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Abstract. The catch and throw constructs in Common Lisp provides
a means to implement non-local exits. Nakano proposed a calculus L./,
which has inference rules for the catch and throw constructs, and whose
types correspond to the intuitionistic propositional logic. He introduced
the tag-abstraction/application mechanism into L./, which is useful to
approximately represent the dynamic behavior of tags.

This paper examines the calculus LK/, a classicalized version of L /.. In
LK./, we can write many programming examples which are not express-
ible in L./, moreover, algorithmic contents can be extracted from classi-
cal proofs in LK./;. We also prove several interesting properties of LK./:
including the strong normalizability. We point out that, if we naively ap-
ply the well-known reducibility method, the tag abstraction/application
mechanism is problematic. By introducing a missing elimination rule, we
can successfully prove the strong normalizability of LK./:.

1 Introduction

The catch and throw mechanism in Common Lisp[15] provides a means to imple-
ment non-local exits. The following simple example shows how to use the catch
and throw mechanism in Common Lisp:

(defun multiply (x)
(catch ’zero (multiply2 x)))

(defun multiply2 (x)
(if (null x) 1
(if (= (car x) 0) (throw ’zero 0)
(* (car x) (multiply2 (cdr x))))))

The first function multiply sets the catch-point with the tag zero and immedi-
ately calls the second function. The second one multiply2 performs the actual
computation by recursion. Given a list of integers, it calculates the multiplica-
tion of the members in the list. If 0 is encountered, then it immediately returns
0 without any further computation. The catch/throw mechanism is useful if one
wants to escape from a nested function call at a time.

* To appear in Computing: Australian Theory Symposium’98 (CATS’98).
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Nakano[8] proposed an intuitionistic calculus with inference rules which give
logical interpretations of the catch and throw comstructs. In his calculus L/,
tags are variables rather than constants, and a tag appears freely in the throw-
expression, and is bound in the catch-expression. His calculus ensures that no
uncaught throw may occur in a computation which begins from a closed term
(a term without free tag variables).

An immediate consequence of his representation is that, if one wants to for-
mulate a logically sound calculus, tag variables must have lexical scope. However,
tags in Common Lisp have dynamic scope. Consequently, the example above can-
not be written as a well-formed term since the tag zero in the throw-expression
is outside of the scope of the catch-expression. A solution of this problem is to
abstract/apply the tag zero, by which the example can be rewritten as follows.

(defun multiply (x)
(catch ’zero (multiply2 x ’zero)))

(defun multiply2 (x u)
(if (null x) 1
(if (= (car x) 0) (throw u 0)
(* (car x) (multiply2 (cdr x) u)))))

The function multiply2 is abstracted by the tag variable u. When called,
the function is supplied an extra argument zero to instantiate the tag u. The key
here is that the function multiply2 no longer has free tag variables. It is easily
seen that the dynamic behavior of tags in Common Lisp can be approximately
represented using the tag-abstraction/application mechanism. Although the A-
abstraction was used for abstracting both z and u in the example, the two .
variables differ in nature. Therefore, Nakano discriminated abstraction of tag
variables (denoted as xu.t) from that of individual variables (denoted as Az.t).

One possible defect of L./, is that it has a severe restriction on the A-
introduction rule; all the A-variables must not occur in the scope of any throw ex-
pression. For instance, the term (catch u (lambda (x) (throw u x))) is not
a well-typed term in L./, since x appears in the body of the throw-expression.
Nakano puts such a restriction to L./;, since he wanted to make the calculus
intuitionistic. However, this restriction disables one to write practical examples
which uses the catch/throw mechanism[5]. Moreover, the classicalized versions
of the catch/throw calculi have a possibility for extracting algorithmic contents
from classical proofs [13, 14].

In this paper, we examine a calculus LK,/;, which is essentially a classicalized
version of Nakano’s calculus L.;;. We show that programming examples such as
higher-order function with the catch/throw mechanism and the classical encod-
ing of logical connectives can be written in LK,/;, while both are not expressible
in Ley;. .

