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$0$ . Introduction

Consider the following equation:

$\triangle u+u^{p}=0$ in $\Omega_{R}$

$u=0$ on $\partial\Omega_{R}$ (1)

$u>0$ in $\Omega_{R}$ ,

where $\Omega_{R}\equiv\{x\in \mathbb{R}^{N}|R-1<|x|<R+1\}l$and $1<p<(N+2)/(N-2)$
for $N\geq 3,1<p<\infty$ for $N=2$ .

The problem (1) is invariant under the orthogonal coordinate trans-

formation, that is, $O(N)$ -symmetric. When $R<1$ in problem (1), that

is, the domain is a ball, we know that the solutions is $O(N)$ -symmetric,

in other words, radially symmetric. This is an elegant result of Gid.a$\mathrm{s}$ ,
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Ni and Nirenberg [GNN]. This symmetry result brings about a unique-

ness of the solutions [NN]. On the other hand, although annulus have

the same symmetric property with balls, Brezis and Nirenberg pointed

out in [BN] that there exists a nonradial symmetric solution of problem

(1) when $R>1,$ $n\geq 3$ and $(N+2)/(N-2)-p$ is positive and suffi-

ciently small. In fact, they showed that the minimal energy solutions for

problem (1) is not radial symmetric in that case. Furthermore, Coffman

[Co] proved that, in two-dimensional case, the number of nonradial and

nonequivalent solutions of problem (1) goes to $\infty$ as $Rarrow\infty$ . The same

result was obtained by $\mathrm{Y}.\mathrm{Y}$ . Li for $N\geq 4$ [Li] and by the author for

$N=.3$ [By]. In [BN], [Co], [Li], [Lin] and [MS], the nonradial solutions

of (1) which have globally minimal energies in some symmetric functions

classes have been studied. On the other hand, in [By] the author proved

the existence of locally-rather than globally- minimal energy solutions

of (1) in certain symmetric functions classes when the space dimension is

three; from which it was shown that the number of nonequivalent nonra-

dial positive solutions of (1) goes to infinity as $Rarrow\infty$ . Moreover, when

the space dimension is three, it was shown in [By] that via finding only

globally minimal energy solutions in the symmetric functions classes, it

is impossible to prove that the number of nonequivalent and nollradial

positive solutions of (1) goes to $\infty$ as $Rarrow\infty$ .
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It is interesting to note that the $O(N)$ -symmetry has two contrasting

effects on the structure of the positive solutions; in the case that domain

is a ball the symmetry makes the structure of solutions to be simple, on

the other hand, in the case that domain is an annuli the symmetry makes

the structure of solutions to be complicated. Thus, it is natural to wonder

why this contrasting effect of the $O(N)$ -symmetry on the structure of

the positive solutions occurs. It is the purpose of this paper to think

about this question. Heuristically, we can explain this phenomena, in a

variational sense, as follows.

For any closed subgroup $G$ of $O(N)$ , we define

$H_{R}^{G}\equiv$ { $u\in H_{0^{2}}^{1}’(\Omega_{R})|u(x)=u(gx)$ for any $x\in\Omega_{R,g}\in G’$ }.

Then, from the principle of symmetric criticality [Pal], we see that any

critical point of the energy functional

$\frac{1}{2}\int_{\Omega_{R}}|\nabla u|^{2}dX-\frac{1}{p+1}\int_{\Omega_{R}}(\max\{u(X), 0\})^{p}+1dX$

in $H_{R}^{G}$ is a solution of problem (1). Considering the group action $G\cross$

$\Omega_{R}arrow\Omega_{R}$ as coordinate transformations, we can imagine that, when the

derivative of the energy functional at $u\in H_{R}^{G}$ is very close to zero, the

energy density
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$\frac{1}{2}|\nabla u|^{2}-\frac{1}{p+1}(\max\{u(X), \mathrm{o}\})^{p}+\perp$

is concentrated around the union of some $G$ -orbits. Thus we can $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{f}_{1}$

that, when the energy density of certain functions in $H_{R}^{G}$ (where the

derivative of energy functional is very close to zero) depend highly on

a structure of $G$ -orbits, a $cr\dot{i}t_{\dot{i}C}al$ ( $\mathrm{i}\mathrm{n}$ a sense of $\mathrm{m}\mathrm{a}\mathrm{g}_{\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{t}}\mathrm{u}\mathrm{d}\mathrm{e}$ of orbits)

