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Korovkin-type theorems in C*-algebras.
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1. Introduction
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The Korovkin theorem [6] says that an arbitrary sequence {®,} of positive -

linear maps on Cy([a,d]), the Banach algebra of continuous real valued func-
tions on [a, b], strongly converges to the identity map if ®,u — u(n — co) for
u(t) = 1,t,t2. Moreover Korovkin showed that this result holds for any Tsheby-
shev system {fo, f1, f2} of order 2 instead of {1,t,t%}. Here {fo, f1, f2} is called
Tshebyshev system of order 2 if ao fo(z) + a1 f1(z) + a2 f2(x) = 0 has at most
2 zeros in this interval. A subset K of Cy([a,b]) is called a Korovkin set, pro-
vided an arbitrary sequence {®,} of positive linear maps on C,([a, b]) strongly
converges to the identity map if ®,u — u(n — o) for every u € K: A lot of
Korovkin sets are known. (H. Watanabe, T. Nishishiraho)

DEFINITION Let 1 € M C C(X) and set S(M) = {l e M* :1(1) = 1=
l21}. It is clear # € S(M) for every z € X. The Choquet boundary B is
{z:% isaexrtremepointofS(M)}. '

Waulbert has shown that if 1 € M C C(X) and if Byy = X, then M is a
Korovkin set.

DEFINITION For a normed space E and for its subspace M, the generalized
Chogquet boundary is

Bu = {l € extS(E*) : l|i € extS(M")}.

Recently Operators of the property like I are investigated by S.Takahashi,
Izuchi, Takagi, S.Watanabe.

The Korovkin theorem was extended to non-commutative C*-algebras. (H.
Choda- M.Echigo, S.Takahashi, J. Fujii)

Let A be a C*-algebra with an identity 1. A positive linear map ¢ on A
is called a Schwarz map if it satisfies ®(a)*®(a) < ®(a*a) for everya € A It
is well-known that if A is commutative then every contractive positive linear
map is a Schwarz map. Robertson [11] has proved that, for a sequence {®,}
of Schwarz maps, the set {a € A : ®,(z) = z(n — o0) for z = a,a%a,aa"}
is a C*-subalgebra. As a corollary he also stated that for a sequence {®,}
of contractive positive linear maps on the commutative C*-algebra C(X) of
continuous complex valued functions on a compact Hausdorff space X, the set
{u € C(X) : ®p(u) = u, ®n(|ul?) — |uf?} is a C*-subalgebra. By identifying
C,(X) with the subalgebra of C(X), the Stone-Weierstrass theorem shows that
this contains the Korovkin theorem.

Let us recall that if B is a C*-subalgebra of C(X) and if for any point z € X
there is a f € B such that f(x) # 0 and if B separates X, then B = C(X).

Limaye and Namboodiri[7] have shown that for a sequence {®,} of Schwarz
maps and a *-homomorphism ®, the set {a € A : ®n(a) — ®(a), Pn(a*a) —



®(a*a)} is a closed (not necessarily *-closed) subalgebra and that {a € A :
®,(z) —» ®(z) for = = a,a*a,aa"}, the intersection of this subalgebra and
its adjoint, is a C*-subalgebra. By the Kadison theorem a contractive positive
linear map & satisfies {®(a)*, (a)} < ({a*, a}) for all ¢ € A, where {, } is the
Jordan product, i.e., {z,y} = zy + yz.

Limaye and Namboodiri [8] have shown that, for a sequence {®,} of positive lin-
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ear maps and a *-homomorphism ®, theset {a € A: ®,(a) — ®(a), P,({a*,a}) —

®({a*, a})} is a *-closed, norm closed subspace which is also closed with respect
to the Jordan product.

A continuous real valued function f(t) on [0, 0o)is called an operator mono-
tone function if f(a) > f(b) whenever a > b > 0, a,b € A. This function
is characterized as follows: f is an operator function on [0, c0) if and only if f
has an analytic extension f(2) to the upper half plane such that Im f(z) > 0
for I'm z > 0. Therefore if f is an operator function, then so are f(1/2)? and
f(1/t)71. t?(0 < p < 1) and log(t + 1) are operator monotone functions. It is
well-known that an operator monotone function is increasing and concave.

The aim of this paper is to give estimates of the norms related to schwarz
maps and to extend Korovkin-type theorems by using operator monotone func-
tions. These estimates seem to be very useful for studying Korovkin-type the-
orems in a non-commutative C*-algebra; for instace we will give a quite simple
proofs for many results given above.