We also prove several theoretically interesting properties of LK./, in par-
ticular, the strong normalizability “any reduction sequence is finite”. This re-
sult is contrast to the real programming languages such as Common Lisp and
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Standard ML where tags (exception names) have dynamic scope and there are
non-terminating programs. The strong normalizability of L./, was proved in [11]
by a quite elaborate proof. We simplified the proof in our draft[4] and applied it
to the second author’s stronger calculus[13], but it still needs a tricky technique,
and works only for the calculi with the restriction on the A-introduction rule.
In this paper, we develop a quite natural proof of the strong normalizability
of the classical version LK,/; based on Tait-Girard’s reducibility method[2]. We
analyzed the failure of earlier proofs, and found that the reducibility set for the
tag-abstraction/application case must be strengthened. By introducing a new
language primitive, we successfully define the reducibility set which works for
proving the strong normalizability.

The rest of this paper is organized as follows: We introduce the calculus LK./¢
and its extension LK:'/t in Section 2, and give programming examples in Section

3. Then we turn our attention to the strong normalizability of LK;"/t. We first
explain the failure of direct application of reducibility method, and then give a
proof in Section 4. Finally, we give concluding remarks and comparison to other
works in Section 5.

’ 2 The calculi LK,/; and LKC+/t

This section gives the calculus LK,/; and its extension LK:'“. Before going to the
definitions, we state several remarks.

The calculus LK/, is essentially a classicalized version of Nakano’s L/, so
its definition is almost the same as L/; except that there is no side-condition on
the A-introduction rule. Since our calculus can define conjunction (product type)

and disjunction (sum type), we omitted them in LK,/;. The calculus LK:'/t is an

extension of LK./, where we introduce a new construct o. LK:'(t exists only for

technical purposes in proving the strong normalizability, and all the examples in
this paper can be written in LK./;.

2.1 Type Systems of LK./, and LK:’,,

We give the type systems of LK./, and LK:}t’ and postpone the reduction rules
to the next subsection. ,

First, we assume that there are finitely many atomic types By, - - -, By, includ-
ing L (falsity). '

Definition 1 (Type).
' Au=By| - |Bt|A—A|AdA

In this definition, — is the type for function space and < is the type for tag-
abstraction. The meaning of <1 will become apparent later.

We use A, B,C,--- for metavariables for types. If a type does not contain
the type-constructor <1, namely, if a typs is constructed using only atomic types
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and —, then it is called an implicational type. We assume that, for each type
A, there are infinitely many individual variables of type A. We also assume
that, for each implicational type A, there are infinitely many tag variables of
type A. An important restriction is that the types of tag variables must be
implicational. Strictly speaking, LK./, is not an extension of L./, since Nakano’s
original calculus L./; does not have this restriction. However, we believe that a
tag variable of type A < B is meaningless, and that this restriction is harmless.
At least, all the actual examples in L.jy can be written in LK, /,.

We use metavariables 4, y4, z4 for individual variables and u4,v4, w? for
tag variables. We regard u4 and uf as different tag variables if A # B. This
implies that we may sometimes use the same variable-name for different entities
(different types).

Preterms of LK;'"/t are defined as follows.

Definition 2 (Preterm).

t ==z | Az .t | apply(t,t) | abort(t)
| catch(u?,t) | throw(u?,?) | kut |[teu? |tot

Preterms of LK./: are those for LK:'/t except the last one ¢ o¢. In the fol-
lowing, we sometimes omit the types in variables and preterms, for example,
throw(u?,a) is written as throw(u,a). Among the preterms above, the con-
structs catch, throw, x, and e were introduced by Nakano to represent the
catch and throw mechanism. Refer to the following table for the correspondence
to similar constructs in Common Lisp and Standard ML.

LKc/+/ LKj/t Common Lisp Standard ML
catch(u,t) (catch ’u t) t handle (u x)=>x
throw(u,t) (throw ’u t) raise (u t)

As noted in the introduction, tags in Common Lisp (exception names in Standard
ML) are represented as tag-variables rather than constants. The preterm xu.t is
the tag-abstraction mechanism like the A-abstraction Az.t, and the preterm teu
is the tag-application mechanism like the functional-application apply(t,t). The
construct o is not in Nakano’s calculus L./; and is new to this paper. We shall
explain the role of this new construct later.

