1)} \otimes u_{j(2)} \cdots \otimes u_{j(m)}}^* \\
 \pi_m(x) = \left(b_{i(1), \dots, i(m), j(1), \dots, j(m)}\right) \in (B \otimes M_n)_{P_m}
\end{cases}$$
(1.7)

where the projection P_m is

$$(\langle u_{i(1)} \otimes u_{i(2)} \cdots \otimes u_{i(m)}, \quad u_{j(1)} \otimes u_{j(2)} \cdots \otimes u_{j(m)} \rangle_B).$$

We note that if X is a Hilbert B-bimodule ([4]Definition 1.3), there exists a conditional expectation E_m from \mathcal{F}_X onto \mathcal{F}_m such that

$$\begin{cases}
E_m = \lim_{k \to \infty} E_m^{m+k} \\
E_m^{m+k}(\theta_{x_1 \otimes y_1, x_2 \otimes y_2}) = \theta_{x_{1B} < y_1, y_2 > , x_2}
\end{cases}$$
(1.8)

for $x_1, x_2 \in \mathcal{F}_m(X), y_1, y_2 \in \mathcal{F}_k(X)$ ([4]Lemma 3.24, 3.25

Theorem 1.3. Let X be a full right Hilbert B-bimodule. The the C^* -algebra \mathcal{F}_X is simple if and only if B is X-aperioddic.

<u>Proof.</u> Let J be a non-zero closed ideal of of \mathcal{F}_X . Set $J_m := \mathcal{F}_m \cap J$ and J = $\overline{\bigcup_{m=1}^{\infty} J_m}$. Then for a non-zero element $x \in J_m$ for some m, there exists an element

$$(b_{i(1),...,i(m),j(1),...,j(m)}) \in (B \otimes M_n)_{P_m}$$

satisfying the relation (1.7). If necessary, consider x^*x instead of x, and we may assume that there is $(k(1), \ldots k(m))$ such that

$$b := b_{k(1),...k(m), k(1),...k(m)}$$

is a non-zero positive element of B. Suppose that B is X-aperiodic, and we choose the elements $\{x_{i,j}\}$ of X satisfying the relation (1.1) for b. We take $y_{i(1),...,i(l),s(1),...,s(m+l)}$ of \mathcal{F}_{m+l} :

$$\begin{cases} y_{i(1),\dots,i(l),s(1),\dots,s(m+l)} =: \\ \sum_{k(1),\dots,k(m)} S_{u_{s(1)}\otimes u_{s(2)}\cdots\otimes u_{s(m+l)}} S_{x_{i(1),1}\otimes\cdots\otimes x_{i(l),l}}^* S_{u_{k(1)}\otimes u_{k(m-1)}\cdots\otimes u_{k(m)}}^*. \end{cases}$$
(1.9)

Since $\pi_m(x)P_m = P_m\pi_m(x) = \pi_m(x)$, we compute

$$\begin{aligned} y_{i(1),\dots,i(l),s(1),\dots,s(m+l)}by_{i(1),\dots,i(l),s(1),\dots,s(m+l)}^* \\ = & S_{u_{s(1)}\otimes u_{s(2)}\cdots\otimes u_{s(m+l)}} < x_{i(1),1}\otimes\cdots\otimes x_{i(l),l},\ bx_{i(1),1}\otimes\cdots\otimes x_{i(l),l}>_B S_{u_{s(1)}\otimes u_{s(2)}\cdots\otimes u_{s(m+l)}}^* \\ \text{and} \end{aligned}$$

$$\sum_{i(1),\dots,i(l)} y_{i(1),\dots,i(l),s(1),\dots,s(m+l)} b y_{i(1),\dots,i(l),s(1),\dots,s(m+l)}^*$$

$$\times \sum_{i(1),\dots,i(l)} \langle x_{i(1),1} \otimes \dots \otimes x_{i(l),l}, bx_{i(1),1} \otimes \dots \otimes x_{i(l),l} \rangle_B S_{u_{s(1)} \otimes u_{s(2)} \dots \otimes u_{s(m+l)}}^*.$$

Since there is a positive number $\lambda \in \mathbb{R}$ such that

$$\sum_{i(1),\dots,i(l)} \langle x_{i(1),1} \otimes \cdots \otimes x_{i(l),l}, bx_{i(1),1} \otimes \cdots \otimes x_{i(l),l} \rangle_B \geq \lambda I,$$

we have

$$\begin{cases} \sum_{\substack{i(1),\dots,i(l)\\s(1),\dots,s(m+l)}} y_{i(1),\dots,i(l),s(1),\dots,s(m+l)} b y_{i(1),\dots,i(l),s(1),\dots,s(m+l)}^* \\ \geq \lambda \sum_{s(1),\dots,s(m+l)} S_{u_{s(1)}\otimes u_{s(2)}\cdots\otimes u_{s(m+l)}} S_{u_{s(1)}\otimes u_{s(2)}\cdots\otimes u_{s(m+l)}}^* = \lambda I(1.10) \end{cases}$$

Thus J_{l+m} contains the above invertible element. We conclude that the ideal J is B.

