
Recu.rsive Types: the syntactic and semantic
approaches

Mario Coppo

Universit\‘a di Torino
Dipartimento di Informatica

Corso Svizzera 185
10149 Torino (ltaly)

e-mail: coppo@di.unito.it

Abstract. The aim of this paper is to study some basic syntactic prop-
erties of type inference systems with recursive types, and in particu-
lar normalization, subject reduction and the existence of principal type
schemes. We do not intend to present original results. Most of material
presented here, except some results about the decidability of type infer-
ence, has already been subject of some other papers (the main sources
are [18], [12] and [5] $)$ or is part of the folklore of the subject. Our main
contribution is to have put it in a uniform frame.

1 Introduction

One of the most interesting notions of type constraint for functional program-
ming languages is the one derived from Curry’s Functionality Theory ([7]), which
has suggested the type disciplines incorporated now ill most functional program-
ming languages, notably ML ([16]) and Mirallda$([19])$. Several features lnake
this sort of polymorphism particularly attractive both from the practical and
the theoretical point of view. The type inference algorithm is complete, due to
the existence of principal type schemes ([8], [15]) which fully characterize the set
of types assignable to each term. Moreover it has been proved that the inference
system has good syntactic properties like the subject reduction $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\iota \mathrm{n}$ which
implies that terms having type in this discipline cannot produce run time errors.
Another remarkable property of this system is that typed terms have always a
strong normal form.

In the present paper we study extensions of the basic type inference system
for the λ-calculus to include recursive type definitions as a means of introducing
new types. A usual way of introducing new types in programming languages is
by means of equations in which the type symbol being defined occurs in the $\mathrm{t}\mathrm{e}\mathrm{r}\ln$

definillg it. For example, the type of lists of objects of type A can be specified
by the equation

A-list $=nil+$ ($A\cross A$-list) (1)

assuming the existence of a type constant nil for the one element type, and type
constructors $+\mathrm{f}\mathrm{o}\mathrm{r}$ disjoint union of types and \cross for cartesian product.

数理解析研究所講究録
1023巻 1998年 16-41 16

Even when the only type constructor available is the function type construc-
$\mathrm{t}\mathrm{o}\mathrm{r}arrow$, it is well known that it is nevertheless useful to have some means for
defining circular type expressions. For example, assuming a type c such that
$c=carrow A$ (where A is any type) one can assign type $(Aarrow A)\prec A$ to the fixed
point combinator $Y=\lambda f.(\lambda X.f(Xx))(\lambda_{X}.f(xX))$, permitting in this kind of sys-
tem recursion over values without having to introduce it explicitly in the base
language by means of a new constant. This means also that when considering
recursive types, in general, the property of strong normalization is lost.

We will address inference system in which recursive types are defined by
means of equations of the shape $B=C$, where B and C are simple type expres-
sions. Following [4] we call system of type constraints a set of equations like this.
The most interesting case is, obviously, when B is an atomic type c and C is
an arbitrary type expression possibly containing c . This amount to define type
c with the property of being equal to C .

When we assume a set C of type constraints we must consider a notion of
equivalence between types induced by the equations in C . There are however at
least two ways of defining such equivalence. In one more restrictive and syntactic
way (weak equivalence) we consider two type A and $A’$ equivalent only if they
con be obtained one from the other by replacing subtypes occurring in the l.h.s.
some equations of C by the corresponding types occurring in r.h.s. of the same
equation (or vice-versa). This amounts to consider the least congruence induced
by the equations in C . Weak equivalence turns out to be easily formalizable and
to have nice syntactic properties, like subject reduction and the existence of a
notion of principal type scheme. It is also well know ([13]) a characterization of
the class or recursive type definitions which guarantee the strong normalization
of the terms that can be typed from them.

There is however. another notion of type equivalence (strong equivalence)
which amounts to consider equivalent two types if they, seen as binary trees,
can be made equal at any finite level by repeatedly applying the equations in
C . This notion of equivalence is stronger than the weak one and correspond,
informally, to considering equivalent two types if they represent the same notion
of behavior. This is, for instance, the notion of type equality determined by the
type checking algorithms of the programlnillg language ALGOL 60. Moreover
strong equivalence is the notion of type equality induced by interpretations in
continuous models (see [5]). We will show in this paper that strong equivalence
has also good $\mathrm{s}\mathrm{y}_{\mathrm{l}1}\mathrm{t}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{C}}$ properties.

The aim of this paper is to study properties of type inference systems with re-
cursive type definitions, and in particular normalization, subject reduction and
the existence of principal type schemes. We do not intend to present original
results. Most of material presented here, except some results about the decid-
ability of type inference, has already been subject of some other $\mathrm{p}\mathrm{a}$,pers (the
main sources are [18], [12] and [5] $)$ or is part of the folklore of the subject. Our
main contribution is to have put it in a uniform frame.

17

2 Inference Systems with Recursive Types

2.1 Recursive Types and Type Equivalence

We will study the notion of recursive type starting from the somewhat more gen-
eral notion of type algebra, which has been motivated by Scott [17] and formally
developed in Breazu Tannen and Meyer [4]. In addition to being interesting by
itself, this notion will also prove to be a useful technical tool later on.

Let A be a set of atomic types (we do not distinguish for the moment between
variables and constants). T_{A} denotes the set of types defined from the atomic
types in A by $\mathrm{t}\mathrm{h}\mathrm{e}-\succ_{}\mathrm{C}$onstructor.

Definitionl. Let A a set of atomic types. A type algebra is a pair $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\simeq \mathrm{i}\mathrm{s}$ a congruence over T_{A} (i.e. is such that $A\simeq A’$ and $B\simeq B’$ implies
$Aarrow A’\simeq Barrow B^{J})$.

We are mainly interested in type algebras where the congruence \simeq can be
generated by a finite set of type equations via equational reasoning. Let

$C=\{A_{i}=B_{i}|1\leq i\leq n\}$

be a set of formal equations between types $A_{i},$ $B_{i}\in \mathrm{T}_{\mathrm{A}}$. Following [4] we call
such a set of equations a system of type constraints.

As remarked ill the introduction there are essentially two ways in which the
equations of C can be extended to a congruence over T_{A} . We introduce them in
the following subsections.

Weak Equality The simplest way to define a congruence from a system of type
constraints C is to extended C to a congruence over T_{A} by adding structural
rules and transitivity. We do this defining $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{l}\mathrm{n}\mathrm{a}}1$ systems in which we can prove
judgments of the shape

$C\vdash A=B$

whose meaning is that the type expression A and B can be proved equivalent
from the equations in C . This is done in the following definition where the rules
for equational reasoning are given via a formal inference system (\sim) . We will
call weak equivalence the notion of type equality so obtained.

Definition2. Let $C=\{A_{i}=B_{i}|1\leq i\leq n\}$, where $A_{i},$ $B_{i}\in \mathrm{T}_{\mathrm{A}}$, be a system of
type constraints. The system (\sim) is the system for equational reasoning defined

18

by the following $\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{S}$ alld rules.

$(\mathrm{e}\mathrm{q})$ $C\vdash A=B$ if $(A=B\in C)$

(ident) $C\vdash A=A$

(symm) $\frac{C\vdash A=B}{C\vdash B=A}$

$(arrow)$
$C\vdash A=A’$ $C\vdash B=B’$
$\ovalbox{\tt\small REJECT}_{B=Aarrow}c\vdash \mathrm{A}arrow B$

(trans) $\frac{c\vdash A=Bc\vdash B=C}{C\vdash A=C}$

We also write $A\sim cB$ (A is weakly equivalent to B with respect to C) to mean
that $C\vdash_{\sim}A=B$.

Note $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\sim c$ is the minimal congruence over T_{A} generated by C . We say also
that C is a (finite) presentation of the type algebra $\langle \mathrm{T}_{\mathrm{A}}, \sim c\rangle$.
In informal notation, we will use $=\mathrm{t}\mathrm{o}$ denote syntactic equality of types (modulo
a conversion).

In the definition of recursive types we are mainly interested in the type
algebras generated by systems of type $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}_{1}1\mathrm{t}_{\mathrm{S}}$ of the shape $c=C$ where $c\in \mathrm{A}$

is an atom and $C\in \mathrm{T}_{\mathrm{A}}$ is a non atomic type expression. This corresponds to the
natural idea of defining type c as equivalent to a type expression C containing
possibly c itself. In this case we can consider c as a new type constant.

Definition3. A system of type constraints 71 is a simultaneous recursion $(\mathrm{s}.\mathrm{r}.)$

if it has the form
$\mathcal{R}=\{c_{i}=ci|1\leq i\leq n\}$.

where, for all $1\leq i\leq n,$ $c_{i}\in \mathrm{A},$ C_{i} is a noll-atomic type expression over T_{A}

and $c_{i}\neq c_{j}$ for all $i\neq j$.

Note that equations like $c_{i}=c_{i}$ are forbidden in a $\mathrm{s}.\mathrm{r}$. and that we can dispose
of any equation of the shape $c_{i}=c_{j}(i\neq j)$ simply by replacing c_{i} by. c_{j} in \mathcal{R}

(or vice versa).
We call unfolding the operation of replacing c_{i} by C_{i} in a type and folding the

reverse operation. So, two types are weakly equivalent in C if they can be trans-
formed one into the other by

$.\mathrm{a}$ finite number of applications of the operations
of folding and unfolding.

Example 1. (i) The $\mathrm{s}.\mathrm{r}$.
$\mathcal{R}_{0}=\{C=carrow c\}$

defines a type c such that any pure λ-term Λf has type c , by assigning type c

also to $\mathrm{v}\mathrm{a}\mathrm{r}\dot{\mathrm{i}}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}$. In fact c represents a type which satisfies the defining equation
of models of the λ-calculus. Moreover we have $c=_{\mathcal{R}_{0}}carrow c$ and $c\prec c\sim_{\mathcal{R}_{\mathrm{O}}}carrow$

19

$(Carrow C)$.
(ii) Let $\mathcal{R}_{\mathrm{i}}=\{c=Aarrow c\}$ where A is any type. Let $T=Aarrow c$. Then we have

$c\sim_{\mathcal{R}_{1}}Aarrow c\sim_{\mathcal{R}_{1}}Aarrow Aarrow C\sim \mathcal{R}_{1}\cdots$

Let now $\mathcal{R}_{1}’=\{c=Aarrow Aarrow c\}$. Notice that

$c\sim_{\mathcal{R}_{1}}A\prec A\prec c\sim n_{1}Aarrow Aarrow Aarrow A\prec c\sim_{\mathcal{R}_{1}}$. ..

Moreover If we define $T=Aarrow c$ and $T’=Aarrow Aarrow c\mathrm{e}$ have $T\sim_{\mathcal{R}_{1}}T’$ but
$T \oint_{\mathcal{R}_{1}’}T’$

Rem.ark. In a $\mathrm{s}.\mathrm{r}$. \mathcal{R} , the atomic types c_{i} can be seen as new types defined
by the equations. In a type algebra which is presented by a generic system of
type constraints (in which both sides can be non-atomic type expressions), this
interpretation is not possible. In this case it is difficult to classify the atoms in
A as constants or variables.