An individual variable is bound by the A-construct, and a tag variable is
bound by the catch-construct and the k-construct. We identify two terms which
are equivalent under renaming of bound individual/tag variables. FV{(t) and
FTV(t) denote the set of free individual variables and the set of free tag variables
in £, respectively.

The type inference rules of LK./, and LK;"/t are given in the natural deduction
style, and listed in Table 1. The inference rules are used to derive a judgement
of the form a : A (read “a is a term of type A”).
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24 A

b:B | c:A—B a:A
Azdb:A— B apply(c,a) : B

a:l
abort(a): A

b:B a:A
throw(u®,8): A catch(u?,a) : A

a:A a:A4B a:Aq9(B—C) b:B
kuB.a: A4 B aeuf : A aob: A4 C

Table 1: Type Inference Rules of LK,/; and LK;"/t

Among the inference rules, the first four are standard. The rules for throw and
catch reflect their intended semantics, namely, throw(uB ,b) aborts the current
context so that this term can be any type regardless of the type of b, and the
type of catch(u®#,a) is the same as a and also the same as the type of possibly
thrown terms. The term xuf.a is a constructor, and it is assigned a new type
A <1 B. Conversely, if a is of type A < B, then applying a tag variable u? to it
generates a term of type A.

The inference rule for o (the last one) is only for LK?},,. This rule is a kind of
elimination rules for A < B. Suppose a has type A <4 B. I/f we have a tag variable
u®?, we can make a term of type A, namely, a e uB. However, even if we have
a term b of type A, we cannot make a term of type B. In this sense, the type
A <1 B does not have enough destructors in L./; (and LK), and as we shall
show, this is the reason why we cannot directly prove the strong normalizability
of LK;/;. In the calculus LK;"/t, we can partly achieve such construction when B
is By — Bj. In that case, if ¢ is of type B;, then the term aoc has type A q B,
which is smaller than the type A <1 B. In the following section, we shall explain
how this “destructor” is used in the proof of the strong normalization.

One should note that there is no side condition in the A-introduction rule
(the second rule in Table 2). In the intuitionistic calculus L./, a preterm Az4.b
is well-typed only when z4 does not essentially occur in the scope of any throw-
construct in 2.

Let us explain the relationship between the side- condition and the intuition-
istic calculus. Suppose a is a term of type A with FV(a) = {8} and FTV(a) =
{uF}. Then intuitively we have B — (A Vv E). By applying the A-formation
rule to a, we obtain a term Az®.a of type B — A. Since FV(Az®.a) = {} and
FTV(Az®.a) = {uF}, intuitively we have (B — A)V E. Hence we have deduced

2 Here we do not give the precise meaning of “essential occurrence” in Lese- Refer to
(8] and [11] for details.
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(B — A)V E from B — (AV E). But this is valid only in a classical calculus,
and is not valid in an intuitionistic calculus. Nakano put a restriction on this
rule to obtain an intuitionistic calculus L,/,.

As an example of type inference, the following figure is a proof of the double-
negation-elimination rule. Here we abbreviate A — 1 as —A.

z4 A
throw(u4,z4) : L
y 4 : =4 Azf.throw(ud,z4) : -4
apply(y™"4, Az4 . throw(u?, z4)) : L
abort(apply(y™ "4, Az4 . throw(u?,z4))) : A
catch(u?, abort(apply(y™ "4, Az throw(u4, z?))) : A
Ay~ "4 catch(u?, abort(apply(y™ "4, Az .throw(u4,z4)))) : -4 — A

Note that, this is a proof in LK /;, but not a proof in L./, since in the apphcatlon
of the A-rule (the formation of Az#.throw(u#, z#)), the abstracted variable z4
occurs free in throw(u?,z*). The calculus LK,/; has no side-condition on the
A-rule, so the ﬁgure above is a proof in LK., (and LK t)

Let a,b,c,--- be metavariables for terms. If a A is derived using these
rules, we write I'a: A; A where I' is the set of free. individual variables
in a, and A is the set of free tag variables in a. For-example, for the term
a = throw(u®,apply(throw(v4, z4),y?)), we have I' F a : D; A if we put
I' = {z4,y%} and A = {u°,v*}. In the following, we shall consider typable
terms by the type inference rules above, and not preterms in general.