$G$ -orbit reproduce a critical point of the energy functional. When $R<1$ ,

that is, $\Omega_{R}$ is a ball, the action $G\cross\Omega_{R}arrow\Omega_{R}$ has only one crtical orbit

$\{0\}$ . Hence, the energy functional is not much affected, in a variational

sense, by the symnletry of problem (1). On the $\mathrm{o}\mathrm{t}_{1}\mathrm{h}\mathrm{e}\mathrm{r}$ hand, $\mathrm{w}1_{1}\mathrm{e}\mathrm{n}R>1$ ,

that is, $\Omega_{R}$ is an annulus, as we can see in section 2, the action $G\cross\Omega_{R}arrow$

$\Omega_{R}$ has many critical orbits for certain closed subgroup $G$ of $O(N)$ . When

$R$ is very close to 1, the effect of the critical orbital actions to the energy

functional is very small,$\cdot$ eventually, their effect is ignored. In fact, there

exists a unique solution of problem (1) when $R$ is very close to 1 (refer

[Dan] $)$ . By way of opposition, as $Rarrow\infty$ , the energy of certain functions

depends more highly on a structure of $G$ -orbits. Then, as $Rarrow\infty$ , a

rich variety of positive solutions due to a structure of $G$ -orbits appear.

In this paper we will see that the rich structure of the space of orbits

under the action of closed subgroups of $O(N)$ on $S^{N-1}$ brings about a $1^{\cdot}\mathrm{i}\mathrm{c}\mathrm{h}$

variety of positive solutions of (1) as $Rarrow\infty$ . We should note that almost
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all solutions found in this paper never have been found in the literature.

In fact, we will show that the problem (1) has various solutions with

different shapes, which are related to locally minimal orbital sets under

the action of the closed subgroups of $O(N)$ on sphere $S^{N-1}$ Roughly

speaking, for any closed subgroup $G$ of $O(N)$ , we find solutions of problem

(1) which are concentrated $\mathrm{a}\mathrm{r}\mathrm{o}\iota \mathrm{m}\mathrm{d}$ each locally minimal $G$ –orbit on a

sphere $\{x||x|=R\}$ .

This paper is orginized as follows. In section 1, we state basic assump-

tions and prepare some necessary results. In section 2, we study the

structure of orbits under the action of the closed subgroups of $O(N)$ on

sphere. The $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{e}11\mathrm{t}_{1}$ of our main theorem will be given in section 3.

1. Preliminary

We consider the following problem:

$\triangle/u+hu+f(u)=0$ in $\Omega_{R}$

$u=0$ oli $\partial\Omega_{R}$ (2)

$u>0$ in $\Omega_{R}$ ,

where $\Omega_{R}\equiv\{x\in \mathbb{R}^{\mathit{1}\mathrm{V}}|R-1<|x|<R+1\}$ . We assume that the function

$f$ dlld the constant $h$ satisfy the following conditions:

(A1) $h<\pi^{2}/4$ ;
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(A2) $f$ is continuousely differentiable on $\mathbb{R}$ ;

(A3) $f(t)=0$ for $t\leq 0$ and there exist a constant $\theta\in(0,1)$ such that

$0<f(t)<\theta f’(t)t$ for all $t>0$ .

Since the first eigenfunction $\mathrm{o}\mathrm{f}-\triangle$ on $\Omega_{R}$ with Dirichlet condition zero is

radially symmetric, we easily deduce that the corresponding first eigen-

value goes to $\pi^{2}/4$ as $Rarrow\infty$ . In condition (A1), the restriction $h<\wedge/|^{-2}/4$

is related to this fact.

Let $G$ be a closed subgroup of $O(N)$ . Then, for any $x\in S^{N-1}$ , the

orbit $xG$ is a closed submanifold of $S^{N-\perp}$ Denote $d(xG|)$ the dimension

of the manifold $xG’$ . Define

$N_{G} \equiv N-\min_{s^{N1}x\in-}\{d(xc)\}$ .