Strong Equality Consider Example 1 above. Simultaneous recursions like R_{1}

and $\mathcal{R}_{1}’$, although not equivalent, seem to express the same informal behavior:
that of a function which can be applied to an arbitrary number of objects yielding
a function of the same type. T and $T’$, indeed, converge eventually, using both \mathcal{R}_{1}

and $\mathcal{R}_{1}’$ to the same (infinite) type when c is “pushed down” by repeated steps of
unfolding. We can define another notion of equivalence between recursive type
expressions regarding them as finitary descriptions of a special class of infinite
trees: this approach is followed systematically in Cardone and Coppo [5] for all

alternative representation of recursive types.
In order to introduce this class we need some basic notions about $\mathrm{i}_{\mathrm{l}1}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$

trees, mostly drawn from Courcelle [6]. If X is a set, X^{*} denotes the set of
all finite sequences of elements of X . The elemellts of X^{*} are usually called
the words over the alphabet X . As usual concatenation is represented simply by
juxtaposition; ϵ denotes the empty word.

Definition4 Trees. Let $[n]$ denote the set $\{1, \ldots, n\}$, and define a AU $\{arrow\}$ -tree
(or just tree, for short) as a partial function

$\alpha:[2]^{*}arrow \mathrm{A}\cup\{arrow\}$

satisfying the conditions:

if $uv\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha)$, then also $u\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha)$.
if $u2\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha)$, then also $u1\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha)$.
if $\alpha(u)=arrow \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}u1,$ $u2\in dom(\alpha)$.
if $\alpha(u)\in$ A then $uv\not\in dom(\alpha)$ for all $v\neq\epsilon$.

The set of trees will be denoted by $\mathrm{T}\mathrm{r}^{\infty}$. TrF is the set offinite trees over AU $\{arrow\}$

(we omit to explicitly mention A since it will be clear from the context.

20

Since TrF is clearly isomorphic to T (the set of simple types), we will of-
ten identify them, considering simple types as finite trees and vice versa. The
operation of substitution can be easily extended to trees.

Among infinite trees, we single out trees having a certain periodic structure,
allowing to look at them as solutions of (systems of) equations of the form

$\xi=A[\xi]$,

where $A\in \mathrm{T}\mathrm{r}^{F}$. These are the regular trees.

Definition5. (Regular trees)

(i) Given a tree $\alpha\in \mathrm{T}\mathrm{r}^{\infty}$ and a word $w\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha)$, let a/w be the tree defined
by the conditions:

\bullet $\mathrm{d}\mathrm{o}\mathrm{m}(a/w)=\{u\in[2]^{*} : wu\in \mathrm{d}\mathrm{o}\mathrm{m}(a’)\}$;
\bullet $(a/w)(u)=\alpha(wu)$, for all $u\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha/w)$.

(ii) A tree is regular if the set $\{\alpha/w|w\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha)\}$ is finite. The set of regular
trees is denoted by TrR .

\square

It is easy to see that regular trees are closed under substitutions, i.e. if
$\alpha,$

$\beta_{1},$

$\ldots,$
$\sqrt n$ are regular trees then also $a[t_{1}:=\beta_{1}, \ldots,t_{n}:=\sqrt n]$ is a regular

tree, where $\{t_{1}, \ldots, t_{n}\}(n\geq 0)$ are variables occurring in α .

We can turn $\mathrm{T}\mathrm{r}^{\infty}$ into a metric space in the following way [6].

Definition6. Let $v\in[2]^{*}$ and let $\alpha,$
$\alpha’\in \mathrm{T}\mathrm{r}^{\infty}$. Let $||w||$ denote the length of

w . Define
$\mathrm{d}(a, a’)=\{$

0 if $\alpha=\alpha’$

$2^{-\delta(\alpha,\alpha’})$ if $\alpha\neq a’$

where $\delta(\alpha, a’)$ is the length of the minimum path w such that $w\in \mathrm{d}\mathrm{o}\mathrm{m}(\alpha)$,
$w\in \mathrm{d}\mathrm{o}\mathrm{m}(a’)$ and $a(w)\neq\alpha’(w)$.

It is well known (Courcelle [6, \S 2.2]) that $\langle \mathrm{T}\mathrm{r}^{\infty}, \mathrm{d}\rangle$ is a complete metric space.
Indeed, with respect to this topology, the set $\mathrm{T}\mathrm{r}^{F}$ is a dense subset of $\mathrm{T}\mathrm{r}^{\infty}$ and
$\mathrm{T}\mathrm{r}^{\infty}$ is the topological completion of TrF .

If $\langle D, d\rangle$ is a metric space a map f : $Darrow D$ is contracting if there exists a
real number $\mathrm{c}(0\leq c<1)$ such that

$\forall x,$ $x’\in Dd(f(x), f(x’))\leq c\cdot d(x, x’)$.

A basic property of complete metric spaces is the following result:

Theorem 7. Let $\langle D, d\rangle$ be a com.plete metric space. Every contracting mapping
f : $Darrow Dha$ a unique fixed point in D defined as the limit of the

$Cauchy\square$

sequence $\langle f^{n}(x\mathrm{o}))\rangle n\geq 0$, where x_{0} is any elem.ent of D .

21

Now take a tree $\alpha\in \mathrm{T}\mathrm{r}^{\infty}$ and a variable t which occurs in a . Then, if $\alpha\not\equiv$

$t,$ $\lambda\zeta\in \mathrm{T}\mathrm{r}^{\infty}.\alpha[t:=\zeta]$ defines a colltracting mapping of $\mathrm{T}\mathrm{r}^{\infty}$ into itself. The
following property is also easy to prove (Courcelle [6, Theorem 4.3.1]).

Proposition8. If $a\in \mathrm{T}\mathrm{r}^{R}$ and $\alpha\not\equiv t$ then fix$(\lambda\zeta\in \mathrm{T}\mathrm{r}^{\infty}.\alpha[t:=\zeta])\in \mathrm{T}\mathrm{r}^{R}$.

A notion of equivalence between types defined via a $\mathrm{s}.\mathrm{r}$. can be obtained by
considering two types equivalent if their corresponding trees, obtained by infinite
unfolding using the equations in C , are equal. We define an $\mathrm{i}_{11\mathrm{t}\mathrm{e}}\mathrm{e}\mathrm{r}_{\mathrm{P}}\mathrm{r}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$of types
as infinite (regular) trees.

A solution in TrR of $\mathrm{s}.\mathrm{r}$. \mathcal{R} is n-tuple $\langle\alpha_{1}, \ldots, \alpha_{n}\rangle\in$ $($ Tr$R)^{n}$ such that $\alpha_{i}=$

$c_{i}.[c_{1}:=\alpha_{1}, \ldots, c_{n}:=\alpha_{n}]$ for each i such that $1\leq i\leq n$.

Theorem9. A $s.r$. \mathcal{R} has a unique solution in TrR
\square

The existence and uniqueness of the solution follow from Banach fixed point
theorem. In fact, a $\mathrm{s}.\mathrm{r}$. \mathcal{R} induces a contracting mappillg on the product space:

$\lambda c_{1}\ldots\lambda_{C_{n}}.\langle c_{1}, \ldots, C_{n}\rangle$: $(\mathrm{T}\mathrm{r}^{\infty})^{n}arrow(\mathrm{T}\mathrm{r}^{\infty})^{n}$

whose unique fixed point is a n-tuple $\langle a_{1}, \ldots, a_{n}\rangle$ is the solution of \mathcal{R} in TrR ,
as all its components are regular.

DefinitionlO. Let $\mathcal{R}=\{c_{i}=C_{i}|1\leq i<n\}$ be a $\mathrm{s}.\mathrm{r}.$. If $\langle a_{1}, \ldots, a_{n}\rangle$ is
the solution of \mathcal{R} in $\mathrm{T}\mathrm{r}^{R},$

$1\mathrm{e}\mathrm{t}\backslash$
$(-)_{C}^{*}$: $\mathrm{T}_{-arrow}\mathrm{T}\mathrm{r}^{\overline{R}}$ be the mapping defined by the

following clauses:
- $(\phi)_{C}^{*}=\phi$, for all $\phi\in \mathrm{A}$.
$-(Aarrow B)_{C}^{*}=(A)_{C}^{*}arrow(B)_{C}^{*}$.
- $(c_{i})_{C}^{*}=\alpha_{i}$, for $i=1,$ $\ldots,$

n .

We can now define the tree equivalence induced by a $\mathrm{s}.\mathrm{r}.$:

Definitionll. If $\mathcal{R}=\{c_{i}=C_{i}|1\leq i\leq n\}$ is a simultaneous recursion over
T_{A} . The $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\approx_{\mathcal{R}}\subseteq \mathrm{T}_{\mathrm{A}}\cross \mathrm{T}_{\mathrm{A}}$ is defined by setting $A\approx_{\mathcal{R}}B$ if $(A)_{\mathcal{R}}^{*}=(B)_{\mathcal{R}}^{*}$.
We say that A is strongly equivalent to B with respect to 72.

So, two types are strongly equivalent if they can be reduced to the same infinite
tree by unfolding the unknowns occurring in them, by means of the equations
of \mathcal{R} , infinitely many times. It is easy to see $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\approx_{\mathcal{R}}$ is a congruence Moreover
note $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\approx_{\mathcal{R}}$ includes properly $\sim_{\mathcal{R}}$.

Example2. Take the $\mathrm{s}.\mathrm{r}$. C_{0} defined in Example 1, and let C_{2} be the $\mathrm{s}.\mathrm{r}$. defined
by the following equations:

$c_{1}=c_{2}arrow c_{1}$

$c_{2}=c_{1}arrow c_{2}$

It is easy to see that both $(c_{1})_{C_{2}}*$ and $(c_{2})_{C_{2}}*$ are equal to $(c)_{c_{\mathrm{o}}}^{*}$, therefore, ill
particular, $c_{1}\approx c_{2}c_{2}$. Note that $c_{1} \oint_{C_{2}}c_{2}$. In fact, both $(c_{1})_{C_{\mathrm{O}}}^{*}$ and $(c_{2})_{C_{\mathrm{O}}}^{*}$ are
equal to the infinite tree:

22

$/^{arrow}*$

$/*arrow$ $\nearrow^{arrow}*$

$\approx_{\mathcal{R}}$ which has clearly a more semantic nature as compared $\mathrm{t}\mathrm{o}\sim_{\mathcal{R}}$ is the type
equivalence induced by the interpretation of types in continuous models $(\mathrm{s}\mathrm{e}\mathrm{e}[5])$.
However, $\approx_{\mathcal{R}}$ has interesting syntactic properties, even if there are properties of
terms (like strong normalization) that can be easily characterized with respect to
$\sim_{\mathcal{R}}$ and for which there seems to be no a straightforward characterization $\mathrm{i}\mathrm{n}\approx_{\mathcal{R}}$.
In addition, the formal treatment $\mathrm{o}\mathrm{f}\approx_{\mathcal{R}}$ requires sometimes more sophisticated
techniques. We will see in the next section an axiomatization $\mathrm{o}\mathrm{f}\approx_{\mathcal{R}}\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}$ uses
a kind of $\mathrm{c}\mathrm{o}$-induction principle.

2.2 Type assignment

We are now ready to set up formal systems for assigning types to terms of the
pure λ-calculus, following the approach called \‘a la Curry in [10].