The calculi LK,/; and LK, o/t correspond to the classical propositional calcu-
lus. We assume readers are familiar with the Curry-Howard isomorphism; for .
instance, an implicational type in LK./, can be regarded as a formula in logic.

Theorem 3. Let A be an implicational type in LK sy (or LK t) A 15 provable
in the classical propositional calculus if and only if 0 - a : A; 0 in LKc/¢ for
some lerm a.

(Proof Sketch) It is easy to see that, LK, /+ can prove all the classically valid
theorems since we already gave the proof of the law of the double-negation-
elimination in LK./;. The inverse direction can be shown by an 1nterpretatlon
similar to [13], but details are omitted. O

2.2 Reduction Rules of LK,/

In order to give the reduction rules of LK,/;, we first state substitutions. We have
three kinds of substitutions in this calculus: a[b/z?], a[vB /uB], and a[b/*uB—C].
The first two a[b/z?] and a[v? /uP] are usual substitutions. The former substi-
tutes a term for an individual variable and the latter substitutes a tag variable
for a tag variable. Note that a[b/z®] is defined only when b has type B. Si-
multaneous substitutions [by /2!, - - - b, /2] and [P /uP? ... vB= JuB»] are
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defined as usual. The third form a[b/*uP—C] is used for the reduction of the
newly introduced constructor o, and it is defined in the next subsection.

The notion of l-step reduction in LK,/ is the same as those defined by
Nakano, and is defined as the compatible closure of the reduction rules given in
Table 2. Namely, for any term-context C[ ], we have Cla] —1 C[b] if and only if
a — b. .

apply(Az.a,b) —1 alb/z]
althrow(u,b)/z] —; throw(u,b) (ifa # z)
catch(u,a) —1 ¢ (ifu & FTV(a))
catch(u, throw(u,a)) —1 ¢ (ifu &€ FTV(a))
~ (ku.a)ev —q afv/y]
Table 2: 1-Step Reduction Rules of LK./,

For instance, we have the following reductions:

catch(u, apply(throw(u,z),y)) —1 catch(u, throw(u,z)) —1 @

(kv.apply(throw(v,a),b)) ® u — apply(throw(u,a),b) — throw(u, a)

Instead of having a one-step reduction like catch(u, a[throw(u,b)/z]) —1 b, the
catch/throw mechanism splits into two steps as follows:

catch(u, a[throw(u, b)/z]) —1 catch(u, (throw(u,b))) —1 b

Since we did not restrict any evaluation strategy, the reduction in LK./, is non-
“deterministic, moreover it is not Church-Rosser. For instance, the following term
reduces to both z4 and y4:

catch(u?, apply(throw(u?, z4), throw(u?,y?)))

We do not think that this is a defect of LK./, because (1) as far as the strong
normalizability is concerned, it is preferable to have as strong reduction rules
as possible, and (2) classical logic is said to be inkerently non-deterministic. In
order to ezpress all possible computations in classical proofs, our calculus should
be non-deterministic. Later we can choose one answer by fixing an evaluation
strategy. In fact, the second author showed in [14] that Murthy’s example[7] can
be expressed in a catch/throw calculus.

We may obtain a various confluent calculus as a subcalculus of LK./, by
restricting reduction rules. Our results (Subject Reduction and Strong Normal-
ization) hold for any properly formulated subcalculus of LK¢/:-



49

2.3 Reduction Rules of LK},

Defining the notion of 1- step reduction in LKT o/t is relatively more difficult than

in LK,/;. We first define the third form of substitution a[b/*u® —C] which was left
undefined. This substitution is close to one in Parigot’s Ap-calculus[12]. It is de-
fined only when b has type B. Intuitively, a[6® /*u®~C] replaces all the subterms
in the form throw(uf—¢ c) where uB~C is free in a, by throw(u®, apply(c,b)).
For brevity, we use the same name u for the tag variable after the substitution
even if its type is changed (note that uB—¢ and uC are different tag variables).
The precise definition given below is more complex than this intuitive explana-
tion because free tag variables may appear also in c e u.

