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0. Introduction

Consider the following equation:

Au+uP =0 m Qg
u=10 on ONg

u>0 in Qpg,

where Qp = {z e RV|R—-1< |z| < R+1}and 1 < p < (N+2)/(N-2)

for N > 3,1 < p< oofor N = 2.

The problem (1) is invariant under the orthogonal coordinate trans-

formation, that is, O(N)-symmetric. When R < 1 in problem (1), that

is, the domain is a ball, we know that the solutions is O(N)-symmetric

?

in other words, radially symmetric. This is an elegant result of Gidas,
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Ni a’nd‘Nirenberg [GNN]. This symmetry result brings about a unique-
ness of the solutions [NN]. On the other hand, although annulus have
the same symmetric property with balls, Brezis and Nirenberg pointed
out in [BN] that there exists a nonradial symmetric solution of problem
(1) when R > 1, n > 3 and (N 4+2)/(N —2) —pis positive and suffi-
ciently small. In fact, they showed that the minimal energy solutions for
problem (1) is not radial symmetric in that case. Furthermore, Coffman
[Co] proved that, in two-dimensional case, the number of nonradial and
nonequivalent solutions of problem (1) goes to o0 as R — oo. The same
result was obtained by Y.Y. Li for N > 4 [Li] and by the author for
N = 3 [By]. In [BN], [Co], [Li], [Lin] and [MS], the nonradial solutions
of (1) which have globally minimal energies in some symmetric functions
classes have been studied. On the other hand, in [By] .the author proved
the existence of locally -rather than globally- minimal energy solutions
éf (1) in certain symmetric functions classes when the space dimension is
three; from which it was shown that the number of nonequivalent nonra-
'~ dial positive solutions of (1) goes to infinity as R — oo. Moreover, when
the space dimension is three, it was shown in [By] that via finding only
giobally minimal energy solutions in the symmetric functions classes, it
is impossible to prove that the number of nonequivalent and nonradial

positive solutions of (1) goes to co as R — oo,



It is interesting to note that the O(IV)-symmetry has two contrasting
effects on the structure of the positive solutions; in the case that domain
is a ball the symmetry makes the structure of solutions to be simple, on
the other hand, in the case that domain is an annuli the symmetry makes
the structure of solutions to be complicated. Thus, it is natural to wonder
why this contrasting effect of the O(IN)— symmetry on the structure of
the positive solutions occurs. It is the purpose of this paper to think
about this question. Heuristically, we can explain this phenomena, in a

variational sense, as follows.

For any closed subgroup G of O(N), we define
Hi={ue H&’Q(QR)‘U(:B) = u(gz) for any z € Qg,g € G}.

Then, from the principle of symmetric criticality [Pal], we see that any

critical point of the energy functional

%/QR |Vul*dz — I—)—_lp—l/QR(max{u(:c),O})pde

in H§ is a solution of problem (1). Considering the group action G x
Qr — Qg as coordinate transformations, lwe can imagine that, when the
derivative of the energy functional at u € H§ is very close to zero, the

energy density



1 2 1 . . p+1
§|Vu| - m(max{u(as),ﬂ}) +

is concentrated around the union of some G—orbits. Thus we can expect
thaﬁ, when the energy density of certain functions in Hg (where the
derivative of energy functional is very close to zero) depend highly on
a structure of G—orbits, a critical(in a sense of magnitude of orbits)
G—orbit reprodlice a critical point of the energy functional. When R < 1,
that is, Qg is a ball, the action G x Qg — (g has only one crtical orbit
{0}. Hence, the energy functional is not much affected, in a variational
sense, by the symmetry of problem (1). On the other hand, when R > 1,
that is, Qg is an annulus, as we can see in section 2, the action G X lp —
() has many critical orbits for certain closed subgroup G of O(N). When
R is very close to 1, the effect of the critical orbital actions to the energy
functional is very small; eventually, their effect is ignored. In fact, there
exists a unique solution of problem (1) when R is very close to 1 (refer
[Dan]). By way of opposition, as R — oo, the energy of certain functions
depends more highly on a structure of G—orbits. Then, as R — o0, a
rich variety of positive solutions due to a structure of G—orbits appear.

In this paper we will see that the rich structure of the space of orbits
under the action of closed subgroups of O(IN) on S¥~! brings ‘about arich

variety of positive solutions of (1) as R — co. We should note that almost



all solutions found in this paper never have been found in the literature.
In fact, we will show that the problem (1) has various solutions with
different shapes, which are related to locally minimal orbital sets under
the action of the closed subgroups of O(N) on sphere S™~!. Roughly
speaking, for any closed subgroup G of O(NN), we find solutions of problem
(1) which are concentrated around each locally minimal G — orbit on a
sphere {z||z| = R}.