Convesely we assume that \mathcal{F}_X is simple. Since B is unital and X is full, by [3]Proposition 15, there is a finite set $\{x_i\} \subset X$ such that

$$\sum_{i} \langle x_i, \ x_i \rangle_B = I. \tag{1.11}$$

For a non-zero element $b \in B$, we consider a closed ideal $\overline{\bigcup_{m=1}^{\infty} \mathcal{F}_m b \mathcal{F}_m}$ of \mathcal{F}_X . we can choose a finite subset $\{f_i\}_{i=1}^l \subset \mathcal{F}_m$ with $\sum_{i=1}^l f_i^* b f_i = I$ for some m. The element f_i of \mathcal{F}_m is of the form:

$$f_i = \sum_{k=1}^{nm} S_{z_{1,k}^i \otimes \cdots \otimes z_{m,k}^i} S_{y_{1,k}^i \otimes \cdots \otimes y_{m,k}^i}^*.$$

Since an operator inequality:

$$(\sum_{i=1}^{l} T_i)^* S(\sum_{i=1}^{l} T_i) \le l(\sum_{i=1}^{l} T_i^* S T_i)$$

holds, we obtain

$$\begin{split} I &= \sum_{i=1}^l f_i^* b f_i \\ &\leq nm \sum_{i,k} S_{y_{1,k}^i \otimes \cdots \otimes y_{m,k}^i} < z_{1,k}^i \otimes \cdots \otimes z_{m,k}^i, \ b z_{1,k}^i \otimes \cdots \otimes z_{m,k}^i >_B S_{y_{1,k}^i \otimes \cdots \otimes y_{m,k}^i}^*. \end{split}$$

By (1.11), we have

$$\begin{split} I &= \sum_{i(1), \dots, i(m)} S^*_{x_{i(1)} \otimes \dots \otimes x_{i(m)}} I S_{x_{i(1)} \otimes \dots \otimes x_{i(m)}} \\ &\leq nm \sum_{i(1), \dots, i(m)} \sum_{i, k} < x_{i(1)} \otimes \dots \otimes x_{i(m)}, \ y^i_{1, k} \otimes \dots \otimes y^i_{m, k} >_B \\ & \times < z^i_{1, k} \otimes \dots \otimes z^i_{m, k}, \ bz^i_{1, k} \otimes \dots \otimes z^i_{m, k} >_B \\ & \times < y^i_{1, k} \otimes \dots \otimes y^i_{m, k}, \ x_{i(1)} \otimes \dots \otimes x_{i(m)} >_B, \end{split}$$

which implies that B is X-aperiodic.

2. Automorphisms of \mathcal{O}_X

Let θ be an automorphism of B and U be an invertible $\mathbb C$ -linear map on the right Hilbert B- bimodule X satisfying

$$\langle Ux, Uy \rangle_B = \theta(\langle x, y \rangle_B), \qquad U(bxb') = \theta(b)(Ux)\theta(b')$$
 (2.1)

for $x, y \in X$ and $b, b' \in B$. This invertible operator U induces an automorphism α_U of \mathcal{O}_X such that

$$\alpha_U(S_x) = S_{Ux}$$

for $x \in X$ We note that if the right Hilbert B-bimodule X is $\mathbb{C}\mathbb{C}^n$, then the U is a unitary operator on \mathbb{C}^n and the automorphism α_U is the same as defined in [2]. It is remarked that the U is a unitary operator in ${}_B\mathcal{L}_B(X_B)$ if θ is trivial. At first, we give some results related with problems whether the restriction $\alpha_U|_{\mathcal{F}_X}$ on \mathcal{F}_X for α_U is inner or not.

Proposition 2.1. Let X be a right Hilbert B-bimodule of finite type and U be as (2.1). If the automorphism $\alpha_U|_{\mathcal{F}_X}$ is inner, then the restricted automorphism $\alpha_U|_{B'\cap\mathcal{F}_X}$ on the relative commutant $B'\cap\mathcal{F}_X$ must be trivial.

Proof. Let $\alpha_U|_{\mathcal{F}_X}$ be of the form:

$$\alpha_U|_{\mathcal{F}_X} = \mathrm{Ad}V$$

for some $V \in \mathcal{F}_X$. For a right B-basis $\{u_i\}$ and $x \in X$, we get

$$\sum_{i} (Uu_{i}) < Uu_{i}, \ x >_{B} = \sum_{i} (Uu_{i})\theta(< u_{i}, \ U^{-1}x >_{B})$$
$$= \sum_{i} U(u_{i} < u_{i}, \ U^{-1}x >_{B}) = UU^{-1}x = x.$$

Hence $\{Uu_i\}$ is also right B-basis. Since σ on $B' \cap \mathcal{F}_X$ does not depend on the choice of B-basis, we have

$$\alpha_U \sigma|_{B' \cap \mathcal{F}_X} = \sigma \alpha_U|_{B' \cap \mathcal{F}_X}. \tag{2.2}$$

Since $\sigma^m(T)$ for $T \in B' \cap \mathcal{F}_X$ commutes with \mathcal{F}_m and σ is isometric *-homomorphism, we get

$$\|\sigma_U(T) - T\|$$

$$= \lim_{m \to \infty} \|\sigma^m \alpha_U(T) - \sigma^m(T)\|$$

$$= \lim_{m \to \infty} \|\alpha_U \sigma^m(T) - \sigma^m(T)\|$$

$$= \lim_{m \to \infty} \|V \sigma^m(T) V^* - \sigma^m(T)\| = 0.$$

We conclude that $\alpha_U(T) = T$ for $T \in B' \cap \mathcal{F}_X$.