Definition 4 (Substitution for a Tag Variable). In the following, the type
of uis B — C and the type of bis B.

ab/*u] 2 a (if ug FTV(a))
(Az.a)[b/"y] = Az.a[b/* u] »
apply(a,c)[b/*u] = apply(alb/*u], clb/*u]) |
catch(v,a)[b/"u] 2 catch(v,a[b/*u]) (if u # v)
throw(u, a)[b/*u] 2 throw(u, apply(a[b/*u],b))
throw(v, a)[b/*u] = 2 throw(v,a[b/*u]) (if u # v)
(kv.a)b/*u] £ kv.alb/*u] (if u#v)

(aou)[b/*u] = (a[b/ u] o b) oy
(aev)[b/"u] 2 alb/*u]ev (if u#v)
(a0 c)b/*u] = (a[b/*u)) o (c[b/*u])

Note that the cases for catch(u,a)[b/*u] and (ku.a)[b/*u] are included in the
first clause (u is not free in the terms). As an example of this substitution,
((kv.throw(u,a)) e u)[c/*u] is ((nv throw(u, apply(a[c/*'u] c)))oc)eu. We can
easily verify that, if Iy F a : A; A; U {uB~C} and «B~C € FTV(a), and
Iykc:B; Ay, then NHurly - a[c/*u] A; A Uu{uf}uA,.

The notion of 1-step reduction in LK:-/t is defined by Table 2 above and Table
3 below.

| (ku.a) o b — K. alb/*u] I
Table 3: Added 1-Step Reduction Rule of LK o/t

This reduction rule reflects the intended meaning of the o-construct. Suppose
kuB~C .q and b are of type A< (B — C) and B, respectively. Then (ku®~.a)ob
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is of type A<t C and it reduces to ku®.a[b/*u] where b is applied to all the throw-
expressions in a whose tag is u.
We use the following abbreviations:

apply(...apply(b,di)...,d,) as apply(b,di,...,dn)
(-..(body)...)od, as bod,...,d,

A successive substitution in the form (---(a[by/*u])- - -)[bp/*u] is abbrevi-
ated as a[by,- -, b,/*u]. In the following we shall use this form of substitution
only when b; does not contain u free. We shall also use a mixed simultaneous

substitution such as [by /2y, -, ¢, / ¥y, - - -] in the following.
We define @ — b (zero or more step reduction), and @ —4 b (one or more
step reduction) as usual. Then we have the subject reduction theorem for LK./,

and LKc/t

Theorem 5 (Subject Reduction). In either LK./, or LKc/w fl'ta:A; A
~anda — b, then I"+b:A; A for some I" CI and A’ C A.

Proof. It is an easy exercise by induction on the length of the reduction.

Here, we verify only the case (ku.a) o b —; ku.a[b/*u]. Suppose (ku.a) o b is
a well-typed term. Then, we have I1 F ku.a: Ad (B — C); Ay and o F b
B ; Aj for some I, Iy, Ay, Ay. The first clause implies that I3 Fa: A4 ; Ay U
{uB~C}. Then we have I U Ty F a[b/*u] : A ; Ay U{u®}U A,. It follows that
Uk kualb/*u] - A C; AU A,. 0

3 Programming Examples in LK./

This section shows the expressiveness of LK, /;.
The first examples are Griffin’s classical encoding of logical connectives such
as conjunction and disjunction.

AANB=-(A— -B)
pair(a?,b%) = Az#~"5 apply(apply(z,a),b)
car(c?"P) = catch(u?, abort(apply(c, Az AyZ throw(u?, 2))))
~ cdr(c?B) = catch(v?, abort(apply(c, Az . Ay? throw(vE, y))))
AVB=-4A— --B
inl(a?) = Az™4 Ay B .apply(z, a)
inr(b?) = Az™4 Ay .apply(y, b)
case(a?VB;24.6%;yB .c®) = catch(u®, abort(apply(a, d, €)))
d = Az? throw(u®,b)
= AyP throw(u®,¢)



As expected, we have car(pair(a,b)) — a and cdr(pair(a,b)) — b. Similarly,
we have case(inl(a);z.b;y.c) — bla/z] and case(inr(a);z.b;y.c) — cla/y]. -