2. generalized Schwarz maps.

Let A be a C*-algebra with a unit 1. A linear map & is called a Schwarz map
if ®(a)*®(a) < ®(a*a) for every a € A, and a positive linear map ¥ with ¥(1) <
1 was called a Jordan-Schwarz map in [3], since it satisfies {¥(a)*, ¥(a)} <
U({a",a}) as we mentioned in the previous section. To investigate two cases
given above all at once and to extend them, we consider the following binary
operation o in A :

(ax+Py)oz=aroz+Pyoz(a,f€C,z,y,2€ A);
(xoy)oz=2x0(yo2);

(xoy)t :ytox* ;

z*ox 2 0;

there is a real number M such that ||z o y|| < M||z|| ||y]|-

One may regard this binary operation as the ordinary product or the Jordan
produt.

Beckhoff [3] called a *-closed and norm-closed subspace of A which is also
closed with respect to the Jordan product a J*-subalgebra of A.

We call a linear subspace B C A a o-subalgebra if x o y € B, whenever



z,y € B, and o*-subalgebra if B is a o-subalgebra.b and *-closed.

If a o*-subalgebra is complete, that is norm-closed, then it is called a com-
plete o*-subalgebra .

Definition. A linear map ® : A — A is called a generalized Schwarz map
w.r.t. o if ® satisfies

&(z*) = ®(x)* and ®(z*) o (z) < P(z* o x) for every z € A.

We remark that a generalized Schwarz map ® is not necessarily positive
(that @ is positive means ®(a) > 0 whenever a > 0).
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Definition. A generalized Schwarz map ® w.r.t. o is called a x-homomorphism

w.r.t. o if &(z)* o &(z) = ®(z* o z) for every z € A.

Let us note that if ® is a x-homomorphism w.r.t o, then by a polarization

3
4x* oy = Z’i"(i"z +y)* o (" +y),

n=0

we deduce ®(z) o (y) = ®(z o y) for every z,y € A. It is clear that if o is the
original product in .4, then a *-homomorphism w.r.t. o is a *-homomorphism in
the ordinal sense, and that if o is the Jordan product, then a *-homomorphism
w.r.t. o is a C*-homomorphism in the ordinal sense. A bounded linear func-
tional ¢ of A is called a state if ¢ is positive and ¢(1) = 1.

Theorem 2.1. Let ® be a generalized Schwarz map w.r.t. o on A. For
z,y € A set

X :=®(z* ox) — B(x)* 0 O(z) >0,
Y := ®(y* oy) — P(y)* o P(y) > 0,
Z := ®(z* oy) — ®(x)* o ®(y).
Then we have

[6(2)] < $(X)24(Y)3 )
for every state ¢ € A'. Further we have

1
SIZIE < XAy E 2)

Proof. For every complex number a, we have _
0< ®((z+ay)* o (z+ay)) - (z +ay) o (z +ay) = X +aZ +3Z + |of*Y,
from which it follows that
0 < ¢(X) + 2Re ad(Z) + |a|2¢(Y) for every state ¢ € A. Thus we can easily
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get (1). Since sup{¢(Z) : ¢ is a state of A} is the numerical radius w(Z), from
(1) we obtain w(Z) < w(X)}w(Y)3.

It is well-known that 3||a|| < w(a) < ||a]| for every a € A.

Thus we obtain (2). O

From the inequality (2) we can easily prove results mentioned in the first
section.

Proposition 2.2. Let {®,} be a sequence of generalized Schwarz maps w.r.t.
o on A with ||®,|| < 1, and ® a *-homomorphism w.r.t. o on A with ||®|| < 1.
Then the set D := {z € A: ||®n(z) — B(z)|| = 0, ||Pn(z* 0 z) — B(z* 0 z)|| —
0 as n — oo} is a complete o-subalgebra.

Proof. Suppose z € D. From the definition of o, it follows that
0 < [|®n(z)* 0 Bp(z) — O(x)* 0 ()|
< M||®n ()" — 2(2)*]| [|2(2)]| + M||Dn(z)*]] || Bn(z) — B(2)]| — O.
This and

¢, (z* o) = P(z* 0 z) = B(x)* o B(x)

imply

[|®n(z* 0 ) — Bp(z)* 0 Dp(z)|| = 0 (n — 00).
Thus for every y € A, in virtue of (2) we get

||®n(z" 0y) = Pn(2)* 0 Pa(w)]| = 0 (n — 00),

which implies that
®n(z* 0y) — (2)* 0 (y) if = € D and By,(y) — 9(y).