For the basic definitions about λ-calculus and type assignment systems we
rely on [10]. The inference systems must contain a rule to handle type equiva-
lence. We can indeed introduce a number of different systems according to which
notion of type equivalence we consider.

We include the equations in C , where C is a system of type constraints between
the premises of the assignment, proving therefore judgments of the shape:

$C,$ $\Gamma\vdash M$: A ,

which means that we can assign type A to $\mathrm{A}f$ assuming the equations in C with
respect to some notion of equivalence.

We define inference systems to assign types of the λ-calculus possibly con-
taining constants, assuming for each constant c a type $T_{c}\in \mathrm{T}_{\mathrm{A}}$.

Definition12. Let C a system of type constraints. Let $\mathrm{R}_{\mathcal{L}}$ be one of $\sim,$
\approx (in

the latter case we assume that C is a $\mathrm{s}.\mathrm{r}.$). Then the systems $(\lambda \mathrm{R})$ are $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}_{11}\mathrm{e}\mathrm{d}$

23

by the following rules:

$(\mathrm{a}\mathrm{x})$ $c,$ $\tau,$ x : $A\vdash_{X:A}$

(const) $C,$ $\Gamma\vdash c:T_{c}$

($arrow$-elim)

(equiv)

We will write $C,$ $\Gamma\vdash_{\lambda\sim}\mathrm{A}f$: A $(C, \Gamma\vdash_{\lambda\approx}M : A)$ to denote deducibility in
$(\lambda\sim)$ (or $(\lambda\approx)$). We show llow some interesting typings for terms which have
no type in the simple type assignment system without recursive types.

Example 3. (i) Let A be any type. Take $\mathcal{R}_{\Delta}=\{c=carrow A\}$. The following
deduction D_{Δ} shows that $\mathcal{R}_{\Delta}\vdash_{\lambda\sim}\lambda x.xx:C$ in $(\lambda\sim)$.

$(\mathrm{a}\mathrm{x})$

$\underline{\mathcal{R}_{\Delta},\{xc\}\vdash_{\lambda x.CC}\sim\sim \mathcal{R}\Delta carrow A}$

(equiv)
$\underline{(\mathrm{a}\mathrm{x})}$

$\underline{\mathcal{R}_{\Delta},\{XC\}\vdash_{\lambda\sim}xCarrow A}$ ($arrow$-elim)
$\mathcal{R}_{\Delta},$ $\{x : c\}\vdash_{\lambda}\sim X$:

$\frac{\frac{\mathcal{R}}{}\mathcal{R}_{\Delta},\vdash\Delta,\{x_{\lambda\sim^{\lambda x}}C\}\vdash_{\lambda}\sim(x_{C}x)XX.arrow ACarrow AA(arrow-\mathrm{i}\mathrm{n}\iota_{\Gamma}0)\sim \mathcal{R}_{\Delta}c}{\mathcal{R}_{\Delta},\vdash_{\lambda\sim}\lambda_{X.Xx}}$

(equiv)

(ii) Using $\prime D_{\Delta}$ we have immediately

$\frac{v_{\Delta c\sim_{\mathcal{R}carrow}}.\Delta A}{\frac{\mathcal{R}_{\Delta},\vdash_{\lambda\sim}\lambda_{XxX.c}arrow}{\mathcal{R}_{\Delta},\vdash_{\lambda\sim}((\lambda x.XX)(\lambda X.Xx)).}}.$

($arrow$-elim)

(iii) Let $\mathcal{D}_{\Delta_{f}}$ denote a deduction of $\{f : Aarrow A\}\vdash_{\lambda\sim}\lambda x.f(Xx)$: $carrow A$ in $(\lambda\sim)$

(it can be easily obtained modifying D_{Δ}). We can $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}\vdash_{\lambda\sim}\mathrm{Y}$: $(Aarrow A)arrow A$

in the following way.

$\frac{\frac{D_{\Delta_{f}}.\frac{D_{\Delta_{f}Carrow}A\sim_{\mathcal{R}_{\Delta}}C}{\mathcal{R}_{\Delta}.’\{f\cdot A.\}\vdash_{\lambda\sim^{\lambda(f(}}x.xx))\cdot c}}{\mathcal{R}_{\Delta},\{f\cdot A\}\vdash_{\lambda}\sim(\lambda xf(xx))(\lambda x..\cdot f(xx))\cdot A}}{\mathcal{R}_{\Delta},\vdash_{\lambda\sim}\lambda f\cdot(\lambda xf(xx))(\lambda x.f(xx))(Aarrow A)arrow A}...(arrow-\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o})(\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v})(arrow-\mathrm{e}\lim_{\mathrm{i}})$

24

The previous examples shows that the (strong) normalization theorem does
not hold, in general, for recursive types.

The same statement can obviously be proved also in the stronger system
$(\lambda\approx)$. Notice, however, that the two systems $(\lambda\sim)$ and $(\lambda\approx)$ are not equivalent
but $(\lambda\sim)$ is weaker than $(\lambda\approx)$.

Example 4. Take $\mathcal{R}_{\Delta}’=\{c=(carrow A)\prec A\}$. Then we have

$\mathcal{R}_{\Delta}’,$ $\{x : C\}\vdash\lambda\approx^{x:C}arrow A$

but $\mathcal{R}_{\Delta}’,$ $\{x:c\}\mu\lambda\sim x:Carrow A$

We can assume more generally that the notion of type equivalence is that
associated to a generic type algebra $\langle \mathrm{T}_{\mathrm{A})}\simeq\rangle$. Let us call $(\lambda\simeq)$ the system of
type assignment in which type equivalence (in rule (equiv)) is \simeq . We denote
$\Gamma\vdash_{\lambda\simeq}\mathbb{J}f$: A if the statement Λf : A con be proved from $\Gamma \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\simeq$ in rule
(equiv). We will use such systems to prove some properties of type algebras in
Section 4.

3 Properties of type equalities

In this section we study the properties of recursive types independently of their
uses in typing λ-terms. In the next section we will connect them to the properties
of type inference systems.

3.1 Invertibility

An important property of recursive types equivalences, is that of invertibility,
which turns out to be crucial in the proof of the subject reduction theorem in
section 4.

Definition13. (Invertibility) We say that a type $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}_{\Gamma \mathrm{a}}$. $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ is invertible
if, for every $A,$ $B,$ $A’,$ $B’\in \mathrm{T}_{\mathrm{A}}$:

$(Aarrow B)\simeq(A’arrow B’)$ imply $A\simeq A’$ and $B\simeq B’$.

If an invertible congruence is generated by a set of type constraints C we say
that C is invertible.

If \mathcal{R} is a $\mathrm{s}.\mathrm{r}$. invertibility holds trivially for $\approx_{\mathcal{R}}$. This follows immediately
from the definition of the mapping $(-)^{*}$ (see Def. 11). The proof that weak
equivalence has the invertibility property requires a little more effort.

Invertibility for recursive types defined by a $\mathrm{s}.\mathrm{r}$. R. can be proved via the
construction of a Church-Rosser and strongly normalizing term rewriting system
which $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}\sim_{\mathcal{R}}$. A immediate corollary of this proof is also the decidability
of weak equality. The proof given here is due to Statman [18]. A more algebraic
but less direct approach is given in Marz [12].

25

Let C and $C’$ be two system of type constraints over the same set T_{A} of
types. $C\vdash_{\sim}C’$ means that $C\vdash_{\sim}A=B$ for all equation $A=B\in C’$. C and $C’$ are
equivalent (notation $C\sim_{\mu}C’$) if $C\vdash_{\sim}C’$ and $C’\vdash_{\sim}C$. The following definition is
taken from Statman [18]:

Definition14. A system of type constraints $\mathcal{R}’$ is an expansion of a $\mathrm{s}.\mathrm{r}$. \mathcal{R} if
$\mathcal{R}’=\mathcal{R}\cup \mathcal{E}$, where \mathcal{E} is a set of equations of the form $a=c$, where a is an atomic
type not occurring in \mathcal{R} and c is an unknown of \mathcal{R} , such that $a=c,$ $a=c’\in \mathcal{E}$

implies that $a=a’$. We also say that $\mathcal{R}’$ is an expanded $\mathrm{s}.\mathrm{r}.$.

Note that $\mathcal{R}’$ is is just a trivial extension of \mathcal{R} from a logical point of view and
has, consequently, the same properties.

Given now a $\mathrm{s}.\mathrm{r}$. \mathcal{R} we define a term rewriting system obtained by orienting
the equations of \mathcal{R} .

Definition15. Let $\mathcal{R}=\{c_{i}=C_{i}|1\leq i\leq n\}$ be a $\mathrm{s}.\mathrm{r}$. The rewriting system
Trs(7?) consists of all rewriting rules $C_{i}\sim c_{i}$ for all $c_{i}=C_{i}\in \mathcal{R}$.

Note that $\sim_{\mathcal{R}}$ is the convertibility relation over $\mathrm{T}_{\mathrm{A}}\cross \mathrm{T}_{\mathrm{A}}$ generated by
$\mathrm{T}\mathrm{r}\mathrm{s}(\mathcal{R})$.

It is easy to see that $\mathrm{H}\mathrm{S}(\mathcal{R})$ is strongly normalizing, because each contrac-
tion decreases the size of the type to which it is applied. However, it is not, in
general, Church-Rosser, as we show in Example 5 below. We can however trans-
form the given $\mathrm{s}.\mathrm{r}$. into an equivalent one which is indeed $\mathrm{C}\dot{\mathrm{h}}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{h}$-Rosser, via a
construction which amounts to $\mathrm{I}\{\mathrm{n}\mathrm{u}\mathrm{t}\mathrm{h}$-Bendix completion (see [11]).

Example 5. Let \mathcal{R} be the system

$c_{0}=c_{0}arrow c_{2}$

$c_{1}=(c_{0}arrow_{C_{2}})arrow_{C_{2}}$

$c_{2}=c_{0}arrow c_{1}$

Then $\mathrm{T}\mathrm{r}\mathrm{s}(\mathcal{R})$ consists of the rules

$c_{0}arrow c_{2}\sim c_{0}$

$(c0arrow c_{2})arrow C2\sim*C_{1}$

$c_{0}arrow c_{1}\sim C_{2}$.

Observe that the l.h.s. of the first equation is a subterm of the l.h.s. of the second
$\mathrm{o}\mathrm{n}\mathrm{c}$. In particular $(c_{0}arrow c_{2})arrow C_{2}$ can be reduced both to c_{1} and to $c_{0}\prec c_{2}$ which
further reduces to c_{0} : it has then two distinct normal forms c_{1} and c_{0} . Therefore
$\mathrm{T}\mathrm{r}\mathrm{s}(\mathcal{R})$ is not confluent (i.e., does not have the Church-Rosser property).

Expressions like c_{1} and $c_{0}\prec c_{2}$ in the example above are called critical pairs
in the literature on term rewriting systems. In $\mathrm{R}\mathrm{S}(\mathcal{R})$ there is a critical pair
whenever there are $i,$ j such that $i\neq j$ and C_{i} is a subexpression of C_{j} . By a

26

well known result of Knuth and Bendix (see [11, Corollary 2.4.14]) a strongly
normalizing term rewriting system without critical pairs is Church-Rosser.

We give now, following ideas of Statman ([18]) an algorithm for transforming
any $\mathrm{s}.\mathrm{r}$. into an expanded $\mathrm{s}.\mathrm{r}$. without critical pairs which has, therefore, thc
Church-Rosser property.