For any closed subgroup $G$ of $O(N)$ , we define $(G_{f})$ the $G$-growth con-

dition of $f$ as follows:

$(G_{f})|f(t)|+|f’(t)t|\leq C|t|^{p}$ for some positive constant $C’$ , where $p\in$

$(1, (N_{G}+2)/(N_{G}-2))$ in case $N_{G}\geq 3$ and $p\in(1, \infty)$ in case

$N_{G}=1$ or 2.

For any subgroup $G$ of $O(N)$ , we denote

$H_{R}^{G}\equiv\{u\in H_{0}^{1,2}(\Omega_{R})|u(g\cdot)=u(\cdot),$ $g\in G’\}$ .
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For any $u\in H_{R}^{I}=H_{0}^{1,2}(\Omega R)$ , we define its energy

$\Gamma(u)\equiv\frac{1}{2}\int_{\Omega_{R}}|\nabla u|^{22}-hudX-\int_{\Omega_{R}}F(u)dX$ ,

where $F(u) \equiv\int_{0}^{u}f(t)dt$ is a primitive of $f$ .

The Sobolev imbedding theorem says that the space $H_{R}^{I}=H_{0}^{1,2}(\Omega_{R})$ is

continuously imbedded into $L^{q}$ for $q\in[1,2N/(N-2)]$ , and the imbedding

is compact for $q\in[1,2N/(N-2))$ . We note that, when $R>1$ , the space

$H_{R}^{O(N)}$ is compactly imbedded into $L^{q}$ for any $q>1$ . Thus, we expect

that for a closed subgroup $G$ of $O(N)$ , the functions space $H_{R}^{G}$ may be

imbedded into $L^{q}$ for some $q>2N/(N-2)$ . In fact, there are some results

about this expectation when the symmetry group $G$ is $O(l)\ltimes--^{O})(N-l),$ $\iota\geq$

$2$ . (Refer to [Din] and [Li].) Here we give a general imbedding result about

$H_{R}^{G}$ for any closed subgroup $G$ of $O(N)$ .

Proposition 1.1. Let $G’$ be a closed subgroup of $O(N)$ . Then,$\cdot$ if $R>1$ ,

th $es\mathrm{u}$ bspace $H_{R}^{G}$ of $H_{0}^{1_{J}2}(\Omega_{R})$ is $co\mathrm{n}$tinuous$elyi\mathrm{m}$bedded into $L^{q}(\Omega_{R})$

for $q\in[1,2N_{G}/(N_{G}-2)]$ . Moreo$\mathrm{t}^{\gamma}er,\cdot$ th $ei\mathrm{m}$bedding is compact for $q\in$

$[1,2N_{G}/(N_{G}-2))$ .

Let $G$ be a closed subgroup of $O(N)$ . We consider the following elliptic
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problem on an infinite strip-like domain:

$\triangle u+h\tau \mathrm{f}+f(u)=0$ in $(-1,1)\cross \mathbb{R}^{\mathit{1}\mathrm{V}_{C_{7}}-1}$

$u=0$ on $\{-1,1\}\cross \mathbb{R}^{N_{G}-1}$ (3)

$u>0$ in $(-1,1)\mathrm{x}\mathbb{R}^{N_{G}-1}$

Then we have the following result.

Proposition 1.2. Suppose that the function $f$ satisfies the $co\mathrm{n}di$tions

$(A1-3)$ and $G_{f}$ . Then, there exists a lninim$al$ energy solution $V_{N_{G}}$ of

problem (3). Moreover, the $|\mathrm{s}ol\mathrm{u}$ tion has th$e$ follovvin$\mathrm{g}$ properties:

(i) $\iota,\nearrow \mathit{1}\mathrm{V}_{G}(x_{1}, \cdot)$ is radially synrmetric up to an $\mathrm{t}_{l}\cdot an\mathrm{s}l\mathrm{a}$tion

(ii) $V_{\mathit{1}\mathrm{v}_{G}}(x_{1}, X\underline{?}, \cdots, x_{\mathit{1}\mathrm{v}_{G}})\leq C\exp(-C(X_{2}arrow y+\cdots+x_{\mathit{1}\mathrm{V}_{G}}^{2})^{1}/2)$ for some

$con$stan $tsc,$ $C>0$ .