From this one can see that zoy € D if z,y € D. Since {®,} is uniformly
bounded, D is complete. O

Corollary 2.3. Under the above condition the set D N D* is a complete
o*-subalgebra.

Remark. Since every bounded linear functional on A is a linear combina-
tion of at most four states of A, a sequence {a,} of A weakly converges to a if
and only if ¢(a,) — ¢(a) for every state ¢. By using (1) we can see that
D, :={z € A: I,(x) - ®(x) (w), Pn(z* 0 z) = B(z* 0 7) (w)}



is a complete o-subalgebra, and hence that D, N Dj is a complete o*-subalgebra.

Proposition 2.2, Corollary 2.3 and Remark were proved in {7] [8] [11] when
o is the original product or the Jordan product in .4, but the above proof seems
to be simple. ' ’ »

We denote the o*-subalgebra of A generated by a subset S of A by J*(S, o)
or simply by J*(S). We define the Korovkin closure Kor4(S) of asubset S C A
as follows : Kor4(S) is the set of all z € A such that for every sequence {®,} of
positive generalized Schwarz maps w.r.t. o with ||®,]| <1, &,z — = whenever
®,,a — a for every a € S. Here the convergence means convergence in the norm
topology. From this definition the next follows :

Lemma 2.4. Kor(S) C Kora(T) if § C T. Kora(S) C Kora(T) if
S C Koru(T).

Corollary 2.5. For a subset S C A, we have
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J*(S) C Kor(S1),where S, :=SU{z*oz:z€ S}U{zrox*:xz€S}. (3)

Proof. Fix a sequence {®,} of positive generalized Schwarz maps w.r.t. o
with ||®,]] £ 1 such that ®,(t) — ¢ for every t € S;. We have only to show
®,.(t) — t for every t € J*(S). By Corollary 2.3, the set {x € A: ®p(z) —
z,P,(z*0x) > z*ox, P, (xox*) > zox*} is a o*-subalgebra. Since it contains
S, it contains J*(S) too. Thus we have ®,(t) — t for every t € J*(S). |

Theorem 2.6. Let f be an operator monotone function on [0,00) with
f(0) = 0 and lim;_,, f(x) = co. Set g = f~1. Then for a subset S of A we
have

J*(S) C Kora(S:2), where S; :=SU{g(z* oz):x € S}U{g(xozx*):x € S}.
, (4)

Proof. Let {®,} be a sequence of positive generalized Schwarz maps w.r.t.
o with ||®,|| < 1 such that ®,(¢) — ¢ for every t € S;. It was shown in [4] [5]
that

®,(f(a)) < f(Pn(a)) for every a >0, &)
which implies _
0 < Pn(z* 02) — Pp(x)* 0 Bp(z) < f(Pnlg(a”® 0 7)) — Pn(z)” 0 o, ()

for every z. From ®,(g(z* o)) — g(z* o z), it follows that f(®,(g(z* ox))) —
z* o z. Thus the right side of the above inequality converges to 0, from which
it follows that '



lim ®,(z* o ) = lim ®,,(z)* o ®,,(z) = z* o z*.

Similarly we can get lim®,,(z0z*) = x o z*.

Thus we have shown that ®,(t) — ¢t for every t in S; which was given in
Corollary 2.5, that is, we have shown S; C Kor,(S;). By (3) and Lemma 2.4
we have J*(S) C Kor4(S1) C Kor4(S2). Consequently we get (4). O

Theorem 2.7. Let g be a function given in Theorem 2.6. For a finite set
S = {s15..., 55}, we have

T*(S) C Kora(Ss), where S3=SU{g(} (s} osi+si0s}))}.  (6)

i=1

Proof. Let us take an arbitrary sequence ®,, of positive generalized Schwarz
maps w.r.t o with ||®y,|| < 1 such that {®,(t)} — ¢ for every t € Ss.
For each i

0 < Pn(s]osi) = Bals:)” 0 Bn(si) < D _{®n(s] 0 55) — Bn(s;)" 0 Pnlsy)}
j=1

< @a(D_(sjo85+55087) = D {Pals;)" © Bu(sy) + Ba(s;) © Ba(s7)"}
i i

< f(@n(9() (sj 055 +55083))) — D {®n(55)* 0 Bnls;) + Bnlss) 0 Bnlss)*}-
3 7 |

Since the right side converges to 0, ®,(s} o s;) converges to s; 0 5;. Simi-
larly we can see that ®,(s; o s}) converges to s; 0 s]. Thus we have shown that
51:=SU{s*os:s5€S}U{sos*:s€S}C Koru(Ss).