Next under the some restricted condition, we shall prove that α_U is inner on \mathcal{F}_X if and only $Ux = \lambda uxu^*$ for some unitary u of $B, \lambda \in \mathbb{T}$ and all $x \in X$.

Lemma 2.2. Let X be a full Hilbert B-bimodule with $Z(B) = \mathbb{C}$ and U be the invertible operator in (2.1). If the automorphism α_U is of the form:

$$\alpha_U(T) = AdV(T)$$

for some $V \in \mathcal{F}_X$ and all $T \in \mathcal{F}_X$, then the automorphism θ of B is inner, i.e. $\theta = Adu$ for a unitary u in B.

Proof. Let E_m be an expectation as in (1.8). Then, for sufficient large m, the invertible $E_m(V)$ satisfies

$$\alpha_U(T)E_m(V) = E_m(V)T$$

for $T \in \mathcal{F}_m$. By [3] Lemma 1.6, this operator $E_m(V)$ is scalar multiple of a unitary $V_m \in \mathcal{F}_m$ such that $\alpha_U(T) = \operatorname{Ad}V_m(T)$ for $T \in \mathcal{F}_X$. We compute, for $T = S_{U^{-1}x_1 \otimes \cdots \otimes U^{-1}x_m} bS_{U^{-1}y_1 \otimes \cdots \otimes U^{-1}y_m}^*$,

$$S_{x_{1}\otimes\cdots\otimes x_{m}}^{*}\alpha_{U}(T)S_{y_{1}\otimes\cdots\otimes y_{m}}$$

$$=S_{x_{1}\otimes\cdots\otimes x_{m}}^{*}S_{x_{1}\otimes\cdots\otimes x_{m}}\theta(b)S_{y_{1}\otimes\cdots\otimes y_{m}}^{*}S_{y_{1}\otimes\cdots\otimes y_{m}}$$

$$=\langle x_{1}\otimes\cdots\otimes x_{m}, x_{1}\otimes\cdots\otimes x_{m}\rangle_{B}\theta(b)\langle y_{1}\otimes\cdots\otimes y_{m}, y_{1}\otimes\cdots\otimes y_{m}\rangle_{B}$$

and

$$S_{x_1 \otimes \cdots \otimes x_m}^* (V_m T V_m^*) S_{y_1 \otimes \cdots \otimes y_m}$$

$$= \{ S_{x_1 \otimes \cdots \otimes x_m}^* V_m S_{x_1 \otimes \cdots \otimes x_m} \} b \{ S_{y_1 \otimes \cdots \otimes y_m}^* V_m^* S_{y_1 \otimes \cdots \otimes y_m} \}.$$

Since $\{S_{x_1 \otimes \cdots \otimes x_m}^* V_m S_{x_1 \otimes \cdots \otimes x_m}\}$ is an element of B, denoted by $d(x_1 \otimes \cdots \otimes x_m)$, we get

$$\langle x_1 \otimes \cdots \otimes x_m, x_1 \otimes \cdots \otimes x_m \rangle_B \theta(b) \langle y_1 \otimes \cdots \otimes y_m, y_1 \otimes \cdots \otimes y_m \rangle_B^*$$

= $d(x_1 \otimes \cdots \otimes x_m)bd(y_1 \otimes \cdots \otimes y_m)^*.$

Since X is full, there exists a finite subset $\{z_i\}$ in X such that

$$\sum_{i} \langle z_i, z_i \rangle_B = I.$$

Thus we get, for all $b \in B$,

$$\theta(b) = \sum_{\substack{i(1),\ldots,i(m)\\j(1),\ldots,j(m)}} \langle z_{i(1)} \otimes \cdots \otimes z_{i(m)}, \ z_{i(1)} \otimes \cdots \otimes z_{i(m)} \rangle_B \ \theta(b)$$

$$\times \langle z_{j(1)} \otimes \cdots \otimes z_{j(m)}, z_{j(1)} \otimes \cdots \otimes z_{j(m)} \rangle_B$$

 $=ubu^*$

where $u = \sum_{i(1),...,i(m)} d(z_{i(1)} \otimes \cdots \otimes z_{i(m)})$. Therefore we conclude that the automorphism θ is implemented by the unitary u.

If α_U is inner on \mathcal{F}_X , then by considering a perturbed operator U' on X by the unitary u such that $U'x = u^*(Ux)u$ for $x \in X$, we may assume that the invertible operator U is a unitary of ${}_B\mathcal{L}_B(x_B)$ and θ is trivial. The idea of the following lemma is borrowed from Cuntz [1]

Lemma 2.3. Let U be a unitary of ${}_{B}\mathcal{L}_{B}(x_{B})$. Then an operator W defined by:

$$W = \sum_{i=1}^{n} S_{Uu_i} S_i^* \tag{2.3}$$

satisfies the statements:

- 1. W is independent of the choice for right B-basis $\{u_i\}$
- 2. W is a unitary operator of $B' \cap \mathcal{F}_1$ such that $AdW = \alpha_U$ on \mathcal{F}_1 .