This paper is orginized as follows. In section 1, we state basic assump-
tions and preparé some necessary results. In section 2, we study the
structure of orbits under the action of the closed subgroups of O(N) on

sphere. The statement of our main theorem will be given in section 3.
1. Preliminary
We consider the following problem:
Au+ hu+ f(u) =0 m Qp

u=20 on O0Np (2)

u> 0 i Qg,

where Qg = {2 € RV|R—1 < |z] < R+1}. We assume that the function

f and the constant h satisfy the following conditions:

(A1) h < w?/4;
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(A2) f is continuousely differentiable on R;
(A3) f(t) =0 for t < 0 and there exist a constant 6 € (0,1) such that

0 < f(t) < 0f'(t)t for all t > 0.

Since the first eigenfunction of —A on Qg with Dirichlet condition zero 1s
radially symmetric, we easily deduce that the corresponding first eigen-
value goes to m2/4 as R — 00. In condition (A1), the restriction h < w2 /4
is related to this fact.

Let G be a closed subgfoup of O(N). Then, for any z € SN=1 the
orbit zG is a closed submanifold of S¥~!. Denote d(zG) the dimension

of the manifold zG. Define

Ng=N- mn {d(xG)}

$GSN_1
For any closed subgroup G of O(N), we define (G) the G-growth con-
dition of f as follows:

(Gy) |f@)] + |f(t)t] < CJtfP for some positive constant C, where p €
(1,(Ng + 2)/(Ng — 2)) in case Ng > 3 and p € (1,00) in case
Ng =1 or 2. 7

For any sub}group G of O(N }), we denote

HS = {ue Hy* () | uw(g)) =u(-), g € G}.
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For any u € HL = Hé’Z(QR), we define its energy

T'(u) = —/QR |Vu|> — hu?dx —/ F(u)dz,

Qr

where F(u) = [;' f(t)dt is a primitive of f.

The Sobolev imbedding theorem says that the space HL = Hy?(QR) is
continuously imbedded into L for ¢ € [1,2N/(N —2)], and the imbedding
is compact for ¢ € [1,2N/(N —2)). We note that, when R > 1, the space
Hg(N) is compactly imbedded into L? for any ¢ > 1. Thus, we expect
that for a closed subgroup G of O(N), the functions space H g may be
imbedded into L9 for some ¢ > 2N /(N —2). In fact, there are some results‘
about this expectation when the symmetry group Gis O()@O(N—=1),1 >

2. (Refer to [Din] and [Li].) Here we give a general imbedding result about
H§ for any closed subgroup G of O(N).

Proposition 1.1. Let G be a closed subgroup of O(N). Then, if R > 1,
the subspace HS of Hy,?(Qr) is continuousely imbedded into L(0g)
for q € [1,2Ng/(Ng — 2)]. Moreover, the imbedding is compact for g €
[1,2Ng/(Ng — 2)).

Let G be a closed subgroup of O(NN). We consider the following elliptic
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problem on an infinite strip-like domain:

Au+ he+ f(u) =0 in (=1,1) x RV¥e~!
u=0 on {-1,1} x RNe~! (3)

w>0 in (=1,1) x RVe~L

Then we have the following result.

Proposition 1.2. Suppose that the function f satisfies the conditions
(A1 — 3) and Gy. Then, there exists a minimal energy solution Vi, of
problem (3). Moreover, the solution has the following properties:
(i) Vng(z1,-) is radially symmetric up to an translation
2

(i) Vng(z1, 29, ,2ng) < Cexp(—c(zs + -+ + x%[G)l/Q) for some

constants ¢, C' > 0.

2. Structure of orbits space

In this section we study a structure of orbits space. Let G be a closed
subgroup of O(N). Then the group G acts on S N-1 a5 linear transforma-
tions. We denote the action by ¢ - for ¢ € G and z € SV ~1. Denote the
G-orbit of z by 2G = {g-z|g € G} for z € SV¥~!. We know that zG is a
closed submanifold of S ~1. Define d(zG) the dimension of the manifold

rG and m(2G) the d(zG)—dimensional Housdorff measure. We, then,
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give a partial order < on the space {zG|z € SV~1} as follows:
G < yG

if and ony if

d(zG) < d(yG),

or

d(zG) = d(yG) = 0 and m(zG) < m(yG).
The relation < is a criterion of dimensional magnitude of orbits.

Definition 2.1. A set M C SV~ is called a locally minimal orbital
set under the action of G if M is invariant under the action of G' and a
minimal set satisfying the following conditions:
(i) for any z,y € M, d(zG) = d(yG), and m(zG) = m(yG) in the
case that d(zG) = d(yG) = 0.
(ii) there exists a positive constant &y > 0 such that for any y c€{z €

SN=1 dist(x, M) < &} \ M and z € M, it holds that zG < yG.

In particular, a G-invariant set M C S¥~! is called the globally minimal
orbital set under the action of G C O(N) if above properties (i) and (ii)
hold with 69 > 2. |

We call a set M a minimal orbital set when M is the globally minimal

orbital set or a locally minimal orbital set.
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We note that the existence of the globally minimal orbital set under
the action of closed subgroup of O(N) is obvious. Moreover, the globally
minimal orbital set is unique for each closed subgroup G of O(N). We

investigate the structure of minimal orbital sets.
Lemma 2.2. For any z € SV ~1, there exists a constant § > 0 such that

d(zG) < d(yG) for any y € B(x,6)n SN ~L.