2. Structure of orbits space

In this section we study a structure of orbits space. Let $G$ be a closed

subgroup of $O(N)$ . Then the group $G$ acts on $S^{\mathit{1}\mathrm{v}-\perp}$ as linear transforma-

tions. We denote the action by $g\cdot x$ for $g\in G$ and $x\in S^{N-1}.$ Dellote the

$G$-orbit of $x$ by $xG=\{g\cdot x|g\in G’\}$ for $x\in S^{\mathit{1}\mathrm{V}-\perp}$ We lmow that $xG$ is a

closed submanifold of $S^{N-1}$ Define $d(xG)$ the dimension of the manifold

$xG$ and $m(xG)$ the $d(xG|)$ -dimensional Housdorff measure. We, thell,
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give a partial order $\prec$ on the space $\{xG|x\in S^{N-1}\}$ as follows:

$xG\prec yG$

if and ony if

$d(xG^{(})<d(yG’),\cdot$

or

$d(xG)=d(yG’)=0$ and $\uparrow n(xG^{(})<m(yG)$ .

The $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\prec$ is a criterion of dimensional magnitude of orbits.

Definition 2.1. A set $f|/I\subset S^{N-1}$ is called a locally minimal orbital

set under the action of $G’$ if $M$ is invariant under the action of $G$ and a

minimal set satisfying the following conditions:

(i) for any $x,$ $y\in fVI,$ $d(xG)=d(yG)$ , and $m(xG)=m(yG)$ in the

case that $d(xG’)=d(yG’)=()$ .

(ii) there exists a positive constant $\delta_{0}>()$ such that for any $y\in\{x\in$

$S^{N-1}|d\dot{i}st(x, l\psi[)\leq\delta_{0}\}\backslash \mathbb{J}/$[ and $x\in M$ , it holds that $xG’\prec yG$ .

In palticular, a $G’$-invariant set $\mathbb{J}/I\subset S^{\mathit{1}\mathrm{V}-1}$ is called the globally minimal

orbital set under the action of $G\subset O(N)$ if above properties (i) and (ii)

hold with $\delta_{0}>2$ .

We call a set $\mathbb{J}/I$ a lllinimal orbital set when $\mathbb{J}/$[ is $\mathrm{t}1_{1}\mathrm{e}$ globally minimal

orbital set or a locally lninimal orbital set.
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We note that the existence of the globally minimal orbital set under

the action of closed subgroup of $O(N)$ is obvious. Moreover, the globally

minimal orbital set is unique for each closed subgroup $G$ of $O(N)$ . We

investigate the structure of minimal orbital sets.

Lemma 2.2. For any $x\in S^{N-1}$ , there exis $\mathrm{t}s$ a constan $t\delta>0$ su$cfl$ that

$d(xG)\leq d(yG)$ for any $y\in B(x, \delta)\cap S^{\mathit{1}\mathrm{V}-1}$

Proposition 2.3. If $M\subset S^{N-1}$ is a lninimal orbit$\mathrm{a}l$ set under th $\mathrm{e}$ action

of $G’,$ $t\mathit{1}_{l}enM$ is closed and an$y$ componen $\mathrm{t}$ of $\mathbb{J}/$[ is a totally geodesic

closed $su$bmanifold of $S^{\mathit{1}\mathrm{V}-1}$

Corollary 2.4. Suppose that $M’$ is a component of a minim$al$ orbi $\mathrm{t}al$

set $M$ under the action of $G$ , and that its dimension $m$ is 1arger than 1.

Then, there exist $\xi_{1},$ $\cdots$ , $\xi_{N-1-}m$ such that

$lVI’=\{x\in S^{\mathit{1}\mathrm{v}-1}|<x,$ $\xi_{i}>=0,\dot{i}=1,$ $\cdots$ , $N-1-7\mathrm{t}\mathrm{t}\}$ .