Moreover set $W_m := W\sigma(W) \dots \sigma^{m-1}(W)$ and the W_m is a unitary operator of $B' \cap \mathcal{F}_m$ such that $\mathrm{Ad}W_m = \alpha_U$ on \mathcal{F}_m .

Proof. Let $\{v_j\}$ be another right B-basis for X. Then we have

$$u_i = \sum_j v_j < v_j, \ u_i >_B$$

and

$$W = \sum_{i} S_{(U \sum_{j} v_{j} < v_{j}, u_{i} >_{B})} S_{u_{i}}^{*}$$

$$= \sum_{i,j} S_{Uv_{j}} < v_{j}, u_{i} >_{B} S_{u_{i}}^{*}$$

$$= \sum_{j} S_{Uv_{j}} S_{v_{j}}^{*}$$

Hence the operator W in \mathcal{F}_1 is independent of the choice for right B-basis. To show the unitarity of W, we compute

$$W^*W = \sum_{i,j} S_{u_i} S_{Uu_i}^* S_{Uu_j} S_{u_j}^*$$

$$= \sum_{i,j} S_{u_i} < Uu_i, \ Uu_j >_B S_{u_j}^*$$

$$= \sum_{i,j} S_{u_i} < u_i, \ u_j >_B S_{u_j}^* = I$$

and similarly we have

$$WW^* = \sum_{i} S_{Uu_i} S_{Uu_i}^* = I.$$

For $b \in B$, we calculate

$$bW = \sum_{i} S_{Ubu_{i}} S_{u_{i}}^{*}$$

$$= \sum_{i,j} S_{Uu_{j} < u_{j}, bu_{i} >_{B}} S_{u_{i}}^{*}$$

$$= \sum_{j} S_{Uu_{j}} S_{\sum_{i} u_{i} < u_{i}, b^{*}u_{j} >_{B}}^{*}$$

$$= \sum_{j} S_{Uu_{j}} S_{b^{*}u_{j}}^{*} = Wb.$$

Therefore W is an element of $B' \cap \mathcal{F}_1$. Since

$$WS_x = \sum_{i} S_{Uu_i} S_{u_i}^* S_x$$
$$= \sum_{i} S_{Uu_i} < u_i, \ x >_B$$
$$= S_{Ux} = \alpha_U(S_x)$$

and \mathcal{F}_1 is generated by $\{S_xS_y^*: x,y\in X\}$, we obtain $\alpha_U=\mathrm{Ad}W$ on \mathcal{F}_1 . Finally it is clear that W_m is a unitary of $B'\cap\mathcal{F}_m$ by the definition of W_m . Since $\{u_{i(1)}\otimes u_{i(1)}\}$

$$\cdots \otimes u_{i(m)}$$
 is a right basis for $X \otimes_B \cdots \otimes_B X$ and

$$W_m = \sum_{i(1),\dots,i(m)} S_{Uu_{i(1)}\otimes\dots\otimes Uu_{i(m)}} S_{u_{i(1)}\otimes\dots\otimes u_{i(m)}}^*,$$

it follows from (2) that $\alpha_U = AdW_m$ on \mathcal{F}_m .

Proposition 2.4. Let X be a full Hilbert B-bimodule of finite type with a left inner product B < 0, A > 0 and the center A > 0. Then the automorphism A > 0 is inner if and only if A > 0 and the automorphism A > 0 is of the form: A > 0 and the automorphism A > 0 is of the form: A > 0 and the automorphism A > 0 is of the form: A > 0 and A > 0 and A > 0 and A > 0 and the automorphism A > 0 is of the form: A > 0 and A > 0

Proof. The part of "if" is trivial.

The automorphism $\alpha_U|_{\mathcal{F}_X}$ is of the form: $\alpha_U|_{\mathcal{F}_X} = \operatorname{Ad}V$ for some unitary V in \mathcal{F}_X . By Lemma 2.2, we may assume that θ is trivial and U is a unitary of ${}_B\mathcal{L}_B(X_B)$ by perturbing U by a unitary u in B. It follows from Lemma 2.3 and $\alpha_U(\mathcal{F}_m) = \mathcal{F}_m$ that

$$E_m(V)T = E_m(VT) = E_m(\alpha_U(T)V)$$
$$= \alpha_U(T)E_m(V) = W_mTW_m^* E_m(V)$$

for $T \in \mathcal{F}_m$ where E_m is the expectation in (1.8). By $Z(\mathcal{F}_m) \simeq Z(B)$ in [3]Lemma 16, the element $W_n^* E_m(V) \in Z(\mathcal{F}_m)$ is scalar λ_m . Since $\lim_{m \to \infty} E_m(T) = T$ for $T \in \mathcal{F}_X$, we have $\lim_{m \to \infty} |\lambda_m| = 1$ and

$$\begin{split} & \lim_{m \to \infty} \| \lambda_{m+1}^{-1} \lambda_m - W \| \\ &= \lim_{m \to \infty} \| \lambda_{m+1}^{-1} \lambda_m - \sigma^{m+1}(W) \| \\ &= \lim_{m \to \infty} \| \lambda_{m+1}^{-1} \lambda_m - W_m^* W_{m+1} \| \\ &= \lim_{m \to \infty} \| \lambda_m W_m - \lambda_{m+1} W_{m+1} \| = 0. \end{split}$$