By (3) and Lemma 2.4, we get (6). O

Theorem 2.8. Under the same assumption as Theorem 2.6, we have

j*(S)gKorA(SU{g(:v*om+zox*)::::ES}). )

Proof. By substituting « for s; in the inequalities of the proof of Theorem
2.7, we get

0 < Py(x*ox) — Dp(x)" 0 B, (2)
S f(®n(g(z* oz +02"))) — {Pr(z)* 0 p(x) + Pp(x) 0 o, (2)}.
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Thus in the same fashion as Theorem 2.6 we can get (7). O

In the above three theorems we needed conditions f(0) = 0, f(co0) = oo in

order that f~! = g is defined on [0, 00)and that (5) is valid for every positive
map. However, when we consider the case of 1 € S, we can loose the condition

f(0)=0.

Theorem 2.9. Supposel € S C A. Let f be an operator monotone function
defined on [0, 00) such that f(0) <0, f(c0) = 0o. Set g = f~1. Then we have
J*(S) C Kor(S:), where S; = SU {g(z* oz)|z € S} U {g(z 0 z*)|z € S}.

Proof. Let us take an arbitrary sequence {®,,} of positive generalized Schwarz
maps w.r.t o with ||®,|| < 1 such that ®,(t) — t for every t € S;. By (5) we
get

@, (f(a) — £(0)1) < f(¢n(a)) - £(0)1 for every a 20,

and hence

Pn(a) = Pn(f(9(a))) < f(Pnlg(a))) — F(O)(1 — Dp(1)).
From this, for every z € S we deduce

0 < P,(z*0z)— Dy(2)* 0 Pp(x)

< f(®nlg(z 02))) — F(O)(1 — Bn(1)) — Bn(x)” 0 Pp ().

Since the bigger side in the above converges to 0, we obtain that &,(z*oz) —
z* o z. Similarly we can get ®,(z 0 z*) — zoz*. By (3) we get J*(S) C
Kor A(Sz). O

In the same fashion as the above proof, we can easily extend Theorem 2.7
and Corollary 2.8 to the case of 1 € S as follows :

Theorem 2.10. Let S = {s1,...,8,} be a subset of A and include 1.
Let f be an operator monotone function defined on [0,00) such that f(0) <
0. f(c0o) = o00. Set g = f~!. Then we have J*(S) C Kora(Ss), where
S3=SU{g(3i=,(s; 055 +si057))}.

Corollary 2.11. Under the same assumption as Theorem 2.9, we have
T*(S) C Kora(SU{g(a* 0z +z03*) : 2 € S}).
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Remark. In the above theorems we studied not the universal Korovkin
closures (the definiton is given below) but the Korovkin closures, that is, the
case where &, — 1 instead of &, — ®. To get the same conclusions for &
as theorems, we would have to assume that ¢ is *-homomorphism w.r.t. o
and *-homomorphism in the ordinary sense because of ®(g(a)) = g(®(a)); we
thought it is a bit complicated assumption. If a binary operation o is the or-
dinary product or the Jordan product, then *-homomorphism in the ordinary
sense is a *-homomorphism w.r.t. o too. Now we consider this case. Let us
define the universal Korovkin closure Kor%(S) of a subset S C A as follows :
Kor%(S) is the set of all x € A such that for every *-homomorphism ¢ and
for every sequence {®,} of positive generalized Schwarz maps w.r.t. o with
||®n|| £ 1, ®pz — Bz whenever ®,(a) — P(a) for every a € S. When o is the
ordinary product or the Jordan product, it is not difficult to see that we can
substitute Kor%(S) for Kor4 in the above theorems.

At the end of this section we consider the case where o is the ordinary prod-
uct, and we extend the Robertson’s theorem in a visible form :

Theorem 2.12. Let {®,} be a sequence of Schwarz maps and ® a *-
homomorphism, and let f be an operator monotone function on [0,00) with
f(0) =0, f(co) =00. Set g = f~1. Then the set C:={a € A: ®,(z) — P(x)
for x = a, g(a*a), g(aa*)} is a C*-subalgebru.