Given a $\mathrm{s}.\mathrm{r}$. \mathcal{R} we define two sequences of sets of equations $D_{n},$ \mathcal{E}_{n} , where
D_{n} is a $\mathrm{s}.\mathrm{r}$. and \mathcal{E}_{n} is an expansion of it. D_{n} and \mathcal{E}_{n} are defined in such a way
that, for all $n,$ $D_{n}\cup \mathcal{E}_{n}$ is an expansion of D_{n} equivalent to \mathcal{R} .

In the following definition we assume, without loss of generality, that there
is a total order $<\mathrm{o}\mathrm{n}$ the set $\mathrm{U}\mathrm{n}\mathrm{k}(\mathcal{R})$.

Definition16. (Completion of \mathcal{R}) Let \mathcal{R} be a $\mathrm{s}.\mathrm{r}$. and $<$ be a total order on
$\mathrm{U}\mathrm{n}\mathrm{k}(\mathcal{R})$. We define by induction on n a sequence of sets of equations $D_{n},$ \mathcal{E}_{n}

$(n\geq 0$.
Let $D_{0}=\mathcal{R}$ and $\mathcal{E}_{0}=\emptyset$.
Define $D_{n+1},$ \mathcal{E}_{n+1} from $D_{n},$ $\mathcal{E}_{n}(n\geq 0)$ in the following way:

1. if there exists a pair of equations $c_{i}=C_{i},$ $c_{j}=C_{j}\in D_{n}$ such that C_{j} is a
proper subexpression of C_{i} take

$D_{n+1}=(D_{n}-\mathrm{f}ci=ci\})\cup\{ci=Ci^{*}\}$

$\mathcal{E}_{n+1}=\mathcal{E}_{n}$.

where C_{i}^{*} is the result of replacing all occurrences of C_{j} in C_{i} by c_{j} .
2. If there exist two equations $c_{i}=C,$ $c_{j}=C\in D_{n}$ then, assuming $c_{i}<c_{j}$, take

$D_{n+1}=D_{n}[_{C_{j}}:=c_{i}]$

$\mathcal{E}_{n+1}=\mathcal{E}_{n}\cup \mathrm{f}C_{j}=C_{i}\}$.

3. otherwise take $D_{n+1}=D_{n}$ and $\mathcal{E}_{n+1}=\mathcal{E}_{n}$

Ill the above definition note that in D_{n} there can be several pairs of equations
$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}\mathrm{i}_{1}1$ or 2, so the sequence of $D_{n},$ \mathcal{E}_{n} is not uniquely determined. However
any choice is equivalent for our purpose.

The following Lelnma can be proved by a straightforward induction on n .

Lemma17. For all $n\geq 0D_{n}\cup \mathcal{E}_{n}$ is equivalent to \mathcal{R} . \square

Note that, for all $n,$ D_{n} is a $\mathrm{s}.\mathrm{r}$. and $\prime \mathcal{R}_{n}\cup \mathcal{E}_{n}$ is an expansion of it. This
construction can be applied indeed to any expanded $\mathrm{s}.\mathrm{r}$. as well. So all the results
that we prove in this section holds in general for all expanded $\mathrm{s}.\mathrm{r}.$.

Let N be the least n such that $D_{n+1}=D_{n}$ and $\mathcal{E}_{n+1}=\mathcal{E}_{n}$. This value must
certainly exist since, in both steps 1 and 2 of Definition 16, the total number of
symbols in D_{n} strictly decreases. So we must eventually reach a value of n for
which neither 1 nor 2 apply.

Definition18. Let \mathcal{R} be a $\mathrm{s}.\mathrm{r}.$. Then the term rewriting system $\mathrm{T}\mathrm{r}\mathrm{s}^{+}(\mathcal{R})$ is
defined by:

$\mathrm{H}\mathrm{s}^{+}(\mathcal{R})=\mathrm{n}\mathrm{s}(DN)\cup \mathrm{f}C_{ji}\sim C|_{C=}jc_{i}\in \mathcal{E}N\}$

27

$\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}\mathrm{l}9.\cdot$ Let \mathcal{R} be a $s.r.$. Then $TrS^{+}(\mathcal{R})$ is strongly normalizing and Church-
Rosser.

Proof. First note that $r_{\mathrm{b}\mathrm{S}^{+}(n}$) is strongly normalizing since each reduction of
a rule belonging to $\mathrm{T}\mathrm{r}\mathrm{s}(DN)$ reduces the size of the expression to which it is
applied and each rule of the shape $c_{j}\sim c_{i}$ is such that $c_{i}<c_{j}$ and so no infinite
sequence of such reductions is possible.

Now note that $\mathrm{R}\mathrm{s}^{+}(\mathcal{R})$ has no critical pairs. In fact $\mathrm{T}\mathrm{r}\mathrm{S}(D_{N})$ has no such
pairs, otherwise we could apply $\mathrm{s}\mathrm{t}_{1}\mathrm{e}\mathrm{p}1$ or 2 of Definition 16 to D_{N} . Moreover if
$c_{j}=c_{i}\in \mathcal{E}_{N}$ then c_{j} does not occur in D_{N} and there is no other equation of the
form $c_{j}=c_{i’}$ in \mathcal{E}_{N} . In fact, if $c_{j}=c_{i}$ has been put in \mathcal{E}_{k} at step 2 of Definition
16, for some $(0<k\leq N)$, then c_{j} does not occur in D_{k} and, then, in D_{n} for all
$n\geq k$. Consequently no other equation containing c_{j} can be put in any \mathcal{E}_{n} for
$n>k$.
By the $\mathrm{I}\{\mathrm{n}\mathrm{u}\mathrm{t}\mathrm{h}$-Bendix theorem $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\sim \mathrm{i}\mathrm{s}$ Church-Rosser. \square

Example 6. Applying the above algorithm to the system \mathcal{R} defined in Example
5 and assuming $c_{0}<c_{1}<c_{2}$ we have

$D_{1}=\{_{C_{0}c0arrow}=C_{2}, c_{1}=c_{0}arrow c_{2}, c_{2}=C_{0}arrow_{C_{1}}\}$

$\mathcal{E}_{1}=\emptyset$

end

$D_{2}.=\{c0=c0arrow C_{2}, c_{2}=c_{0}arrow C\mathrm{o}\}$

$\mathcal{E}_{2}=\{C_{1}=c\mathrm{o}\}$

no more transformations are possible, so we have $N=2$. Note that $D_{2}\cup \mathcal{E}_{2}$ is
equivalent to \mathcal{R} and has no critical pairs.

Since $D_{N}\cup \mathcal{E}_{N}$ is equivalent to \mathcal{R} we have that $\sim_{\mathcal{R}}$ is also the convertibility
relation over $\mathrm{T}_{\mathrm{A}}\cross \mathrm{T}_{\mathrm{A}}$ generated by $?\}_{\mathrm{S}^{+}}(\mathcal{R})$. Now, given a $\mathrm{s}.\mathrm{r}$. $\mathcal{R}=\{ci$ $=$

$C_{i}|1\leq i\leq n\}$ and a pair of types $A,$ $B\in \mathrm{T}_{\mathrm{A}}$, we can easily decide whether
$A\sim_{\mathcal{R}}B$ simply by checking that their (unique) normal forms with respect to
$\mathrm{T}\mathrm{r}\mathrm{s}^{+}(\mathcal{R})$ are identical.

Theorem20. Let \mathcal{R} be an expanded $s.r..Then\sim_{\mathcal{R}}$ is decidable. \square

Another application of the properties of $\mathrm{E}\mathrm{s}^{+}(\mathcal{R})$ is also invertibility.

Theorem21. Let \mathcal{R} be an expansion of a $s.r..Then\sim_{\mathcal{R}}$ is invertible.

Proof. Let $Aarrow B\sim_{\mathcal{R}}A’arrow B’$. Let X_{N} denote the normal form with respect
to $\mathrm{T}\mathrm{r}\mathrm{s}^{+}(\mathcal{R})$ of type X where X is one of $A,$ $B,$ $A’,$ $B’$. Then $X\sim_{\mathcal{R}}X_{N}$ for
all X and $A_{N}arrow B_{N}\sim_{\mathcal{R}}A_{N}’arrow B_{N}’$. Now if $A_{N}arrow B_{N}$ is itself in normal form
then, by uniqueness of normal forms, we must have $A_{N}arrow B_{N}=A_{N^{arrow}}’B_{N}^{J}$ and,
then $A_{N}=A_{N}’$ and $B_{N}=B_{N}’$. By transitivity we have therefore $A\sim_{\mathcal{R}}A’$ and
$B\sim_{\mathcal{R}}B’$.
Otherwise, if $A_{N}arrow B_{N}$ is not in normal form, it must itself be a redex with

28

respect to $\mathrm{T}\mathrm{r}\mathrm{s}^{+}(\mathcal{R})$. Then $A_{N}arrow B_{N}\sim c_{i}$ for some atomic type c_{i} in a single
step. Applying the same argumellt to $A_{N}’arrow B_{N}’$ and by uniqueness of normal
form we have also $A_{N}’arrow B_{N}’\sim \mathrm{c}_{i}$ and, since $\mathrm{h}\mathrm{s}^{+}(\mathcal{R})$ is invertible, this implies
$A_{N}arrow B_{N}=A_{N^{arrow B_{N}}}^{l\prime}$. We conclude the proof as in the previous case. \square

3.2 Other properties of weak equality

Some other properties of $\mathrm{f}\mathrm{i}_{11}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$ presented type algebras will be useful in the
study of typed λ-terms and, in particular, in the proof of decidability of type
assignment.

It is sometimes useful to force a type algebra generated by a set of type
constraints C to have the invertibility property. We write $C\vdash_{\sim}^{*}A=B$ to mean
that $A=B$ is provable in (\sim) extended with the invertibility rule

$(\mathrm{i}\mathrm{n}\mathrm{v})\frac{C\vdash A_{1}arrow A_{2}=B_{\mathrm{t}}arrow B_{2}}{A_{i}=B_{i}}(i=1,2)$

As in Definition 2 let $\sim_{C}*$ be the congruence defined this system. Note that $\sim_{C}*$

is the least invertible congruence $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}\sim c$. The construction presented in
the following Lemma is due to Statman ([18])

Lemma22. Let C a system of type constraints. Then there is an expanded $s.r$.
C^{*} such that $C\vdash_{\sim}*C^{*}$ and $C^{*}\vdash_{\sim}C$ ($i.e$. C^{*} is equivalent to C plus invertibility).

Proof. For all atomic types c occurring in some equations of C , let $[c]^{*}$ be the
set { $c’|c’\mathrm{i}\mathrm{S}$ an atom and $C^{*}\vdash_{\sim}*c=c’$ } (it is easy to design an algorithm to
find all elements of $[c]^{*})$. For each equivalence class choose an atom c^{*} . Let now
$C^{*}=D^{*}\cup \mathcal{E}^{*}$ where:

$-.D^{*}$ is the set of equations $c^{*}=A^{*}$, one for each class $[c]^{*}$, where A^{*} is a
non-atomic type expression of minimal length which contains only starred
atoms and such that $C\vdash_{\sim}*c^{*}=A^{*}$.