Hence there exists $\lambda \in \mathbb{C}$ such that $W = \lambda I$. For $x \in X$, we obtain

$$\lambda S_x = WS_x = \sum_i S_{Uu_i} S_{u_i}^* S_x$$
$$= \sum_i S_{Uu_i} < u_i, \ x >_B = S_{Ux}.$$

We conclude that $Ux = \lambda x$ for $x \in X$.

Next we give some results related with problems whether the automorphism α_U on \mathcal{O}_X is inner or not. The X-aperiodicity of B plays a crucial role in proving the outerness of its automorphism.

Theorem 2.5. Let X be a full right Hilbert B-bimodule of finite type and C^* -algebra B is X-aperiodic. The automorphism α_U of \mathcal{O}_X induced by the invertible operator U satisfying (2.1) is not inner if $B' \cap \mathcal{F}_X$ is not trivial and the restricted automorphism $\alpha_U|_{B' \cap \mathcal{F}_X}$ on $B' \cap \mathcal{F}_X$ is not trivial.

Proof. Suppose that there is a unitary V in \mathcal{O}_X such that

$$\alpha_U(T)V = VT$$

for $T \in \mathcal{O}_X$. By taking a consideration of a Fourier expansion $\{V_m\}_{m \in \mathbb{Z}}$ of V with respect to the gauge action, we have

$$\alpha_U(T)V_m = V_m T \tag{2.4}$$

for $T \in \mathcal{F}_X$ and $\alpha_t(V_m) = e^{-imt}V_m$. Its proof is divided into three cases:

- (i) there is a positive integer m with $V_m \neq 0$
- (ii) there is a negative integer -m with $V_{-m} \neq 0$
- (iii) $V_m = 0$ for all m except m = 0.

In the case (i), $V_m^*V_m$ and $V_mV_m^*$ are non-zero elements of $Z(\mathcal{F}_X)$. Since \mathcal{F}_X is simple by Theorem 1.3, $V_m^*V_m$ and $V_mV_m^*$ must be non-zero scalars. Hence we may assume that V_m is a unitary. The unitary V_m is of the form:

$$V_{m} = \sum_{i(1),\dots,i(m)} S_{u_{i(1)} \otimes u_{i(2)} \cdots \otimes u_{i(m)}} \left\{ S_{u_{i(1)} \otimes u_{i(2)} \cdots \otimes u_{i(m)}}^{*} V_{m} \right\}$$

$$\in \sum_{i(1),\dots,i(m)} S_{u_{i(1)} \otimes u_{i(2)} \cdots \otimes u_{i(m)}} \mathcal{F}_{X}.$$

Since $\sigma^m(T)$ for $T \in B' \cap \mathcal{F}_X$ commutes with \mathcal{F}_m and $\mathcal{F}_X = \overline{\bigcup_{m=1}^{\infty} \mathcal{F}_m}$, for $\varepsilon > 0$, there is an integer $l_0 \in \mathbb{N}$ such that for $l > l_0$

$$||V_{m}\sigma^{l}(T) - \sigma^{l+m}(T)V_{m}||$$

$$= ||V_{m}\sigma^{l}(T) - \sum_{i(1),\dots,i(m)} S_{u_{i(1)}\otimes u_{i(2)}\dots\otimes u_{i(m)}} \sigma^{l}(T)S_{u_{i(1)}\otimes u_{i(2)}\dots\otimes u_{i(m)}}^{*}V_{m}|| \leq \varepsilon$$

for $T \in B' \cap \mathcal{F}_X$. By (2.2), we have for $l > l_0$

$$\|\alpha_U(T) - \sigma^m(T)\|$$

$$= \|\sigma^l(\alpha_U(T)) - \sigma^{l+m}(T)\|$$

$$= \|\alpha_U(\sigma^l(T))V_m - \sigma^{l+m}(T)V_m\|$$

$$= \|V_m\sigma^l(T) - \sigma^{l+m}(T)V_m\| \le \varepsilon.$$

Therefore we obtain $\alpha_U = \sigma^m$ on $B' \cap \mathcal{F}_X$. By the assumption: $B' \cap \mathcal{F}_X \neq \mathbb{C}$, take a non-scalar $T_0 \in B' \cap \mathcal{F}_X$. Since

$$T_0 = \alpha_U^{-1} \alpha_U(T_0) = \alpha_U^{-1} \sigma^m(T_0),$$

the operator T_0 commutes with \mathcal{F}_m . By an iteration, the operator T_0 is an element of $Z(\mathcal{F}_X)$. Since \mathcal{F}_X is simple, the operator T_0 must be a scalar, which is a contradiction.

