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'RECENT PROGRESS OF NON
COMMUTATIVE DIMENSION THEORY
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Department of Mathematics, Tokyo Metropolitan University

M.A. Rieffel [Rf] initiated stable rank of C*-algebras which is considered as complex
dimension of non commutative topological spaces. Successively, L.G. Brown and G.K.
Pedersen [BP] introduced real rank of C*-algebras, i.e. non commutative real dimension.
These ranks are recently regarded as one of important indices for mild classification of
C*-algebras, in particular, simple C*-algebras.

In [Rf], Rieffel proposed a problem such as describing stable rank of group C*-algebras
of Lie groups in terms of groups. For this problem, H. Takai and the author [ST1], [ST2]
studied stable rank of group C*-algebras of con‘n‘ected, solv:;),ble Lie groups of type I. The
author [Sd1], [Sd2] extended partially their results to the case of amenable Lie groups
of type I, and also considered the case of non amenable Lie groups of type L

This talk is organized as follows: First of all, we review classes and examples of
connected Lie groups, and some formulas of stable rank of group C*—algeb:ra,s of type
I. Secondly, we give some new results for stable rank of the C*-algebras of certain
connected Lie groups of type L. Finally, we give some tables of both stable and real rank

for some classes of C*-algebras which includes some very important examples.
Definition. For a unital C*-algebra 2, its stable rank sr(2) is defined by

min{n € N| L, (%) is dense in A"} A oo



where A means minimum and a = (a;)?; € L, () means that } ., a;a} is invertible

in A. We define real rank rr(2A) of A by
min{n — 1 € {0} UN| L,(Usa) is dense in (Asq)"} A 00

where 2, is the set of all self-adjoint elements of A. For a non unital C*-algebra 2, we

define sr(2A) = sr(AT), rr(A) = rr(AT) with A the unitization of A.

We give some important examples of connected Lie group as follows: -

Table of Connected Lie Groups

Classes - Typel Non Type I

Compact SO(n) None
Commutative R™ x T* None
Nilpotent Heisenberg group R? x R None
Solvable ax +b group G =R xR Mautner group R* x R
Amenable Motion groups R"™ x SO(n) (R* x R) x SO(n)
Semi-simple SL,(R) (n >2) None
Reductive GL,(R) (n > 2) None
Non Amenable G x SL,(R) (n > 2) (R* x R) x SL,(R)

where lower classes in each perpendicular section are wider than upper classes except

for ”Compact”.

Notations. We denote by V maximum.

For a topological space X, we let dim¢ X = [dim X/2] + 1 where [-] is the Gauss
symbol.

For a,‘ Lie group‘G, denote by [G,G] its commutator subgroup and by G the space
of all 1-dimensional representaﬁons of G, and let Z the center of G. Let C*(G), C¥(G)
be the full, reduced group C*-algebra of G respectively.

Denote by rr(G) the real rank of a semi-simple Lie group G.



Table of stable rank of group C*-algebras of type I

Classes . Stable rank
Compact 1
Commutative dim¢ G 1
Simply connected, nilpotent ’ dim¢ él
Simply connected, solvable (2 V dim¢ G1) Adim G
Amenable dime Gy < s2(C*(G)) < 2V dime Gy
Semi-simple 2 A 1r(QG)
Reductive 2 A (xx([G,G]) V (dim Z + 1))
Non Amenable 2A1r(S) <sr(CHG)) <2

where S is the quotient semi-simple Lie group of G by its radical, and lower classes in

each perpendicular section are wider than upper classes except for ”Compact”.

Remark. If G is the generalized motion group, then sr(C*(G)) = 1 = dim¢ Gy.

If G is the direct product of the real az + b group and SL,(R), then sr(C;(G)) = 2.

New viewpoint. Let G be a connected Lie group of type I. Then
dime G, < st(CH(@Q)) < 2V dime G,y

where (A}T,l is the space of all 1-dimensional representations in the reduced dual e

Lemma 1 [ST2]. Let G be a simply connected, solvable Lie group. Then st(C*(G)) =1

if and only if G = R.

Remark. In the proof of Lemma 1, we showed that for a crossed product of the form

A= Co(R™) xR, sr(A) = 1if and only if A = Cp(R).

Lemma 2. Let G be a connected solvable Lie group, and G its universal covering group.
If the center Z of G is connected, then st(C*(@)) = 1 if and only if G is isomorphic to

R or T? or T° x R.



Proof. If G is commutative, then G & R* x T® for some k,s. Then sr(C*(G)) = 1 if
and only if G =2 R or T? or ]RX TS.