- \mathcal{E}^{*} is the set of all equations $a–c^{*}$ for all atomic types a belonging to an
equivalence class $[c^{*}]$.

It is obvious that $C\vdash_{\sim}*C^{*}$.
We claim now that $C\vdash_{\sim}*A=B$ implies $C^{*}\vdash_{\sim}A=B$. This implies that

$C^{*}\vdash_{\sim}C$. We prove the claim by induction on the sum $||A||+||B||$. If both A and
B are atomic types then the proof is trivial (they belong to the same equivalence
class). Otherwise we can assume $\backslash \mathrm{v}.1.0.\mathrm{g}$

.
\cdot that both A and B contain only starred

atoms. We have the following cases:
- If $A=A_{1}arrow A_{2}$ and $B=B_{1}arrow B_{2}$ we must have $C\vdash_{\sim}*A_{i}=B_{i}$ for $i=1,2$, by
invertibility, and the proof follows immediately from the induction hypothesis.
-If A is an atom a^{*} and $B=B_{1}arrow B_{2}$ then either $a^{*}=B\in D^{*}$ and we are done
or there is an equation $a^{*}=A_{1}arrow A_{2}\in C^{*}$ where both $A_{i}(i=1,2)$ contain
only starred atoms and must be shorter or equal to B_{i} (otherwise we could find
a shorter non-atomic expression in $[a^{*}]^{*}$. Then $C\vdash_{\sim}*A_{i}=B_{i}$ for $i=1,2,$

$\mathrm{b}\mathrm{y}\square$

illvertibility, and the proof follows easily from the induction hypothesis.

29

Finally we need to introduce the notions of type algebra homomorphism and
that of solavbility of a system of type equations in a $\mathrm{s}.\mathrm{r}.$.

Let $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ and $\langle \mathrm{T}_{\mathrm{A}},, \simeq^{l}\rangle$ be type algebras. A mapping h : $\mathrm{T}_{\mathrm{A}}arrow \mathrm{T}_{\mathrm{A}}$, is
a type algebra homomorphism if for all $A,$ $B\in \mathrm{T}_{\mathrm{A}}$ such that $A\simeq B$ we have
$h(A)\simeq’h(B)$.

We write $h:\langle \mathrm{T}_{\mathrm{A}}, \simeq\ranglearrow\langle \mathrm{T}_{\mathrm{A}}, , \simeq^{J}\rangle$ to denote that h is a type algebra homo-
morphism. It is easy to see that if $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ is invertible then h is determined by
its value on the atomic types of A .

Definition23. Let C a system of type constrains over T_{A} . We say that a $\mathrm{s}.\mathrm{r}$.
\mathcal{R} over T_{A} , solves C if there is a substitution h : $\mathrm{A}arrow \mathrm{T}_{\mathrm{A}}$, such that for all
$A=B\in C$ we have $h.(A)\sim_{\mathcal{R}}h(B)$.

Exam.$ple7$. Let $S=\{aarrow a=(aarrow b)arrow a\}$ be system of equations over $\mathrm{T}_{\{a,b\}}$.
Then S has a solution in the $\mathrm{s}.\mathrm{r}$. $\{c_{1}=c_{1}\prec t\}$ via the substitution defined by
$h(a)=c_{1},$ $h(b)=t$

The following result has been proved by R. Statman ([18]).

$\mathrm{T}\mathrm{h}.\mathrm{e}\mathrm{o}\mathrm{l}\mathrm{e}\mathrm{m}24$. It is decidable whether a $s.r$. \mathcal{R} solves a $sy_{S.t}emC$ of equations
over T_{A} .

In [18] it is also shown that the solvability of a $\mathrm{s}.\mathrm{r}$. in another $\mathrm{s}.\mathrm{r}$. is indeed
a $\mathrm{N}\mathrm{P}$-complete problem.

3.3 Axiomatization of strong equivalence

While the notion of weak equivalence was introduced by means of a formal
inferellce system, that of strong equivalence was introduced in Chapter 2.1 in
a semantic way (via the tree $\mathrm{i}_{\mathrm{l}\mathrm{l}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{r}}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$). We show in this section that also

$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{l}$ equivalence can be represented by a (rather simple) finite set of formal
rules using a kind of coinduction principle.

A by-product of the proof of the completeness of these formalization is the
decidability of strong equivalence.

The formal system (\approx) for strong equivalence presented here is taken from
Brandt and Henglein [3]. Other complete formalization of strong equivalence
have been given by Amadio and Cardelli [1] and Ariola and Klop [2]. We will
prove (\approx) sound and complete for the infinite tree semantic introduced in Chap-
ter 2.1. In this systems we have judgments of the form

$\mathcal{R},A\vdash A=B$

in which A represents set of equations of the shape $Aarrow A’=Barrow B’$, where
$A,$ $B,$ $A’,$ $B’\in \mathrm{T}_{\mathrm{A}}$. The meaning of this judgment is that we can prove $A=B$

from \mathcal{R} assuming the equations in A . We will show that provability in (\approx)

corresponds exactly to strong equivalence. In particular, when A is empty, this
correspond to having $A\approx_{\mathcal{R}}B$.

30

This axiomatization contains a “
$\mathrm{c}\mathrm{o}$-inductive” rule of the form

$\frac{\Gamma,P\vdash P}{\Gamma\vdash P}$

provided that the proof of P (where P is a formula) has not been obtained in
a trivial way from the assumption P itself. This rule will be suitable to handle
the infinitary nature of the tree semantics. It will indeed be given in a slightly
different form (see the rule (coind) below) to guarantee that the restriction on
the proof of P has been met.

Definition25. Let \mathcal{R} denote a s.r over T_{A} . The system (\approx) is defined by the
rules $(\mathrm{e}\mathrm{q})$, (ident), (symm) and (trans) of Definition 2 plus the rules

$(\mathrm{h}\mathrm{y}\mathrm{P})$ $\mathcal{R},A\vdash A=B$ if $A=B\in A$

$\mathcal{R},A\cup\dagger Aarrow B=A’arrow B’\}\vdash_{\approx}A=A’$

(coind) $\frac{\mathcal{R},A\cup \mathrm{t}Aarrow B-_{AB\}}-/Jarrow\vdash\approx^{B}=B’}{\mathcal{R},A\vdash_{\approx}Aarrow B=A’arrow B}$,

We have not introduced in (\approx) a rule for proving equality of arrow types of
the shape

$\frac{\mathcal{R},A\vdash_{\approx}A=A^{;}\mathcal{R},A\vdash\approx^{B}=.B\prime}{\mathcal{R},A\vdash_{\approx}Aarrow B=A^{J}arrow B}$,

since this can be seen as a admissible rule in the system. In fact if $\mathcal{R},A\vdash_{\approx}A=A’$

then it is easy to see that $\mathcal{R},A\cup\{Aarrow B=A’arrow B^{;}\}\vdash_{\approx}A=A’$ (and similarly
for $B=B’$).

Example 8. Let $\mathcal{R}_{1}’=\{c=Aarrow Aarrow C\}$ where A is a any type be as in Example
1 (ii). We have the $\mathrm{f}\mathrm{o}\mathrm{l}1_{\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{g}}1\mathrm{l}$ proof of $\mathcal{R}_{1}’\vdash_{\approx}c=Aarrow c$. Let $T’$ denote $Aarrow Aarrow c$.
We use {-} as a shorthand for a set assumptions which it is not relevallt in the
statement in which occurs and we omit to mention $r_{\iota_{1}’}$ in all the premises.

$\frac{(\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t})}{\{-\}\vdash_{\approx}A=A}\frac{\frac{(\mathrm{e}\mathrm{q})}{\{Aarrow C=T’\}\vdash\approx c=T}\prime\frac{(\mathrm{e}\mathrm{q})}{\{Aarrow c=T\prime\}\vdash_{\approx}Aarrow_{C}=T\prime}}{\{Aarrow C=T’\}\vdash\approx C=Aarrow c}$

(trans)
$\frac{(\mathrm{e}\mathrm{q})}{\vdash_{\approx}c=T’}$

$\overline{\vdash_{\approx}T’=Aarrow c}$ (coind)

$\overline{\vdash_{\approx}c=Aarrow C}$
(trans)

To prove soundness and completeness of (\approx) we need the notion of finite
approximation of an infinite tree. Given $\alpha\in \mathrm{T}\mathrm{r}^{\infty}$, define for every $n\in\omega$ the tree
$a_{|n}$, its truncation at level n , as follows:

- $\alpha_{|0}=\Omega$, where Ω is a new constant symbol;
- $\kappa_{|n+1}=\kappa$, for $\kappa\in K\cup V$;
$-(a’arrow a”)_{1}n+1=\alpha_{|n}’arrow\alpha’’|n$.

31

Let $A,$ B. $\in \mathrm{T}_{\mathrm{A}}$. We write $A=_{k}^{\mathcal{R}}B$ if $(A_{\mathcal{R}}^{*})|k=(B_{\mathcal{R}}^{*})_{|k}$.
We define now a semantic interpretation of the statements $\mathrm{o}\mathrm{f}\vdash_{\approx}$. The defi-

nition is given by levels of approximations rather than directly.

Definition26. Let \mathcal{R} be a system of type constraints.

(i) $\mathcal{R}\models_{k}A=B$ if $A=_{k}^{\mathcal{R}}B$.
(ii) $\mathcal{R}\models k$ A if for all $A=B\in A$ $\mathcal{R}\models_{k}A=B$.
(iii) $\mathcal{R},A\models kA=B$ if $\mathcal{R}\models k$ A implies $\mathcal{R}\models kA=B$.
(iv) $\mathcal{R},A\models A=B$ if for all $k\geq 0$ $\mathcal{R},A\models_{k}A=B$

We note, in particular, that $\mathcal{R}\models A=B$ implies that $A_{\mathcal{R}}^{*}=B_{\mathcal{R}}^{*}$, i.e. $A\approx_{\mathcal{R}}B$.

Theorem27. (Soundness) $\prime \mathcal{R},$ $A\vdash_{\approx}A=B$ imply $\mathcal{R},$ $A\models A=B$

Proof. the proof is by induction on derivations. For the axioms (ident) and $(\mathrm{e}\mathrm{q})$

alld for rule (trans) the proof is trivial. As for rule (coind) we prove that if,
$\mathcal{R},A\vdash_{\approx}Aarrow B=A’arrow B’$ ha been obtained by (coind), for all $k\geq 0\mathcal{R},A\models_{k}$

$Aarrow B=A’arrow B’$. This is done by induction on k . The case $k=0$ is trivial since
$A=_{k}^{\mathcal{R}}B$ for all types $A,$ B . Let now $k\geq 0$, and assume $\mathcal{R}\models_{k}A$. Then also
$\mathcal{R}\models_{k-1}kA$ and this, by induction hypothesis on k implies $Aarrow B=_{k-1}^{\mathcal{R}}Aarrow B’$.
Then $\mathcal{R}\models_{k-1}A\cup\{Aarrow B=A’\prec B^{J}\}$. By induction hypothesis on derivations
this implies $A=_{k-1}^{\mathcal{R}}A’$ and $B=_{k-1}^{\mathcal{R}}B’$ and, then, $Aarrow B=_{k}^{\mathcal{R}}Aarrow B’$. This
concludes the proof.

When A is empty, we get the soundness of (\approx) with respect $\mathrm{t}\mathrm{o}\approx_{\mu}$.