Proof. That ®,(a) converges to ®(a) implies ®,(a)*®,(a) — ®(a)*P(a),
and that ®,(g(a*a)) converges to ®(g(a*a)) implies

f(®a(g(a*a))) — f(2(g9(a”a))) = ®(a*a) = P(a)* (a).
Thus we have f(®,(9(a*a))) — ®,(a)*P,(a) — 0. From (5) it follows that
0 < @,(a*a) — Pp(a)* Pp(a) < f(Pn(g(a*a))) — Pn(a)* Pnla).

Hence we get ®,,(a*a) — ®(a*a). Similary we can get ®,(aa*) — ®(aa”).

Thus C € D N D*, where D is given in Proposition 2.2. Conversely, since
D N D* is a C*-subalgebra (Corollary 2.3), DN D* C C. Consequently C is a
C*-subalgebra. 0

3. Korovkin sets in C(X).
Let X be a compact Hausdorff space and C(X) a C*-algebra of all complex
valued continuous functions . Though we treat only complex algebras, the re-
sults which will be gotten for complex algebras in this section hold for real
algebras too. Since a positive linear map ® on C(X) satisfies |®(fg)]? <
®(|f12)®(|g[?), @ is a Schwarz map with respect to the ordinary product if
®(1) < 1. A subset S of C(X) is called a Korovkin set if Kc(x)(S) = C(X).
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Here K¢(x) is the set of every z € C(X) which satisfies that ®,(z) — z for
every sequence of Schwarz maps (i.e, 0 < ®,,®,(1) < 1) such that &,(s) — s
for all s € S. C*(S) stands for the C*-aubalgebra generated by S.

Theorem 3.1. Let f be an operator monotone function defined on [0, 00)
such that f(0) <0, f(oo) = oo, and set g = f~1. Then for a subset S of C(X)

C*(S) € Kexy(SU {g(|uf?) :u € S}) if f(0)=0,0r1€S.
Proof. This follows from Theorems 2.6, 2.9. O

Theorem 3.2. Let f be an operator monotone function defined on [0, c0)
with f(0) <0, f(c0) =00, and set g = f~1. If a finite subset S = {uy,...,um} C
C(X) separates strongly the points of X, then SU {g(Ju1]* + ... + |um|?)} is a
Korovkin set if f(0) =0, or1€ S. '

Proof. By Theorems 2.7, 2.10, we have C*(S) C Kcx)(S U {g(Jual®* +
oo + lum[®)}) if f(0) = 0or 1 € S. From the Stone-Weierstrass theorem
C*(S) = C(X) follows. m]

In [9], the above theorem was shown in the case where g(t) = t. The forms
of Korovkin sets given above include many Korovkin sets in Appendix C of [1].

4. Minimal norm ideals.
In this section we treat the minimal norm ideals of C*-algebra B(H) of all
bounded operators on a Hilbert space H. Korovkin-type theory in the minimal
norm ideals was studied in [10], [3]. Let Z be a minimal norm ideal with a.
symmetric norm || |, and A a C*-algebra generated by every compact operator
and 1. We use the notation introduced in the second section. But we assume
that a binary operation o defined on A satisfies

Nz oyl < Mz| vl
instead of ||z o y|| < M||z|| ||y]|-

Theorem 4.1. Let ® be a generalized Schwarz map w.r.t. o on A. For
z,y € A set X := ®(z*ox)—P(z)*o®(z) >0, Y := O(y*oy)—P(y)*o®(y) =0,
Z :=®(z* oy) — P(z)* 0 B(y).

Then we have

1 .
5121 < IX1EY )t ®)
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Proof. (1) implies |(Zu, )| < (Xu,u)¥(Yu, u)? for every u € H. By using
the polarization :
4(Zu, v) = (Z(ut+v), u+v)—(Z(u—v), u~v)+i(Z (u+iv), u+iv)—i(Z (u—iv), u—iv),

we get,

4|(ZU,'D)| S (X(u+ 'v),u-{—v)%(Y(u—F ’U),U +'U)% + (X(u - 'UV)’ U-—- v)%(Y(u - ’U),U - 'U)%
H(X (w4 ), u+ )3 (Y (u+ ), u+ i)} + (X(u—iv),u—iv)} (Y(u—iv),u—iv)}

and hence in virtue of Schwarz inequality,
1(Zu,v)| < {(Xu,uw) + (Xv,0)}{(Yu,u) + (Yv,0)}?