Suppose that G is non comm1(1ta,tive. Let T be a discrete central normal subgroup of
G such that G/T" = G. By the third homomorphism theorem, G/Z = (G)T)/(Z)T) =
G/(Z/T). Hence, there exists a surjective *-homomorphism from C*(G) to Cc*(G/Z).
Since Z is connected, G /Z is a simply cénnected, solvable Lie group by homotopy exact
sequence. By [Lemma 1], one has that sr(C*(G/Z)) = 1 if and only if G/Z = R. In this
case, ég Z xR = R* xR for some k. Then G = (R*~% x T*) x R for some‘s since I is
central. It follows that C*(G) = Co(R*¥~* x Z*) xR. Since R*~* x {0} is invariant under
the action of R, ra,nd closed in Rk_s x Z*, then Cy(R*¥~*) xR is a quotient C*-algebra of
C*(G). If k — s > 1, then st(Co(R¥~*) x R) > 2 by [Remark of Lemma 1]. If k — s = 0,

then C*(G) = &z.C*(R), which is commutative. [

Remark. If G = R? xg R where $ is rotation on R?, then its center is isomorphic to Z.
This example is the non exponential, simply connected, solvable Lie group unique up
to isomorphisms with dimension < 3.

It is known that connected is the center of any connected, nilpotent Lie group.

Corollary 3. Let G be a connected nilpotent Lie group. Then the following are equivalent:

(1) s(C(@) =1
(2) G is isomorphic to either R x T* or R or T*.

(3) dim¢ Gy = 1.

Sketch of Proof. The equivalence of (1) and (2) are obtained by Lemma 2 and the fact



that connected is the center of any connected, nilpotent Lie group.

The implication (2) = (3) is trivial. But the converse is non trivial. We must consider

the structure of G. But we omit it. [

Theorem 4. Let G be a connected nilpotent Lie group. Then

s1(C*(@)) = dimc G;.

Remark. This is a generalization of the main theorem in [ST1] which states that the
above equality holds for any simply connected, nilpotent Lie group.
Using the inequality in the amenable class in the table of stable rank of group C*-

algebras of type I, and by Lemma 2, we obtain the following:

Theorem 5. Let G be a connected, solvable Lie group of type I. If the center of G is

connected, then

(C’*(G’))—{l fG=R orT° orRx T?
o - -2V dimg G1 otherwise.

Problem. IfG is a simply connected, solvable Lie group of non type I, then st(C*(G)) =

?
In this case, one can show that sr(C*(G)) > dim¢ G;.

Example 6. If G is the Mautner group, then sr(C*(G)) = 2 > 1 = dime G1. Moreover,
one has sr(C*(G x K)) = 2 for any compact group K, and sr(C(G x SL,(R))) = 2.
As another example of non type I, let G be the Dixmier group which is the semi-direct

product R* x H where H is the real Heisenberg group. Then sr(C*(G)) = 2 = dim¢ Gi.



Table of Discrete Groups

Classes Type 1 Non Type I

Amenable (Z™ x Z) X F, Heisenberg groups Z"! x Z™ (n > 1)
(|F| < o0) (Z™r 1 Z")yx F
Non Amenable None Free groups F,, (n > 2)

Free products G; * G4
SLs(Z), Amalgams Gy g G
SLn(Z) (n 2 3)

where G1, G2, H are countable discrete groups.
Problem. Let G be a discrete group. Then st(CF(G)) =?

Example 7. Let G = Z™*! x Z™ be the generalized, discrete Heisenberg group. Then
G/|G,G] = Z?". 1t follows that C*(Z>") is a quotient C*-algebra of C*(G). Hence
st(C*(@)) > dimc T?" =n + 1. |

Dykema-Haagerup-Rgrdam [DHR] showed that sr(C*(G; * G3)) = 1 for discrete
groups G; with |G1| > 2 and |G,| > 3. In particular, since the free groups F,, (n > 2)
is isomorphic to Z * - - - * Z (n times), sr(Cy(F,)) = 1. Since PSLy(Z) = Z4 * Z3, then
(G2 (PSLy(2)) = 1.

On the other hand, SLy(Z) is isomorphic to the amalgam Z, 7, ZG where ‘Zg, Ly

and Zg are respectively generated by

(o) (50 @

Moreover, SL3(Z) is not an amalgam, i.e. not isomorphic to Gy *g Gs.
Nagisa [Ng] showed that st(C*(Zy, * Z,)) = oo for 2 < m,n < oo, m +n > 4 and

SI‘(O*(Zz * Zz)) =1.



Notations. Denote by K the C*-algebra of all compact operators on a Hilbert spaces

and by B the C*-algebra of all bounded operators on a co-dimensional Hilbert space.