In the case (ii), the relation $\alpha_U(T)V_{-m} = V_{-m}T$ in (2.4) is equivalent to $\alpha_U^{-1}(T)V_{-m}^* = V_{-m}^*T$. Hence ,by the same way as in the case (i), we get $\alpha_U^{-1} = \sigma^m$ on $B' \cap \mathcal{F}_X$ and we get a contradiction similarly.

In the case (iii), It follows from Proposition 2.1 that α_U is not inner.

We apply Theorem 2.5 to Cuntz-Krieger algebras.

Proposition 2.6 (Cuntz-Krieger Algebra). Let X be a full right Hilbert B-bimodule of finite type $(\dim_{\mathbb{C}} X > 1)$ and the finite dimensional abelian C^* -algebra B is X-aperiodic. The invertible operator U on X and the automorphism θ of B satisfy the relation (2.1). Then α_U is inner if and only if the operator U is of the form:

$$Ux = uxu^* \qquad (x \in X) \tag{2.5}$$

for some $u \in B$ and the automorphism θ is trivial.

Proof. The part of "if" is clear.

We suppose that $\alpha_U = \operatorname{Ad}V$ for some unitary $V \in \mathcal{O}_X$. Since $B' \cap \mathcal{F}_X$ is always not trivial, by Theorem 2.5 and its proof, we may assume that the unitary V is an element of \mathcal{F}_X and $\alpha_U|_{B' \cap \mathcal{F}_X}$ is trivial. It can be shown that the operator U in (2.1) is of the form:

$$U\xi_{\sigma,\tau,l} = \sum_{k} c_{\sigma,\tau}(l,k)\xi_{\theta(\sigma),\theta(\tau),k}$$
(2.6)

where $C_{\sigma,\tau} := (c_{\sigma,\tau}(l,k))_{l,k}$ are unitary matrices and $\{\xi_{\sigma,\tau,l}\}$ is the basis for X. Moreover the automorphism θ satisfies a relation:

$$a_{\sigma,\tau} = a_{\theta(\sigma),\theta(\tau)}$$

where $a_{\sigma,\tau}$ is the entries of the matrix M above (1.3). By Lemma 2.2, the automorphism θ must be trivial. By considering element of $B' \cap \mathcal{F}_1$:

$$S_{\xi_{\sigma,\tau,l}} p_{\tau} S_{\xi_{\sigma,\tau,k}}^*$$

for $\sigma, \tau \in \Sigma$ and $1 \leq l, k \leq a_{\sigma,\tau}$, we have

$$S_{\xi_{\sigma,\tau,l}} p_{\tau} S_{\xi_{\sigma,\tau,k}}^{*}$$

$$= \alpha_{U} (S_{\xi_{\sigma,\tau,l}} p_{\tau} S_{\xi_{\sigma,\tau,k}}^{*})$$

$$= S_{U\xi_{\sigma,\tau,l}} p_{\tau} S_{U\xi_{\sigma,\tau,k}}^{*}$$

$$= \sum_{l',k'} c_{\sigma,\tau} (l,l') \overline{c_{\sigma,\tau}(k,k')} S_{\xi_{\sigma,\tau,l'}} p_{\tau} S_{\xi_{\sigma,\tau,k'}}^{*}.$$

Hence a relation:

$$c_{\sigma,\tau}(l,l')\overline{c_{\sigma,\tau}(k,k')} = \delta(l,l')\delta(k,k')1.$$

holds for all $1 \leq l, l', k, k' \leq a_{\sigma,\tau}$. This implies that the matrices $C_{\sigma,\tau}$ are scalar. Those scalar is denoted by $C_{\sigma,\tau}$ and $|C_{\sigma,\tau}| = 1$. Take elements of $B' \cap \mathcal{F}_m$:

$$S_{\xi_{\sigma,\sigma(1),l(1)} \otimes \xi_{\sigma(1),\sigma(2),l(2)} \otimes \cdots \otimes \xi_{\sigma(m-1),\tau,l(m)}} p_{\tau} S_{\xi_{\sigma,\tau(1),l(1)} \otimes \xi_{\tau(1),\tau(2),l(2)} \otimes \cdots \otimes \xi_{\tau(m-1),\tau,l(m)}}^*$$

for the two paths $\sigma\sigma(1)\sigma(2)\ldots\sigma(m-1)\tau$ and $\sigma\tau(1)\tau(2)\ldots\tau(m-1)\tau$ between σ and τ , and we get

$$\begin{split} S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}} p_{\tau} S_{\xi_{\sigma,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^* \\ = &\alpha_{U} \big(S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}} p_{\tau} S_{\xi_{\sigma,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^* \big) \\ = &C_{\sigma,\sigma(1)} C_{\sigma(1),\sigma(2)} \dots C_{\sigma(m-1),\tau} \overline{C_{\sigma,\tau(1)}C_{\tau(1),\tau(2)}\dots C_{\tau(m-1),\tau}} \\ &\qquad \qquad \times S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}} p_{\tau} S_{\xi_{\sigma,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^* \big) \end{split}$$