Corollary 2.5. If $M$ is a minim$\mathrm{a}l$ orbital set under the action of $c_{\dot{\text{ノ}}}$ then

the $n$um$be\mathrm{r}$ of components of $M$ is finite.

Corollary 2.6. The globally minimal orbital set $M$ under the action of

$G’\subset O(N)$ is a finite disjoint union of locally $n\dot{\mathrm{u}}ni_{l}al$ orbi $\mathrm{t}al$ sets.

It seems that there exists a systematic method to find locally lninimal

obital sets under the action of $G\subset O(N)$ from the globally minimal
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orbital set under the action of $G’\subset O(N)$ when the globally minimal

orbital set has a finite number of elements. Here we will see a conjecture,

which is true in the three dimensional case and for some closed subgroup

$G’$ of $O(N)$ .

Assume that $M$ is the globally minimal orbital set with finite ele-

ments $\{x_{\perp}, \cdots , x_{m}\}$ and $m>2$ . Then, it is obvious that there exist

$\{z_{1}, \cdots , z_{k}\}\subset \mathrm{J}/I$ such that

$z_{i}G\mathrm{n}Z_{j}G=\emptyset$ , $\dot{i}\neq j$

and

$lVI= \bigcup_{i1^{Z_{i}}}ck=$ .

Then each $z_{i}G’,\dot{i}=1,$ $\cdots$ , $k$ , is a locally minimal orbital set. For each

$\dot{i}\in\{1, \cdots , k\}$ , we denote $<z_{i}G>\mathrm{t}\mathrm{h}\mathrm{e}$ smallest subspace of $\mathbb{R}^{\mathit{1}\mathrm{v}_{\mathrm{C}\mathrm{o}\mathrm{n}}}\mathrm{t}\mathrm{a}\mathrm{i}11\mathrm{i}\mathrm{n}\mathrm{g}$

$z_{i}G$ . Then, it follows easily that the space $<z_{i}G>\mathrm{i}\mathrm{s}$ invariant under the

action of $G$ , and that for any $\dot{i},j\in\{1, \cdots , k\}$ ,

$<z_{i}G>\cap<z_{j}G>=\{0\}$ or $<z_{i}G>=<z_{j}G>$ .

For each $\dot{i}\in\{1, \cdots , k\}$ , let $\{x_{1}^{i}, \cdots , x_{l}^{i}\}$ be the elements of $z_{i}G$ . $i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}$

the definition of the globally minimal orbital set, we see that the number

of elements of $z_{i}G’$ is independant of $\dot{i}$ . For each $i\in\{1, \cdots , k\}$ , define the

polytope genelatecl from $z_{i}G$ by

$C^{\mathrm{t}}(z_{i}c)\equiv$ { $t_{1}x_{1}^{i}+\cdots+t_{l^{X_{l}^{i}1\perp}}t+\cdots+t_{l}\leq 1$ and $t_{j}\geq 0,j=1,$ $\cdots$ , $l$ },

15



and

$B(z_{i}G’)=C(Z_{i}c)\backslash \mathrm{i}\mathrm{n}\mathrm{t}(C(z_{i}G^{(}))$ ,

where int $(C(\approx_{i}c))$ is the set of interior points of $C(z_{i}G)$ in $<z_{i}G\cdot>$

We easily see that $B(Z_{i}G)$ is invariant under the action of $G’$ . For any

nollnegative integer $n$ , we denote

$(z_{i}G)(n)=$ {the $n$ –dimesional facets of $B(z_{i}G’)$ }.

Then the group $G$ acts on $(z_{i}G)(n)$ . Denot,e the dimension of $B(z_{i}G)$ by

$d_{i}$ . For $\dot{i}\in\{1, \cdots, k\}$ and $n\in\{0,1, \cdots , d_{?}\cdot\}$ , define

$(z_{i}G)_{n} \equiv\{\frac{x}{|x|}|$ $x$ is the center of $A\in(z_{i}G)(n)\}\subset S^{\mathit{1}\mathrm{V}-1}$

We see that the group $G$ acts on $(z_{i}G)_{n}$ . Then we conjecture the follow-

ings.