The proof of completeness $\mathrm{o}\mathrm{f}\vdash_{\approx}$ is given in a constructive way. In the fol-
lowing definition, given a $\mathrm{s}.\mathrm{r}$. \mathcal{R} and a type equality $A=B$ we define a process
that either fails or gives a proof of $A=B$ in 71. The proof is built by defining
a sequence $S_{m}(m\geq 0)$ of sets of pairs of the shape $\langle A, A’=B’\rangle$ (plus a dis-
tinguished element FAIL) such that, for each $m,$ $\mathcal{R}\vdash_{\approx}A=B$ con be proved ill
\vdash_{\approx} assuming $\mathcal{R},A\vdash_{\approx}A’=B’$ for each pair $\langle A, A’=B’\rangle\in S_{m}$. We will prove
that, if $\mathcal{R}\models A=B$, we will reach an m for which S_{m} is empty and so that
$\mathcal{R}\vdash_{\approx}A=B$ is provable.

Definition28. Let $\mathcal{R}=\{c_{i}=C_{i}|1\leq i\leq n\}$ be a $\mathrm{s}.\mathrm{r}$. and $A=B$ a type
equations. We define a succession $S_{m}(m\geq 0)$ where S_{m} is either a set of pairs
of the shape $\langle A, A=B\rangle$ where $A=B$ is a type equation and A is a set of type
equations or a distinguished element FAIL.
Let $S_{0}=\{\langle\emptyset, A=B\rangle\}$.
For $m>0$ define S_{m} from S_{m-1} in the following way. Take any pair $\langle A,$ $A=$

$B\rangle\in S_{m-1}$ and let $S’=S_{m-1}-\{\langle A, A=B\rangle\}$.
Let $A’=A$ if A is not an unknown c_{i} of \mathcal{R} and $A’=C_{i}$ if A is the ullknown c_{i}

of \mathcal{R} . Similarly let $B’=B$ if B is not an unknown c_{j} of \mathcal{R}

.
and $B’=C_{j}$ if B is

the unknown c_{j} of \mathcal{R} Then we have the following cases

Case 1 If $A’=B’$ or $A’=B’\in A$ then $S_{m}=S’$.

32

Case 2 If $A’$ and $B’$ are different constants or variables, or one is a constant or
variable and the other is an arrow type then $S_{m}=\mathrm{F}\mathrm{A}\mathrm{I}\mathrm{L}$.

Case 3 Otherwise $A’=A_{1}arrow A_{2}$ and $B’=B_{1}arrow B_{2}$.
Now let $I=$ { $i|A_{i}=B_{i}\not\in A$ and $A_{i}\neq B_{i}$ } (obviously I has $0,1$ or 2
elements). Then define

$S_{m}=S_{m-1}\cup\{\langle A\cup\{A_{1}arrow A_{2}=B_{1}arrow B_{2}\}, Ai=B_{i}\rangle|i\in I\}$

Lemma29. The sequence S_{m} defined in Definition 28 is finite, $i.e$. for some
finite n either $S_{m}=FAIL$ or S_{m} is empty.

Proof. It is easy to see, by induction on m , that each each pair $\langle A, A’=B’\rangle$

that is put i some S_{m} is such that $A’,$ $B’$ and all the types occurring in A must
are subtypes of $A,$ B or of some type C_{i} for $(i\leq i\leq n)$. So there is only a finite
number $I\mathrm{t}’$ of possible equations $A’=B’$ that can occur in the pairs of S_{m} .
Now define the length of a pair $\langle A, A’=B’\rangle$ as the number of equations in A

and note that either S_{m} has one pair less that S_{m-1} (in Case 1, 2 and sometimes
in Case 3) or the new pairs added in S_{m} , in Case 3, have length greater than the
pair that has been eliminated. But no pair of length $K+1$ can be put in any
S_{m} since in this case, in Case 3, $A_{i}=B_{i}$ must belong to A for $i=1,2\mathrm{s}\mathrm{i}_{1}1\mathrm{c}\mathrm{e}A$

contains all possible equations. Then if FAIL does not occur in the sequence of
the S_{m} we must eventually reach a point m_{0} for which $S_{m_{0}}=\emptyset$.

The following properties are easily proved by induction.

Lemma30. Let $\mathcal{R}\models A=B$ and S_{m} be defined as in Def. 28.

(i) For all pairs $\langle A, A’=B’\in S_{m}\rangle$ we have that $\mathcal{R},A\models A’=B’$.
(ii) The sequence of the S_{m} cannot end with FAIL.

Lemma 31. Let S_{m} be defined as in Def. 28 $(n\geq 0)$. If we assume to have a
proof of $\mathcal{R},$ $A\vdash_{\approx}A’=B’$ for each pair $\langle A, A’=B’\rangle\in S_{m}$ then we can build a
proof of $\mathcal{R}\vdash_{\approx}A=B$.

The completeness Theorem follows immediately.

Theorem 32. $\mathcal{R}\vdash_{\approx}A=A$ iff $\mathcal{R}\models A=B$.

4 Properties of typed terms

In this section we establish some basic properties of terms which have types in
the previous systems.

33

4.1 Subject reduction

We show now that recursive type system have essentially the subject reduction
property, i.e. if $\mathcal{R},$ $\Gamma\vdash \mathrm{A}f$: A where \vdash is one of the systems defilled in the
previous chapter and $M-\beta \mathrm{A}f’$ (or $Marrow\beta\eta If’$ then also $\Gamma\vdash\Lambda f’$: A .
This property is important for type systems since it means that typings are
stable with respect to reduction, which is the fundamental evaluation process
for λ-terms. Types are not preserved, in general, by the reverse operation of
expansion. We will study subject reduction for systems induced by a generic
type algebra $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ and we will indicate by $\vdash_{\lambda\simeq}$ provability in the system
which uses \simeq as type equivalence. The main result of this section, which has
been first proved by Statman [18] is $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\vdash_{\lambda\simeq}$ as the subject reduction property
iff $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ is invertible. Our treatment is based essentially on the proof of Marz
[12].

Lemma33. (i) If $\Gamma\vdash_{\lambda\simeq}x$: A where x is a variable then x : $A’\in\Gamma$ for some
type $A’$ such that $A’\simeq A$.

(ii) If $\Gamma\vdash_{\lambda\simeq}\lambda x.M:$ A then there are types B and C such that $A\simeq(Barrow C)$

and $\Gamma\cup\{x:B\}\vdash_{\lambda\simeq}M:C$.
(iii). If $\Gamma\vdash_{\lambda\simeq}$ (AfN) : A then there exists a type B such that $\Gamma\vdash_{\lambda\simeq}M$: $Barrow A$

and $\Gamma\vdash_{\lambda\simeq}N$: B .

Proof. (i) To prove $\Gamma\vdash_{\lambda\simeq}x$: A we can use only rule $(\mathrm{a}\mathrm{x})$ and (equiv). Now
note that all $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}\simeq \mathrm{a}\mathrm{r}\mathrm{e}$ transitive.
(ii) The proof of $\Gamma\vdash_{\lambda\simeq}\lambda x.M$: A must end with an application of ($arrow$-intro)
followed, possibly, by a number of applications of (equiv). Let
$\Gamma\cup\{x : B\}\vdash_{\lambda\simeq}\mathbb{J}f$: C be the premise of the application of ($arrow$-intro) and
$\Gamma\vdash_{\lambda\simeq}\lambda x.\mathrm{J}f$: $Barrow C$ its conclusion. Again, $\dot{\mathrm{s}}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\simeq$ is transitive, we have
$(Barrow C)\simeq A$.
(iii) Arguing as before we conclude that there in the proof of $\Gamma\vdash_{\lambda\simeq}(\mathrm{J}fN)$: A

there is an application of rule ($arrow$-intro) ivhose premises are $\Gamma\vdash_{\lambda\simeq}\Lambda f$: $Barrow A’$

and $\Gamma\vdash_{\lambda\simeq}N$: B where $A’\simeq A$. We have also $(Barrow A’)\simeq(Barrow A)$ and so we
can prove $\Gamma\vdash_{\lambda\simeq}\Lambda f$: $Barrow A$ from $\Gamma\vdash_{\lambda\simeq^{M:Barrow}}A’$.

We can now state the basic lemlnas needed for the proof of the subject
reduction property. Note that invertibility plays an essential role here.

Lemma34. Let $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ be an invertible type algebra.

(i) If $\Gamma\vdash_{\lambda\simeq}(\lambda x.If)N:$ A then $\Gamma\vdash_{\lambda\simeq}(\mathbb{J}f[x:=N]):A$.
(ii) If $\Gamma\vdash_{\lambda\simeq}\lambda x.(\Lambda \mathrm{r}_{x})$: A_{f} where x does not occur in M_{f} then $\Gamma\vdash_{\lambda\simeq}M$: A .

Proof. (i) By the Lemma $33(\mathrm{i}\mathrm{i}\mathrm{i})$ we have that
$\Gamma\vdash_{\lambda\simeq}(\lambda x.\Lambda f)$: $Barrow A$ and $\Gamma\vdash_{\lambda\simeq}N$: B for some types B . Moreover, by
Lemma $33(\mathrm{i}\mathrm{i})$, we have that for some types $B’$ and $A’$

(1) $\Gamma\cup\{x : B;\}\vdash_{\lambda\simeq}M$: $A’$

34

where $B’arrow A’\simeq Barrow A$. $\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\simeq \mathrm{i}\mathrm{s}$ illvertible we have also $B’\simeq B$ and $A’\simeq A$.
We can then obtain a deduction of

(2) $\Gamma\vdash_{\lambda\simeq}(\mathbb{J}f[_{X:}=N])$: $A’$

by replacing, in the deduction of (1), each use of the premise x : $B’$ with a
copy of the deductions of $\Gamma\vdash_{\lambda\simeq}N$: B followed by an application of rule
(equiv) (if necessary) using $B’\simeq B$. Eventually we can get a deduction of
$\Gamma\vdash_{\lambda\simeq}(M[x:=N])$: A from (2) by applying rule (equiv) (if llecessary) using
$A’\simeq A$.
(ii) By Lemma $33(\mathrm{i}\mathrm{i})$ we have that $\Gamma\cup\{x : B\}\vdash_{\lambda\simeq}(\mathrm{A}fx)$: C for some types
$B,$ C such that $A\simeq(B\prec C)$. Moreover, by Lemma 33 (iii) and (i) we have that
$\Gamma\cup\{x : B\}\vdash_{\lambda\simeq}Af$: $Darrow C$ and $\Gamma\cup\{x : B\}\vdash_{\lambda\simeq}x$: D for some type D such
that $D\sim-B$. $\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\simeq \mathrm{i}\mathrm{s}$ a congruence, we have $(Darrow C)\simeq(Barrow C)\simeq A$ a.nd
then $\Gamma\vdash_{\lambda\simeq}M:$ A using (possibly) (equiv) and observing that x does not occur
in Λf . \square

Theorem 35. (Subject Reduction) Let $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ be an invertible type algebra.
Suppose $\Gamma\vdash_{\lambda\simeq}M:$ A and $\mathbb{J}f-\beta\eta\Lambda f’$. Then $\Gamma\vdash_{\lambda\simeq}\Lambda f’$: A

Proof. By induction on the generation $\mathrm{o}\mathrm{f}-\beta$ using Lemma 34. \square

In particular (\approx) and (\sim) when weak equality is induced by a $\mathrm{s}.\mathrm{r}$. (see The-
orem 21) have the subject reduction property.