Therefore we have, for all $m \in \mathbb{N}$,

$$C_{\sigma,\sigma(1)}C_{\sigma(1),\sigma(2)}\dots C_{\sigma(m-1),\tau} = C_{\sigma,\tau(1)}C_{\tau(1),\tau(2)}\dots C_{\tau(m-1),\tau}.$$
 (2.7)

Since the value of $C_{\sigma,\sigma(1)}C_{\sigma(1),\sigma(2)}\dots C_{\sigma(m-1),\tau}$ depends only on the two end points σ,τ , it is denoted by $D^m(\sigma,\tau)$. Since B is X-aperiodic, there is a integer $m \in \mathbb{N}$ such that, for all $\sigma,\tau \in \Sigma$, a path of m-length connecting σ and τ exists. Fix $\tau_0 \in \Sigma$ and we have, by (2.7),

$$D^m(\sigma,\tau)D^m(\tau,\tau_0)=D^m(\sigma,\tau_0)D^m(\tau_0,\tau_0).$$

Set $d(\sigma) := D^m(\sigma, \tau_0)$ and $D^m(\sigma, \tau)$ is equal to $d(\sigma)d(\tau_0)\overline{d(\tau)}$. Then we compute, for two paths $\sigma\sigma(1)\ldots\sigma(m-1)\tau$ and $\rho\tau(1)\ldots\tau(m-1)\tau$,

$$\begin{split} &\alpha_{U}(S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}}p_{\tau}S_{\xi_{\rho,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^{*})\\ =&D^{m}(\sigma,\tau)\overline{D^{m}(\rho,\tau)}S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}}p_{\tau}S_{\xi_{\rho,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^{*}\\ =&d(\sigma)\overline{d(\rho)}S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}}p_{\tau}S_{\xi_{\rho,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^{*}. \end{split}$$

We set a unitary $u \in B$:

$$u:=\sum_{\sigma}d(\sigma)p_{\sigma}.$$

Then all for two paths $\sigma\sigma(1)\ldots\sigma(m-1)\tau$ and $\rho\tau(1)\ldots\tau(m-1)\tau$,

$$\alpha_{U}\left(S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}}p_{\tau}S_{\xi_{\rho,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^{*}\right)$$

$$=\operatorname{Ad}u\left(S_{\xi_{\sigma,\sigma(1),l(1)}\otimes\xi_{\sigma(1),\sigma(2),l(2)}\otimes\cdots\otimes\xi_{\sigma(m-1),\tau,l(m)}}p_{\tau}S_{\xi_{\rho,\tau(1),l(1)}\otimes\xi_{\tau(1),\tau(2),l(2)}\otimes\cdots\otimes\xi_{\tau(m-1),\tau,l(m)}}^{*}\right).$$

Hence the automorphism α_U satisfies $\alpha_U(T) = \operatorname{Ad} u(T)$ for $T \in \mathcal{F}_m$. Since

$$D^{km}(\sigma,\tau) = D^{m}(\sigma,\sigma(1)) \dots D^{m}(\sigma(k-1),\tau) = d(\sigma)d(\tau_0)^{k}\overline{d(\tau)},$$

by the same argument as above, we get

$$\alpha_U(T) = \mathrm{Ad}u(T)$$

for $T \in \mathcal{F}_{km}$. Then $\alpha_U = \operatorname{Ad} u$ on \mathcal{F}_X . On the other hand, $\alpha_U = \operatorname{Ad} V$ on \mathcal{O}_X for $V \in \mathcal{F}_X$. Since \mathcal{F}_X is simple, we conclude that $V = \lambda u$ for a scalar $\lambda, |\lambda| = 1$. We compute

$$C_{\sigma,\tau} S_{\xi_{\sigma,\tau,l}} = \alpha_U (S_{\xi_{\sigma,\tau,l}})$$

$$= u S_{\xi_{\sigma,\tau,l}} u^*$$

$$= d(\sigma) \overline{d(\tau)} S_{\xi_{\sigma,\tau,l}}.$$

Finally we get $C_{\sigma,\tau} = d(\sigma)\overline{d(\tau)}$, and

$$U\xi_{\sigma,\tau,l} = u\xi_{\sigma,\tau,l}u^*$$

for all σ, τ, l . We conclude that $Ux = uxu^*$ for $x \in X$.

When we consider the imprimitivity bimodule $_{\alpha}B$ defined in (1.2), The C^* -algebras $\mathcal{F}_{\alpha B}$ and $\mathcal{O}_{\alpha B}$ are isomorphic to B and the crossed product $B \rtimes_{\alpha} \mathbb{Z}$ respectively. Let U be an invertible operator defined by

$$Ub = \alpha(b)$$

for $b \in {}_{\alpha}B$. Then the automorphism α_U is inner in $\mathcal{O}_{\alpha B} = B \rtimes_{\alpha} \mathbb{Z}$ with $\alpha_U = \operatorname{Ad}S_I^*$ where I is an identity of ${}_{\alpha}B$. Therefore, for our purpose, we need the assumption that the Hilbert B-bimodule X is not an imprimitivity bimodule.