The second example taken from the first author’s previous work[5] uses the
catch/throw mechanism in a higher-order function. The function sqrt-sum cal-
culates, given a list of integers, the sum of square root of each element. If there is
a negative number in the list, it immediately stops the computation and returns
the number. The program is written in Common Lisp like this:

(defun sqrt-sum (x)

(catch ’negative (sqrt-sum2 x)))

(defun sqrt-sum2 (x)
(if (null x) O
(if (< (car x) 0) (throw ’negative (car x))
(+ (sqrt (car x)) (sqrt-sum2 (cdr x))))))

This program is written in LK,/;, assuming that LK./, is extended to have inte-
gers, lists and so on.

sqrt-sum = Az.catch(u,apply(sqrt-sum2,z) e u)
sqrt-sum2 2 Az.ku.Rec(f,0,x)
f = Ayzw.(if (< y 0) (throw u y) (+ -(sqrt y) w))
where Rec is the recursor on the list type which has the following reduction rules:
Rec(f,a,nil) — a |
Rec(f, a, cons(b, c)) —1 apply(apply(apply(f,b),c),Rec(f, a,c))

We need the catch/throw mechanism through the A-abstraction. Again this ex-
ample cannot be written in L./;.

4 Strong Normalizability

In this section, we prove the strong normalizability of LK./, and LK;"/t.

4.1 Tait-Girard’s reducibility method

Tait-Girard’s reducibility method[2] is a standard technique to prove the strong
normalizability of typed lambda calculi. We first give an overview of the method.

1. Define the set of terms Red(A) for each type A. This is by induction on the
type.

a € Red(A) £ 4 is strongly normalizing (if A is atomic),
a € Red(A — B) 2 apply(a,b) € Red(B) for any b € Red(A).
If a € Red(A), the term a is called reducible.

51
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2. Prove three conditions called (CR-1), (CR-2), and (CR-3).

(CR-I) If a € Red(A), then a is strongly normalizing.
(CR-2) If a € Red(A) and a — b, then b € Red(A).
(CR-3) If a is neutral, and for any b s.t. a —; b, b € Red(4) holds then
a € Red(A).
In this definition, a neutral term is either a variable or a term in the form
~ apply(a,b).
3. Finally, prove that, for every term a and a substitution 6 which substitutes
reducible terms for variables, af is reducible. This is by induction on the
term.

If we try to directly apply this method to LK,/:, in the final step above,
we must prove that (roughly) catch(u,a) is reducible whenever a is reducible.
Suppose a is throw(u, b). Then we must show that, if b is strongly normalizing,
then it is reducible. But it is not possible in general

Another difficulty is the definition of Red(A <1 B). We are inclined to deﬁne
that a € Red(A < B) if and only if a e u® € Red(A) for any tag variable u®
However this condition does not work. Lillibridge constructed a non- termlnatlng
expression using the exception mechanism in Standard ML where handlers have
dynamic extents[6]. An intensive study on this example led us to realize that the
definition on Red(A < B) must rely on the type B to some extent.

The conclusion of this analysis is that (i) we must have a stronger induction
hypothesis in the final step above, and (ii) we must have another kind of elimi-
nation rule which breaks the type A <1 B into a combination of A and a subtype
of B. In order to solve (i), we shall use a generalized substitution [b/*u] in the
final step. This idea is similar to Parigot’s proof of the strong normalization of
his Ap-calculus. For (ii), we have (already) introduced the construct a ob which
converts a term a of type A <1 (B — C) to a term of type A <1 C. Using these
two improvements, our proof proceeds in a similar way as the standard proof.

4.2 Proof of the Strong Normalizability of LK,

Our target is the strong normalizability of LK“"/
For each type A, the reduc1b1hty set Red(A) is defined as a subset of terms
of type A.

Definition 6 (Reducibility).

a € Red(A) £ 4 is strongly normalizing (if A is atomic)
a € Red(A — B) & apply(a,b) € Red(B) for any b € Red(A)
a € Red(A Q B) Laeuc Red(A) for any uB (if B is atomic)

" a €Red(A < (B — C)) 2aeuc Red(A) for any uB—C
andaob € Red(A <1 C) for any b € Red(B)
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Note that Red(A) is defined by induction on the type A. We also note that, if
a € Red(A), then af[v/u] € Red(A).