An important consequence of the subject reduction theorem, especially from
the computational point of view, is the fact that in evaluating a well typed term
using β-reduction all redexes are always well-typed, i.e. when evaluating a ty-
peable terln we will never reach an application in which the $\mathrm{t}\mathrm{e}\mathrm{r}\ln$ in function
position cannot be used as a function. So for instance it cannot happen that an
integer is applied as a function to an argument. The same property also holds
in systems with constants, if these are given the proper type. So a well typed
program will never produce a run-time error caused by an incorrect applica-
tion. This property is, from the point of view of computer science, even more
$\mathrm{i}\mathrm{m}\mathrm{p}_{\mathrm{o}\mathrm{r}}\mathrm{t}\mathrm{a}11\mathrm{t}$ that the strong normalization property. In fact all “real” functional
programlning lallguages have fixpoint operators at all types which allow to define
non terminating computations.

In particular it can be proved that only invertible type algebras induce a type
inference system with the subject reduction property. We say that a type algebra
$\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ satisfies the subject reduction Property if, whenever $\Gamma\vdash_{\lambda\simeq}M:$ A and
$M-_{\beta}\Lambda f/(\mathrm{o}\mathrm{r}Marrow\beta\eta \mathbb{J}f’)$, then also $\Gamma\vdash_{\lambda\simeq}\Lambda f’$: A .

Theorem 36. A type algebra $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ satisfies the subject oeductio.n Property
only if is invertible

For the proof see Marz ([12], Proposition 1.16).

35

4.2 Finding types

Ill this section we consider the problem of deciding whether a given term has
a type in an inference system with recursive types. There are several questions
that can be asked about the typeability of If. In particular we will address the
following questions, formulated here for weak equality. The same questions can
of course be asked also for strong equality.

Assume that M is a closed term.

1. Does it exists a $\mathrm{s}.\mathrm{r}$. \mathcal{R} and a type A such that $\mathcal{R}\vdash_{\lambda\sim}M:A$?
2. Given a $\mathrm{s}.\mathrm{r}$. \mathcal{R} , does there exist a type A such that $\mathcal{R}\vdash_{\lambda\sim}M:A$

Note that, from Lemma33 $\{x_{1} : A_{1}, \ldots, x_{n} : A_{n}\}\vdash_{\lambda\simeq^{\mathbb{J}f}}$: A $\mathrm{i}\mathrm{f}\mathrm{f}\vdash_{\lambda\simeq}\lambda x_{1}\ldots X_{n}.M$:
$A_{1}arrow\ldotsarrow A_{n}arrow A$. So it is not restrictive to ask these questions for a closed
term only.

If $\mathrm{A}f$ is a pure λ-term (without constants) question 1. is trivially decidable
since all pure λ terms have a type $\mathrm{i}\mathrm{n}\vdash_{\lambda\simeq}$ assuming a type c such that $c=carrow c$

(see Example 1 (i)). This is however not true anymore if M contains constants.
We will show in this section that all these questions, for both weak and

strong equivalence, are decidable. In all cases the basic tool to show this is a
generalization of the notion of principal type scheme.

To make the treatment of this section more straightforward we will prove the
main properties for pure λ-terms (without constants). The extension of these
properties to terms with constants will be discussed in Remark 4.2.
In the following definition we assume, without loss of generality, that all free and
bound variables in a term have distinct names.

Definition37. Let M be a term. The system of type constraints $C_{\mathrm{A}I}$, the basis
Γ_{M} and type T_{M} are defined as follows. Let $S=S_{1}\cup S_{2}$ where S_{1} is set of all
bound and free variables of $\mathrm{A}f$ and S_{2} is the set of all occurrences of subterms
of Λf which are not variables. Take now a set $\mathrm{I}_{\mathrm{A}I}$ of atomic type in bijective
correspondence with S and assign a different type $i\in \mathrm{I}_{\mathrm{A}I}$ to each element P of
S . Let $\pi(P)$ denote the atomic type assigned to P . Then define $C_{\mathrm{A}I}$ over $\mathrm{T}_{\mathrm{I}_{M}}$

by adding an equation for each element P of S_{2} in the following way.

(a) If $P=\lambda x.P_{1}$ let $i_{1}=\pi(\lambda x.P_{1}),$ $i_{2}=\pi(X),$ $i_{3}=\pi(P_{1})$. Then put $(i_{1}=i_{2}arrow i_{3})$

in $C_{\mathrm{A}\mathrm{f}}$.
(b) If $P=(P_{1}P_{2})$ let $\pi(P_{1})=i_{1},$ $\pi(P_{2})=i_{2}$ and $\pi(P_{1}P_{2})=i_{3}$ then put $(i_{1}=i_{2}arrow i_{3})$

in C_{M} .

Moreover let $\Gamma_{M}=$ {$x:\pi(x)|X$ is free in M } and $T_{M}=\pi(M)$.

It is immediate to prove, by induction on M , that $C_{\mathrm{A}I},$ $\Gamma\iota t\vdash_{\lambda\sim}M:\tau_{M}$.
Note that $C_{\mathrm{A}I}$ is a system of type constraints but not, in general, a $\mathrm{s}.\mathrm{r}.$. In

fact in general we can have many equations with the same left hand side in
$C_{\mathrm{A}I}$. Now, assuming invertibility and applying Lemma 22, we can transform C_{M}

into an expanded $\mathrm{s}.\mathrm{r}$. $C_{\mathrm{A}I}^{*}$. As remarked in Chapter $3,$
$\sim c_{M}$

. $=\sim c_{M}*$ is the least
invertible type congruence $\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\sim c_{M}$.

$\mathrm{S}\mathrm{i}\iota 1\mathrm{c}\mathrm{e}\sim c_{\dot{M}}\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{S}\sim c_{M}$ it is obvious that also $c_{\mathrm{n}\mathrm{r}}^{*},$ $\Gamma M\vdash_{\lambda\sim}\Lambda f$: T_{M} .

36

Exam.$ple\mathit{9}$. Consider the term $\lambda x.xx$ and take $\pi(x)=i_{1},$ $\pi(xx)=i_{2},$ $\pi(\lambda x.xx)=$

i_{3} . Then we have
$C_{\lambda x.xx}=\{i_{1}=i_{1}arrow i_{2}, i_{3}=i_{1^{arrow}}i_{2}\}$

Applying to this $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\ln$ the construction in Lemma 22 we get $D^{*}=\{i_{1}=i_{1}arrow$

$i_{2}\}$ and $\mathcal{E}^{*}=\{i_{3}=i_{1}\}$, where we have taken i_{1} as the representative of the
equivalence class $[i_{1}]$ containing i_{3} . So we have $C_{\lambda x.xx}^{*}=\{i_{1}=i_{1}arrow i_{2}, i_{3}=i_{1}\}$,
$\Gamma_{\lambda x.xx}^{*}=\emptyset,$ $T\lambda x.xx3=i$.

Theorem 38. Let $M\in\Lambda$ and $\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ be an invertible type algebm such that
$\Gamma\vdash_{\lambda\simeq}M:$ A for some type A and basis Γ . Then there is a type algebra homo-
morphism ϕ : $\langle \mathrm{T}_{\mathrm{I}_{M}}, \sim c_{M}. \ranglearrow\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ such that $A=\phi(T_{M})$ and $\Gamma=\phi(\Gamma_{M})$.

Proof. Take a deduction D of $\Gamma\vdash_{\lambda\simeq}\mathbb{J}f$: A . For $P\in S$ (see Def. 37) let
$\tau(P)$ be the type assigned to P in D. Note that, by Lemma 33 $\tau(P)$ is well
defined, modulo \simeq . Now we have seen in Chapter 3 that an homomorphism
between invertible type algebras is determined by its values on atomic types. So
let ϕ : $\langle \mathrm{T}_{\mathrm{I}_{M}}, \sim c_{M}. \ranglearrow\langle \mathrm{T}_{\mathrm{A}}, \simeq\rangle$ be the homomorphism defined by

$\phi(i)=B$ if, for some $P\in S,$ $\pi(P)=i$ and $\tau(P)=B$.

Obviously $\Gamma=\phi(\Gamma_{\mathrm{A}I})$ and $A=\phi(\pi(\mathbb{J}f))$. We now prove that ϕ is a type theory
isomorphism. We have only to prove that $A\sim c_{M}$. B implies $\phi(A)\simeq\phi(B)$. Since
$C_{\mathrm{A}I}^{*}$ is logically equivalent to $C_{\mathrm{A}I}$ plus invertibility it is enough to prove that for
all equations $(i_{1}=i_{2}arrow i_{3})\in C\mathrm{n}\mathrm{r}\emptyset(i_{1})\simeq\phi(i_{2})arrow\phi(i_{3})$. We distinguish two cases
according to the equation has been put in $\lambda 4$ by case (a) or (b) above.
In case (a) let $A_{1}=\tau(\lambda X.P1),$ $A_{2}=\tau(x)$ and $A_{3}=\tau(P_{1})$. We have by definition
$A_{k}=\phi(i_{k})(k=1,2,3)$. By Lemma $33(\mathrm{i}\mathrm{i})$ we must have $A_{1}\simeq A_{2}arrow A_{3}$.
The case (b) is handled similarly, using Lemma $33(\mathrm{i}\mathrm{i}\mathrm{i})$. \square

C_{M}^{*} can be simplified in two ways. All atomic types $i_{1},$ i_{2} such that $i_{1}=i_{2}\in$

$C_{\mathrm{A}I}^{*}$ can be idelltified and replaced with a single atomic type. Moreover, any
equation $i=C\in C_{\mathrm{A}I}^{*}$ where the variable i does not occur in C can be eliminated
simply by replacing i with C in both $\Gamma_{M},$ $A_{\mathrm{A}I}$ and $C_{\mathrm{A}\mathrm{f}}^{*}$. It is easy to define an
algorithm to $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{o}\mathrm{r}\iota \mathrm{n}$ such simplifications. Let $\overline{\mathcal{R}}_{\mathrm{A}}\mathrm{r},$ $\overline{\Gamma}M$ and $\overline{T}_{\mathrm{A}}\mathrm{r}$ be the results of
these simplifications. It is imlnediate that $\overline{\mathcal{R}}\mathrm{n}f,\overline{\Gamma}\mathrm{A}t\vdash_{\lambda\sim}\overline{T}flt$ and that Theorem
38 holds for $\overline{\mathcal{R}}_{M},$ $\overline{\Gamma}_{M}$ and $\overline{T}_{\mathrm{A}I}$ as well.

$\overline{\mathcal{R}}_{\mathrm{A}I},$ $\overline{\Gamma}_{\mathrm{A}I}$ and $\overline{T}_{\mathrm{A}I}$ are the generalization of the notion of principal type and
basis scheme for simple types (see Hindley [8, 9]). Note that the equations in

$\overline{\mathcal{R}}_{M}$ represent the weakest recursive definitions needed to give a type to $\mathrm{A}f$, and
this for both the weak and strong equivalence. So a term is typeable in the weak
system if and only if it is typeable in the strong one. It is easy to see that if a
term is typeable in the Curry system we get an empty $\overline{\mathcal{R}}flI$.