Table of Stable Rank

ST Nuclear Non Nuclear

1 K, C(SY), AF, 2y, B, AT Cr(F,) (n > 2)

2 K® O, (n>2), C(S*) (i =2,3) C*(F,)®K (n > 2)

: C(S™) (n > 4) C*(Fy) ® C(S™) (n > 4)
00 C([0,1]°°), O, (n > 2) C*(F,) (n>2),B

where B is the Bunce-Deddens algebra and 2 is the irrational rotation algebra. It is

known that they are AT-algebras, i.e. inductive limits of the form li_r)nGBZgank (C(T)).

Table of Real Rank

IT Nuclear Non Nuclear

0 K, AF, %, B, O,, (n > 2) 0, QCx(F,),B

1 c(sh), ¢([0,1) ® 0, ®K Cr(Fn) (n>2)

: C(S™) (n > 2) CH(F) & C(S™) (n>2)
o0 C([0,1]*) C*(Fn) (n22)

Remark. Choi-Elliott [CE] proved that rr(2g) = 0. Blackadar and Kumjian showed that
the Bunce-Deddens algebras B of type 2°° have real rank zero. Nagisa [Ng] showed that
rr(C*(F,)) = oo. By Nagisa-Osaka-Phillips, rr(C([0,1]) ® %) > 1 for any C*-algebra 2.

Beggs-Evans [BE] proved rr(2A @ K) < 1.

Table of stable rank of simple C*-algebras

ST Nuclear * Non Nuclear

1 K, g, B, BL ‘ Cx(F,) (n>2)

2 K® O, (n>2), VL, K® O, ® Ct(F,) (n,m > 2)
: VL (3 <k < o0) ?

00 O, (n>2) O, ®C(Fy), B/K




where BL is the Blackadar’s simple unital projectionless C*-algebra which is the induc-
tive limit of mapping cones associated with an AF-algebra, and V£j is the Villadsen’s

simple unital AH-algebra with stable rank & (2 < k < co) [VI].

Table of stable rank of finite simple unital C*-algebras

ST Nuclear Non Nuclear

1| %y, B, BL, U ® Maw | C:(Fy) (n > 2)

VL (2<k < o0)
o0 ?

Remark. For any simple and infinite C*-algebra 2, we have sr(2) = co. Rgrdam [Rd]

showed that if 2 is simple and stably finite, and © is a UHF-algebra, then sr(A®9D) = 1.

Table of real rank of simple C*-algebras

IT Nuclear Non Nuclear

0 K, %g, B, O, (n > 2) 0, ® Cx(Fp), B/K
1 ‘ BL Cr(Fp) (n>2)
0

Remark. Any simple, purely infinite C*-algebra has real rank zero. Lin and Zhang
constructed some simple C*-algebras 2 with rr(2) # 0 and rr(M(2)/2A) = 0, where
M () is the multiplier of ™A. In fact, A is a hereditary C*-subalgebra of‘ the tensor
product of an AH-algebra and a UHF-algebra.

An AH-algebra 2 is' the inductive limit of the form li_n_)l(an,q)m,n) where A, =
EB;":lC(Qn,j,M[n’j]) with €, ; connected, compact Tz-spaces, and @, : Ap — An
(m > n) unital homomorphisms. If sup,, ; dim 2, ; < oo, we call 2 of bounded dimen-
sion. We say that 2 has slow dimension growth if lim,_,o max;(dimQ, ;/[n,j]) = 0.

If 2 is simple, then lim,_,o, min;[n, j] = oo, and so 2 has slow dimension growth if



supdim, ; < co. Note that if 2 is simple, dim 2, ; < co and D is a UHF-algebra,

then %A ® D is written as an inductive limit with slow dimension growth.

Table of stable rank of simple AH-algebras

ST .- Classes
1 Bounded dimension
Slow dimension growth

V,Ck(2Sk<OO)

00 ?

Remark. Dadarlat-Nagy-Nemethi-Pasnicu [DNNP] showed the above case of bounded
dimension. The case of slow dimension growth is proved by Blackadar-Dadarlat-Rgrdam
[BDR].

| A C*-algebra 2 has the property (STP) (separating traces by projections) if equal

are any two traces 7; of U satisfying 71 (p) = 72(p) for every projection p € .

Table of real rank of simple AH-algebras

T Classes
0 Simple AT + (STP)
Slow dimension growth + (STP)
?
) ?

Remark. Blackadar-Bratteli-Elliott-Kumjian [BBEK] showed the case of simple AT-
algebras. The case of slow dimension growth is obtained by Blackadar-Dadarlat-Rgrdam

[BDR].
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