Proposition 2.3. If M C SV~ is a minimal orbital set under the action

of G, then M is closed and any component of M is a totally geodesic

closed submanifold of SV-1.

Corollary 2.4. Suppose that M’ is a component of a minimal orbital
set M under the action of G, and that its dimension m is larger than 1.

Then, there exist &1, ,EN—~1—m Such that

M ={zeS" | <z&>=0i=1--,N-1-m}.
Corollary 2.5. If M is a minimal orbital set under the action of G, then
the number of components of M 1is finite.

Corollary 2.6. The globally minimal orbital set M under the action of

G C O(N) is a finite disjoint union of locally minimal orbital sets.

It seems that there exists a systematic method to find locally minimal

obital sets under the action of G C O(N) from the globally minimal
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orbital set under the action of G C O(NN) when the globally minimal
orbital set has a finite number of elements. Here we will see a conjecture,
which is true in the three dimensional case and for some closed subgroup
G of O(N).

Assume that M is the globally minimal orbital set with finite ele-

ments {zy, -+, Ty} and m > 2. Then, it is obvious that there exist

{z1, -+, 2k} C M such that
zGNz;G=10, 1 F# 7
and
M =UY_ 2G.
Then each z;G,i = 1,---,k, is a locally minimal orbital set. For each
i€{l,---,k}, wedenote < z;G > the smallest subspacé of RY containing
z;G. Then, it follows easily that the space < z;G > is invariant under the
action of GG, and that for any i‘,j e{1,---,k},
<zG@>N<zG>={0} or <zG>=<z;G>.

For each i € {1,--- ,k}, let {x%, --- , 2!} be the elements of z;G. ;From
the definition of the globally minimal orbital set, we see that the number
of elements of z;G is independant of 7. For each 7 € {1, - ,k}, define the

polytope generated from z;G by

C(ZiG)E{t1$§+"'+tl$§|t1+“'+tlS1and t; >0,7=1,--- 1},
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and

B(ZLG) = C(ZlG) \illt(C(Z,iG)),

where int(C(z;G)) is the set of interior points of C(z;G) in < z,G > .
We easily see that B(z;G) is invariant under the action of G. For any

nonnegative integer n, we denote
(2:G)(n) = { the n — dimesional facets of B(z,G)}.

Then the group G acts on (z;G)(n). Denote the dimension of B(z;G) by
di. Fori € {1,--- ,k} and n € {0,1,--- ,d;}, define |

(2:G)n = {—x—

]

z is the center of A € (ziG)(n)} c SN-L,

We see that the group G acts on (z;G),. Then we conjecture the follow-

ings.

Conjecture. The {(z;G),|t € {1,--- ,k},n € {0,---,d;} is the set of

locally minimal orbital sets under the action of G.

3. Statement of result

Let M be a locally minimal orbital set under the action of a closed

subgroup G on S¥~1. Then we have the following theorem.
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Theorem 3.1. Suppose that the function f satisfies conditions (A1-3)
and Gy. Then, there exists a solution up € H§ of problem (. 2) such that
(i) for some xp € {Rz|r € M}, ugr(x) — 0 as.dist(a;‘,xRG’) — 00;

' and

(ii) for any x € M,
B}im T(ug)/RY*S) = m(2G)TNe,

where T'X¢ is the energy of the solution V, N for problem (3).

In [BN], [Co], [Li] and [Lin], the globally minimal energy solutions of
(1) in i & have been investigated when the closed suBgroup G of of O(N)
is one of forms, G}, @ O(N — 2),k = 2,3, .-+ and o) @ O(N —1),l =
2,--+, N — 1 (here, the G, is a subgroup of O(2) generated by rotation
through an angle of ZT’T) In [MS], when the space dimension is three, using
the complete classification of closed subgroups of O(3), they investigated
the globally minimal energy solutions in H§ for all closed subgroups of
O(3). Here we give a result about globally minimal energy solutions in
Hg for all closed subgroup G of O(N), which can be obtained simply
from Theorem 3.1. We should note that, although we may not know the
closed subgroups of O(IN) completely, we can characterize the property
of glabally minimal energy solutions of (2) in HS in terms of intrinsic

property of group action G' x SN-1 — §N-1,
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Proposition 3.2. Assume that G is a closed subgroup of O(N). Let ug
be a (globally) minimal energy solution of (2) in H and M the globally
minimal orbital set under the action of G. Then there exist {xp} C

{Rz|z € M} such that
(i) ugr(z) — 0 as dist(z,2rG) — oo, and

(1) for any x € M,

lim T(ug)/R**D = m(zG)TYe,

R—oco

where I'N¢ is the energy of the solution Vy,, for problem (3).
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