We say a is reducible if a € Red(A) and the type A is apparent from the .
context.

Definition 7 (Neutral Term). A term is neutral if it is one of the forms z,
apply(a,b), ae u,or aob.

Lemma 8. Suppose A is an implicational type. For any tag variable u* and any
strongly normalizing term a of type A, we have throw(u#,a) € Red(B) for any
type B.

Similarly, for any strongly normalizing term a of type L, we have abort(a) €
Red(B) for any type B.

~ Proof. By 1nduct10n on the type B. 0
In the following we can safely ignore the term abort(a), since it can be regarded
as throw(u’, a) if we restrict our attention to the reduction sequences.

Lemma9. Let a be a term of type A. Then the following conditions hold
(CR-1) If a € Red(A), then a s strongly normalizing.

(CR-2) If a € Red(A) and a —1 b, then b € Red(A).

(CR-3) If a is neutral, and for any b s.t. a —) b, b € Red(A) holds, then
a € Red(A4).

Proof. This lemma. is proved by induction on the type A.

We shall prove the case for A= B 4 (C — D) only.

(CR-1) Suppose a € Red(A). Take a tag variable u®~%. Then aeu € Red(B)
by definition. By Induction Hypothesis, we have a e u is strongly normalizing,
and so is a.

(CR-2) Suppose a € Red(A) and a — b. Take any tag variable u®~2. Then
aeu—1 beu,sobeu € Red(B) by Induction Hypothesis.

Take any ¢ € Red(C). Then aoc —; boc, so boc € Red(A < D) by Induction
Hypothesis.

Hence b € B.ed(A)

(CR-3) Suppose a is neutral, and for any bs.t.a —1 b,b € B.ed(B<l (C — D))
holds.

Take any tag variable u®~?. Since a is neutral, any 1-step reduct of a uis
in the form (i) be u (when a — b) or (ii) throw(v,d) (when a —; throw(v,d)).
For the case (i), we have b e u € Red(B) by the assumption. For the case (ii),
we have throw(v,d) € Red(B) by Lemma 8. Hence, a @ u € Red(B) by Induction
Hypothesis.

Take any ¢ € Red(C). Since a is neutral, any 1-step reduct of a o ¢ is in the
form (i) bo ¢ (when a —; b) or (ii) throw(v d) (when a —; throw(v,d)). For
the case (i), we have bo ¢ € Red(B < D) by the assumption. For the case (ii),
we have throw(v,d) € Red(B <1 D) by Lemma 8. Hence, a o c € Red(B <4 D) by
Induction Hypothesis.

Consequently, we have a € Red(A4). , O
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Lemma 10. Suppose a is of type By — --- B, — C where C s an atomic type
(B; is an arbitrary type).

The term a is reducible if and only if, for any b; € Red(B;),---,b, €
Red(B,), the term apply(a,by,---,by,) is strongly normalizing.

Proof. Since the “only-if” part is immediate from the definition, we shall
prove the “if”-part by the induction on n.

The base case (n = 0) is immediate. For the induction step, suppose a is
of type By — By — ---Bpy1 — C, and for any by € Red(B1),---,bp41 €
Red(Bn+1), the term apply(a,b1,---,bny1) is strongly normalizing. The term
apply(a,by) is of type By — - -- Bpy1 — C whose length is n, hence by applying
Induction Hypothesis, we have apply(a, b;) is reducible. Since b; is an arbitrary
reducible term of type By, we have a is reducible. O

A substitution in the following form called a reducible substitution if b; and
¢i? are reducible for any i and j:

[bl/mla"',bn/xnaclx"':cll/ ul;"')crln;' '7Cm/um]
We use 8 as a metavariable of a reducible substitution.

Lemma 11. Suppose a is a term of type A and a —1 b. If a8 is reducible for
any reducible substitution 6, then b8 is reductble for any reducible substitution 6.

Proof. We shall only prove the case a = (ku.c)ev and b = c[v/u]. Let 6 be
an arbitrary reducible substitution in the form [---,by,- - -, by /*v, - - ]. (If @ does
not contain v free, the proof is easier.) We may assume 6 does not contain u

free. Then
al — cOlby,---,bn/ ul[v/u] = b

Hence, by (CR-2), we have b6 is reducible for any reducible 8. a

Theorem12. If '+a: A; A in LKT
substitution 6.

o/t ‘then a@ is reducible for any reducible

Proof. By induction on the derivation of '+ a: A ; A.