for every u,v € H. Thus, for arbitrary orthonormal sets {u;}, {v;}

](Z'U,i, ’U,')I S {(X’U,,,, Ui) + (Xv,;,vi)}’}{(Yu,-, U,,) + (Y’Ui, ’D.,,)%
< gt{(Xwi, w) + (Xvi, 0)} + $H{(Yws, wi) + (Yoi,v5)}

for every t > 0, because of 2¢/Ap = min{tA + %u : t > 0}. Now we consider
this inequality to be an estimate of general terms of sequences. By taking the
symmetric norm of these sequences, we get
Ill(ifui,vi)ﬁ < gt (Xws, w) + (Xvi, o) + 31 (Yws,w) + (Yoi, 00) | < X +

t
Since

sup{[|(Zw;, vi)ll : {ws}, {wi}} = 120 ([12)),
we have ||Z]] < (t|X] + $]Y]l) for every ¢t > 0, and hence || Z]| < 21X I3V 2.
a

Theorem 4.2. Let T be a minimal ideal of B(H) with the symmetric norm
I . Let {®,} be a sequence of generalized Schwarz maps w.r.t o on T with
|2~ < 1, and ® a x-homomorphism w.r.t o on T with |®,|| < 1. Then the set
D ={z€T: [2u(z) - ()| - 0, §&n(z" 0z) - B(z* 0 2)] — 0}
isall |-closed o-subalgebra of T.

Proof. This theorem follows from (8) in the same way that Prposition 2.2
followed from (2). O

Corollary 4.3. Under the same condition as above, DND* is a || |-closed
*-subalgebra of Z.

Theorem 4.2 was proved in [10] in the case where 7 is the trace class, and
other cases were described in [3]. But our proof is clearly simpler than the proof
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of [10].7

We want to extend the above. But it is not easy, because ||a, — af| — 0 does
not necessarily imply ||a,,+; —al|| - 0.

Therefore we could not get a theorem as Theorem 2.6. To get a slight ex-
tension we denote |||A|”||% by ||Allp for 0 < p < co.

Theorem 4.4. Let T be a minimal norm ideal of B(H) with the symmetric
norm || ||. Let {®,} be a sequence of generulized Schwarz maps w.r.t. o on T
with [|®,]| < 1. Let S be a subset of T and I3 a complete o*-subalgebra gener-
ated by S. Then for an arbitrary integer m
T C{x € I: |Prx — || — 0 whenever ||P,(s) —s| — 0,
|®n((s*0os+so0s*)™)—(s*os+so s*)™a — 0 forall s € S} 9)

Proof. By the previous theorem we need only to show that if
[®n((s* 05+ 505")") —(s* o5+ 505" )1 — 0 (n— 00),
then
|®rn(s* 0s) —s*os|]| = 0 and |JP,(s0s*) —sos*|| — 0.

By the definition of the norm we have

l1@n((s* 05 +505")™) — (s* 05+ 505" )™= || - 0.
By the Ando theorem [2] : |

la= —y=|| < |z - y|=| for all 2,y >0,

we obtain

{®((s* 0 s +505*)™)} =% —(s* 0os+505*)] — 0.
Thus, from

19,.(s*) 0 @, () + ®,.(s) 0 @ (s)* —(s* 05+ s058*)| =0,
it follows that
H{@n(s" 05+ 505")™}% — {@n(s*) 0 n(5) + n(s) © Dn(s)"H — 0.

Since

0 < {®n(s" 05) — Pu(s™) 0 p(s)} + {Pr(s 05*) — Pp(s) o Pu(s*)}
= ®,(s*0s+s508")—{D,(s") 0 D,(S) + Pp(s) 0 p(s*)}
< {Bn(s* 05 +508 )"} —{Bn(s*) 0 Bn(s) + Pn(s) 0 Pn(s)'},



we deduce [[{®,(s* 0 s) — Pp(s*) 0 Pp(s)|| = 0 and J{Pr(s0 s*) — Pr(s) o
®,.(s)*]] — 0. Here we used the fact that 0 < a < b generally implies Ja|] < ||b]]
: in fact 0 < @ < b implies that there is ¢ € B(H) such that ¢ = c¢*bc and
lefl < 1. | =

The author wishes to express his thanks to Prof. K. Izuchi and Prof. S.
Takahashi who gave him some informations about Korovkin theory.
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