We can now give a classification of the atomic types of $\mathrm{I}_{\mathrm{A}I}$ of Definition 37.
The elements of I_{M} which do not occur in the left hand side of an equation of

$\overline{\mathcal{R}}_{\mathrm{A}\mathrm{f}}$ can indeed be mapped into any type via a type algebra homomorphism.
They can then be considered as type variables, as in the construction of the
principal type schemes in Curry’s system. On the contrary, the atomic types

37

i which occur in the left hand side of an equation of $i=A\in\overline{\mathcal{R}}$ cannot be
mapped $\mathrm{i}_{\mathrm{l}1}\mathrm{t}_{0}$ arbitrary types by a type algebra homomorphism ϕ since $\phi(i)$ must
be equivalent to $\phi(A)$ ill the target type algebra. It is more natural to consider
them as constants, which represent the recursive types lleeded to type the given
term.

Example 10. Let us continue Example 9. We can simplify $C_{\lambda x.xx}$ by identifying
i_{1} and i_{3} and obtain the principal typing: $\{i_{1}=i_{1}arrow t\}\vdash_{\lambda\sim}\lambda x.xX:i_{1^{arrow}}t$ where
t is indeed a type variable.

Remark. If $\mathrm{J}f$ is not a pure λ term then we can build C_{M} as in Definition 37
considering a constant c as a free variables but we must add to $C_{\mathrm{A}\mathrm{f}}$ also the
equations $i=T_{c}$ where $i=\phi(c)$ and T_{c} is the type associated to the constant c .
Then $\mathbb{J}f$ has a type only if $C_{\mathrm{A}I}$ is consistent in the sense that $C_{\mathrm{A}I}\forall\sim\kappa=\chi$ where
κ is a type constant and χ is either a different type $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{t}$ or $\mathrm{a}arrow$-type. It is
easy to check the consistency of a system of equations.
In considering the notion of type algebra homomorphism, moreover, we must
add the condition that type constants are mapped into themselves. In fact the
type of the (term) constants is independent of recursive type definitions.

$\dot{\mathrm{N}}$ote that, while for each pure term $\mathrm{n},$[there is at last one $\mathrm{s}.\mathrm{r}$. from which
$\mathrm{J}f$ can be typed, this is not true for terms with constants. Take for instance
the term $(\lambda x.x1)2$. Indeed, by the subject reduction property, the evaluation
of a term typeable in any consistent set of type $\mathrm{c}\mathrm{o}11\mathrm{s}\mathrm{t}_{\Gamma \mathrm{a}}\mathrm{i}\mathrm{n}\mathrm{S}$ do not generate bad
applications like (21) as in the above case. In this sense the consistency of $C_{\mathrm{A}I}$

is enough to guarantee the good evaluation of II.
Let now \mathcal{R} be a given $\mathrm{s}.\mathrm{r}.$. By Theorem 38, given a term $\mathrm{J}f$, we can give

a type to M from \mathcal{R} only if we find an homomorphism h form $\langle \mathrm{T}_{\mathrm{I}_{M}}, \sim_{\overline{\mathcal{R}}_{M}}\rangle$ to
$\langle \mathrm{T}_{\mathrm{A}}, \sim_{\mathcal{R}}\rangle$. By Theorem 21 this amounts to solve $\overline{\mathcal{R}}\mathrm{A}t$ in 72. Since this property
is decidable (Lemma 24) we have the following consequence.

Theorem39. Given a term $\mathrm{A}f$ and a $s.r$. \mathcal{R} it is decidable whether M is typeable
form 71 in $(\lambda\sim),$ $i.e$. whether there is a basis Γ and a type A such that $\mathcal{R},$ $\Gamma\vdash_{\lambda\sim}$

M : A .

We cannot extend immediately to strong equivalence the proof of the pre-
vious theorem In fact the proof of solvability of a $\mathrm{s}.\mathrm{r}$. in another is based on a
notion of term rewriting system which is not immediately transferable to strong
equivalence. We left as open the problem of proving that typeability with respect
to a given $\mathrm{s}.\mathrm{r}$. is decidable also for strong equivalencc.

4.3 About Strong normalization

We have seen from the examples in Section 2.1 that the systems with recursive
types do not have, in general, the strong normalization property. However it is
possible to define a class of $\mathrm{s}.\mathrm{r}$. (the inductive ones) that guarantees that all term

38

typed from them with weak equality are strongly normalizable. The condition of
being inductive gives indeed a characterization of all $\mathrm{s}.\mathrm{r}$. which guarantees strong
normalization. We conjecture that a similar characterization could be given also
for strong equality, but at the author’s knowledge no result of this kind has never
been published.

The result in this section are due essentially to Mendler [14], [13].
Let $A\in \mathrm{T}_{\mathrm{A}}$ and B be an occurrence of a subtype of A . We say that B is

positive (negative) in A if B occurs in A on the left hand side of a,n even (odd)
number of $‘arrow’$. Let this number be the level of the occurrence of B in A .

In [14] and [13] Mendler has characterized a class of $\mathrm{s}.\mathrm{r}$.such that all terms
typeable from them are strongly normalizable.

Definition40. A $\mathrm{s}.\mathrm{r}$. \mathcal{R} is inductive if for no atomic type c we have $c\sim_{\mathcal{R}}C$ for
some non atomic type expression C in which c has a negative occurrence.

Theorem41. Let \mathcal{R} be an inductive $s.r.$. Then $\Gamma,$ $\mathcal{R}\vdash_{\lambda\sim}M:$ A im.plies that $\mathrm{J}f$

is strongly normalizing.

The proof is given in [14], [13]. Ill the same papers It is.proved also that
the condition of being inductive characterizes exactly all the s.r which guarantee
strong normalization.

Theorem42. Let 7? be a non inductive $s.r.$. Then there is a term N without
normal form such that for some basis Γ we have $\mathcal{R},$ $\Gamma\vdash_{\lambda\sim}N$: c where c is an
atomic type such that $c\sim_{\mathcal{R}}C$ for some non atomic type expression C in which
c occurs negatively.

It can be easily proved that, given a $\mathrm{s}.\mathrm{r}$. \mathcal{R} , it is decidable whether \mathcal{R} is
inductive of not.

One natural question to ask is whether a term $\mathrm{A}f$ is typeable also with respect
to inductive $\mathrm{s}.\mathrm{r}.$. The following theorem ([12]) answer it.

Theorem43. Given a term $\mathbb{J}f$ it is decidable whether there is an inductive $s.r$.
\mathcal{R} such that we can give a type to Λf from $\mathcal{R},$ $i.e$. such that $\mathcal{R},$ $\Gamma\vdash_{\lambda\sim}\Lambda f$: A for
some type A and basis Γ .

Proof. Take the $\mathrm{s}.\mathrm{r}$. $C_{\mathrm{A}I}^{*}$. If $C_{\mathrm{A}I}^{*}$ is inductive then we can give a positive answer
to the problem.
Otherwise assume that $C_{\mathrm{A}\mathrm{f}}^{*}$ is not inductive and take any $\mathrm{s}.\mathrm{r}$. \mathcal{R} over T_{A} such
that a type can be given to Af from 71. Then by Theorem 38 there is type algebra
homomorphism

\emptyset : $\langle \mathrm{T}_{\mathrm{I}_{M}}, \sim c_{M}. \ranglearrow\langle \mathrm{T}_{\mathrm{A}}, \sim_{\mathcal{R}}\rangle$

Now take $i\in \mathrm{I}_{\mathrm{A}I}$ such that $i\sim c_{M}$. C such that i occurs negatively in C . Then
we must have $\phi(i)\sim_{\mathcal{R}}\phi(C)$. Now it is easy to prove, by induction on $\phi(i)$ and
exploiting the fact $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\sim_{\mathcal{R}}$ is invertible, that this implies that there is an atomic
type $d\in \mathrm{A}$ such that $d\sim_{\mathcal{R}}D$ where d occurs negatively in D .
This proves that a term $\mathbb{J}f$ can be typed from an inductive $\mathrm{s}.\mathrm{r}$. if and only if

$C^{*}flI,\square$

is inductive. This last fact is obviously decidable.

39

Example 11. Take the term $\lambda x.xx$. We have seen in Example 9 that $C_{\lambda x.xx}$ con-
tains an equation $i_{1}=i_{1}arrow i_{2}$ and then is not inductive. Then there is no
inductive $\mathrm{s}.\mathrm{r}$. which can give a type to $\lambda x.xx$.

References

1. R. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, $15(4):575-631$, 1993.

2. Z.M. Ariola and J.W. Klop. Equational term graph rewriting. Technical report,

University of Oregon, 1995.
3. M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality

and subtyping. In P. de Groote and J. R. Hindley, editors, Typed Lambda Calculi
and Applications, volume 1210 of Lecture Notes in Computer Science, pages 63-81.
Springer-Verlag, 1997.

4. V. Breazu-Tannen and A. Meyer. Lambda calculus with constrained types. In

R. Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer
Science, pages 23-40. Springer-Verlag, 1985.

5. F. Cardone and M. Coppo. Type inference with recursive types. Syntax and Se-
mantics. Information and Computation, $92(1\mathrm{I}:48-80$, 1991.

6. B. $\mathrm{C}\mathrm{o}\mathrm{u}\Gamma \mathrm{c}\mathrm{e}\mathrm{u}_{\mathrm{e}}$. Fundamental properties of infinite trees. Theoretical Computer Sci-
ence, 25:95-169, 1983.

7. H. B. Curry and R..Feys. Combinatory Logic, volume I. North-Holland, Amster-
dam, 1958.

8. J.R. Hindley. The principal type scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29-60, 1969.

9. J.R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.

10. H.P.Barendregt. Labda calculi with types. In Dov M. Gabbay S. Abramsky and

T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages $??-?$?

Oxford University Uress, New York, 1992.
11. J.W. Klop. Term rewriting systems. In Dov M. Gabbay S. Abramsky and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science, pages 1-116. Oxford
University Uress, New York, 1992.

12. M. Marz. An algebraic view on recursive types. Preprint 1793, Technische
Hochschule Darmstadt, 1995. Revised version, May 29, 1996.

13. N.P. Mendler. lnductive types and type constraints in the second-order lambda
calculus. Annals of Pure and Applied Logic, 51:159-172, 1991.

14. P.F. Mendler. Inductive definitions in type theory. Technical Report 87-870, De-
partment of Computer Science, Comeu University, Ithaca, New York, 1987. Ph.

D. Thesis.
15. R. Milner. A Theory of Type Polimorphism in Programming. Journal of Computer

and System Sciences, 17:348-375, 1978.
16. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. M1T Press,

1990.
17. D. Scott. Some philosophical issues conceming theories of combinators. In

C. B\"ohm, editor, Lambda calculus and computer science theory, volume 37 of Lec-
ture Notes in Computer Science, pages 346-366. Springer-Verlag, 1975.

18. R. Statman. Recursive types and the subject reduction theorem. Technical Report
94-164, Carnegie MeUon University, 1994.

40

19. D.A. Turner. An overview of Miranda. In D.A. Tumer, editor, Research Topics
in Functional Programming, pages 1-16. Addison Wesley, 1990.

This article was processed using the IATffi macro package with LLNCS style

41