Theorem 2.7. Let X be a full self conjugate Hilbert B-bimodule of finite type and X is not similar to an imprimitivity Hilbert B-bimodule. The C^* -algebra B is X-aperiodic with $Z(B) = \mathbb{C}$. Then the automorphism α_U is inner on \mathcal{O}_X if and only if

$$Ux = uxu^*$$

for some unitary u in B and all $x \in X$ and the automorphism θ is implemented by u.

Proof. Since X is a self conjugate Hilbert B-bimodule with its conjugate Hilbert B-bimodule \overline{X} , There exists Jones projection e_X in ${}_B\mathcal{L}_B(X \otimes_B \overline{X}) = {}_B\mathcal{L}_B(X \otimes_B X) \simeq B' \cap \mathcal{F}_2$ such that

$$e_X(x \otimes \bar{x'}) = (\text{r-ind}[X])^{-1} \sum_i u_i \otimes \bar{u_i} _B < x, \ x' >$$
 (2.8)

where $x \in X$ and $\bar{x'} \in \bar{X}$ and r-ind[X] is a right index of X ([4]). Suppose that the projection e_X is an identity. The projection e_X induces the conditional expectation F from $\mathcal{L}_B(X_B)$ to B as follows:

$$F(T) = (\text{r-ind}[X])^{-1} \sum_{i} {}_{B} < Tu_{i}, \ u_{i} >$$
 (2.9)

for $T \in \mathcal{L}_B(X_B)$ ([4]Proposition 3.2) and

$$e_X(T \otimes I)e_X = (F(T) \otimes I)e_X.$$

Therefore the fact $e_X = I$ leads us that the expectation F = I. Hence by (2.9), we have

$$x < y, z >_B = \theta_{x,y} z = F(\theta_{x,y}) z$$

= $(\text{r-ind}[X])^{-1} \sum_i B < \theta_{x,y} u_i, u_i > = (\text{r-ind}[X])^{-1} B < x, y > z.$

Defining a new left inner product B < x, y >' on X by

$$B < x, y >' = (\text{r-ind}[X])^{-1} B < x, y >,$$

the Hilbert B-bimodule X is similar to an imprimitivity Hilbert B-bimodule. This is a contradiction. Therefore $B' \cap \mathcal{F}_X$ contains non trivial projection $e_X \in B' \cap \mathcal{F}_2$. By the same proof as the cases (i) and (ii) in Theorem 2.5, we obtain that the automorphism α_U is of the form:

$$\alpha_U(T) = VTV^*$$

for some unitary $V \in \mathcal{F}_X$ and all $T \in \mathcal{O}_X$. By Proposition 2.4, we get

$$Ux = \lambda uxu^*$$

for some unitary $u \in B$ and $\lambda \in \mathbb{C}$, $|\lambda| = \mathbb{F}$. Since \mathcal{F}_X is simple and

$$u^*VS_xV^*u = u^*\alpha_U(S_x)u = \lambda S_x$$

for $x \in X$, the element u^*V in \mathcal{F}_X is contained in the center $Z(\mathcal{F}_X) = \mathbb{C}$. Hence $V = \gamma u$ for some $\gamma \in \mathbb{C}$, $|\gamma| = \mathbb{F}$. We finally obtain that

$$S_{Ux} = \alpha_U(S_x) = VS_xV^* = uS_xu^* = S_{uxu^*}$$

and

$$Ux = uxu^*$$

for
$$x \in X$$
.

Professor T. Kajiwara teaches us the existence of Jones projection e_X for a bimodule X.

Example 2.8. The Hilbert B-bimodule ${}_BA_B$, induced by a C^* -inclusion ($B \subset A, E$) of finite index type with index E > 1 ([6]), is always full, self conjugate and not similar to an imprimitivity Hilbert B-bimodule. If the C^* -algebra B is simple, it is clear that \mathcal{F}_{BA_B} is simple. Therefore for $\varphi \in Aut(B, A) := \{\varphi \in Aut(A) : A \in Aut(A) : A$

 $\varphi(B) = B$, α_{φ} is inner if and only if $\varphi(a) = uau^*$ for $a \in A$ and some unitary $u \in B$.

REFERENCES

- [1] J. Cuntz, Regular actions of Hopf algebras on the C*-algebra generated by a Hilbert space, in Operator algebras, mathematical physics, and low dimensional topology (Istanbul,1991),87-100, Res. Notes Math. 5, A K Peters, Wellesley, MA,(1993).
- [2] M. Enomoto, H. Takehana, Y. Watatani, Automorphisms on Cuntz algebras, Math. Japonica, 24(1979), 231-234.
- [3] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal Structure and simplicity of the C*-algebras generated by Hilbert bimodules, Preprint, Università di Roma Tor Vergata (1996).
- [4] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C*-bimodule and K-theory, preprint.
- [5] M.V. Pimzner A Class of C^* -algebras generalized both Cuntz-Krieger algebras and crossed products by \mathbb{Z} , Free Probability Theory, Fields Institute Communication (1996).
- [6] Y. Watatani, Index for C*-subalgebras, Memoir Amer. Math. Soc. 424 (1990).

Division of Mathematical Sciences, Osaka Kyoiku University Kashiwara, Osaka 582, Japan

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, TENOJI, OSAKA 543, JAPAN