In the following, v(a) is the maximum length of reduction sequences starting
from a (it is defined only when a is strongly normalizing). Also ¢ is any reducible
substitution. Lemmas 9 and 11 will be used without being explicitly mentioned.

(Cases: a is a variable or apply(b,c)) Straightforward.

(Case: a is AzB.c) We shall prove apply(AzB.c6,b) € Red(C) for any b €
Red(B). We can prove it by the induction on v(cf) + v(b), using the fact
cf[b/z] € Red(C) by Induction Hypothesis.

(Case: a is catch(u,b)) Since catch(u,bf) is neutral, we shall prove by the
induction on »(b8), that all the 1-step reducts of catch(u, bf) are reducible.
The term catch(u,bd) 1-step-reduces to (i) catch(u,c) (if b8 —1 c), (ii)
throw(v,c) (if b8 —; throw(v,c)), (iii) b8 (if u ¢ FTV (b)), or (iv) ¢ (if -
b6 = throw(u,c) and u & FTV(c)).
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(1) is reducible by Induction Hypothesis of this (inner) induction.

(ii) and (iil) are reducible by Induction Hypothesis of the main induction.
We shall prove (iv) is reducible. By Induction Hypothesis, we have that
b0[dy,---,d,/*u] is reducible for any reducible d;,---,d,. Then we have
apply(c,di, - - -, dpn) is strongly normalizing for any reducible dy, - - -, dp,. Since
the type of ¢ is implicational, we can apply Lemma 10 and conclude that ¢
is reducible.

(Case: a is throw(u,b)) By Lemma 8, we only have to prove that, for any
reducible dy,---,d,, the term apply(bd,d;,---,d,) is strongly normalizing
but it follows from that 48 is reducible.

(Case: a is ku.b) We first prove that (xu.b8) e v is reducible for any ¢ and v.
It is proved by the induction on v(bf) using that bf[v/u] is reducible by
Induction Hypothesis.

We then prove that (ku.b8) o c is reducible for any 4 and any reducible c. It
is proved by the induction on v(b) + v(c) using that b8[c/*u] is reducible
by Induction Hypothesis.

(Case: a is be u) Our goal is to show (b e u)f is reducible for any 6. It can
be rewritten as (b’ o di,---,d,) ® u is reducible for any ¢’ and any re-
ducible dy,---,d,. By Induction Hypothesis b8’ is reducible, hence so is
(b0 ody,---,dy) @ u.

(Case: a is boc) This case is straightforward from the definition of Red(A<1 B).

Hence we have the goal. _ ‘ O
From the theorem, we easily have that all typable terms in LK'c"/t are re-

ducible, hence by (CR-1), strongly normalizing. Since LK./, is a subcalculus of

LKj/t, we have the following result.

Corollary 13. The calcult LK:'/t and LK./; are strongly normalizing.

5 Concluding Remarks

We have examined the calculus LK,/¢, the classicalized version of Nakano’s L./;,
and proved several properties such as subject reduction and strong normalizabil-
ity. We explained why a direct application of Tait-Girard’s reducibility method
does not work, and then showed how to overcome the difficulty by introduc-
ing a missing elimination rule. Our proof is purely syntactic and simple, thus
extensible if we add data types such as integers and trees.
~ Independently to Nakano and us, de Groote[l] proposed a calculus for the
exception mechanism in Standard ML. Since one can abstract over exception
types in Standard ML, his calculus also contains the equivalent notion of tag-
abstraction/application. However, he chooses a call-by-value evaluation strategy,
so his result on normalizability is weaker than ours.
Recently, there has been intensive research on program extraction from clas-
sical proofs. Most researchers use some formulation of the first-class continuation
(the call/cc mechanism in Scheme or Standard ML), or Parigot’s Ap-calculus.
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The second author([13, 14] and de Groote[1] pointed out the classical catch/throw
(or exception) calculi can be candidates for program extraction from classical
proofs. We briefly examined this idea in this paper, yet we need to work out
much more examples.
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