Conjecture. The { $(z_{i}G)_{n}|\dot{i}\in\{1, \cdots , k\},$ $n\in\{0, \cdots , d_{i}\}$ is the set of

locally minimal orbital sets under the action of $G$ .

3. Statement of result

Let $M$ be a locally minimal orbital set under the action of a closed

subgroup $G$ on $S^{N-1}$ Then we have the following theorem.
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Theorem 3.1. Suppose that the function $f$ satisfies conditions (A1-3)

and $G_{f}$ . Then, there exis $\mathrm{t}s$ a solution $U_{R}\in H_{R}^{G}$ ofproblem (2) such that

(i) for some $x_{R}\in\{Rx|X\in \mathbb{J}/I\},$ $u_{R}(x)arrow 0$ as $d\dot{i}st(x,$ $X_{R}G^{1)}arrow\infty$ ;

an $d$

(ii) for any $x\in M$ ,

$\varliminf_{R\infty}\Gamma(u_{R})/Rd(xG)=m(XG)\Gamma_{\infty}^{\mathit{1}}\mathrm{v}_{G}$ ,

$wllel\cdot e\mathrm{r}\mathit{1}\infty^{G}\mathrm{V}$ is the enelgy of $tl_{l}e$ solution $V_{\mathit{1}\mathrm{V}_{G}}$ for $p_{l}\cdot oblem(\mathit{3})$ .

In [BN], [Co], [Li] and [Lin], the globally lninimal ellergy solutions of

(1) in $H_{R}^{G}$ have been investigated when the closed subgroup $G’$ of of $o(N)$

is one of forms, $G_{k}’\otimes O(N-2),$ $k=2,3,$ $\cdots$ and $O(l)(\cross-sO(N-l),$ $\iota=$

$2,$ $\cdots$ , $N-1$ (here, the $G_{k}^{\mathrm{t}}$ is a subgroup of $O(2)$ generated by rotation

through an angle of $\frac{arrow J\pi}{k}$. ). In [MS], when the space dimellsion is $\mathrm{t}\mathrm{h}\mathrm{l}\cdot \mathrm{e}\mathrm{e}$ , using

the complete classification of closed subgroups of $O(3)$ , they investigated

the globally minimal ellelgy solutions in $H_{R}^{G}$ for all closed $\mathrm{s}\iota 1\mathrm{b}\mathrm{g}1^{\cdot}\mathrm{o}\mathrm{u}_{\mathrm{P}^{\mathrm{S}}}$ of

$O(3)$ . Here we give a result about globally minimal ellergy solutions in
$H_{R}^{G}$ for all closed subgroup $G$ of $O(N)$ , which can be obtained simply

from Theorem 3.1. We should note that, although we may not $1_{\mathrm{t}}’11\mathrm{o}\mathrm{w}$ the

closed subgroups of $O(N)$ completely, we can characterize the property

of glabally mininlal energy solutions of (2) in $H_{R}^{G}$ in terms of intrinsic

property of group action $G’\cross S^{N-1}arrow S^{N-\perp}$
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Proposition 3.2. Assume that $G$ is a closed subgroup of $O(N)$ . Let $u_{R}$

be a (globally) minimal energy solution of (2) in $H_{R}^{G}$ and $lVI$ the globally

lninimal orbital set under th $\mathrm{e}$ action of $G$ . Then $tl\mathit{1}el\cdot \mathrm{e}$ exist $\{x_{R}\}\subset$

$\{Rx|x\in lVI\}$ such that

(i) $u_{R}(x)arrow 0$ as $d\dot{i}st(X, xRG^{\mathrm{t}})arrow\infty$ , and

$(\mathrm{i}!)$ for any $x\in \mathrm{J}/[$,

$\mathrm{l}\mathrm{i}\mathrm{m}\Gamma(u_{R})/R^{d(xG)}=m(xc)\Gamma_{\infty}\mathit{1}\mathrm{v}_{G}$ ,
$Rarrow\infty$

where $\Gamma_{\infty}^{N_{C_{7}}}$ is th $\mathrm{e}$ energy of th $\mathrm{e}sol\mathrm{u}$tion $V_{\mathit{1}\mathrm{v}_{G}}$ for problenl $(\cdot \mathit{3})$ .
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