複素領域における非線型偏微分方程式

上智大理工 田原 秀敏 (Hidetoshi TAHARA)

本稿では, 複素領域で

(E)
$$\left(t\frac{\partial}{\partial t}\right)^m u = F\left(t, x, \left\{\left(t\frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^\alpha u\right\}_{\substack{j+|\alpha| \le m \\ j < m}}\right)$$

という形の非線型偏微分方程式を論じる. 講演では, 主として「解の一意性」に焦点を当てたが, ここではその背景にある問題意識 や「解の存在」なども同時に解説したい. 記号: $N=\{0,1,2,\ldots\}, N^*=\{1,2,\ldots\},$ $t\in C$, $x=(x_1,\ldots,x_n)\in C^n$, など.

1. Briot-Bouquet の方程式

複素領域での非線型常微分方程式論で、最も簡単な特異点研究のモデルは「Briot-Bouquet の特異点」であろうと思われる。ここに Briot-Bouquet の方程式に関する基本的な結果の幾つかを復習しておく。

u=u(t) を未知関数とする方程式

(e)
$$t\frac{du}{dt} = f(t, u)$$

が, 次の2つの条件を満たすとき, (e) は Briot-Bouquet の方程式 といわれる.

- (a_1) f(t,z) は原点 (t,z) = (0,0) の近傍で正則である,
- f(0,0) = 0.

このとき,

$$\lambda = \frac{\partial f}{\partial u}(0,0)$$

で定義される λ を (e) の特性指数という. 「Briot-Bouquet の方程式」という名前の由来は次の結果による.

定理 1 (Briot-Bouquet (1856)) もしも $\lambda \notin N^*$ ならば, 方程式 (e) は 原点の近傍での正則解 u(t) で u(0) = 0 を満たすものをただ一つ持つ.

例 1

(1.1)
$$t\frac{du}{dt} = \frac{1}{2}u, \quad u(t) \longrightarrow 0 \ (t \longrightarrow 0 \ \mathcal{E} \ \tilde{\mathcal{E}})$$

を考えると, $\lambda = 1/2 \notin \mathbb{N}^*$ であり

- 1) $u \equiv 0$ がただ一つの正則解.
- 2) (1.1) は更に次の様な解を持っている.

$$u(t) = c\sqrt{t}$$
 $(c \in \mathbf{C}$ は任意定数)

例 2

(1.2)
$$t\frac{du}{dt} = \frac{1}{2}u + u^2, \quad u(t) \longrightarrow 0 \ (t \longrightarrow 0 \ \mathcal{O} \succeq \overset{\ }{\geq})$$

を考えると、ここでも $\lambda = 1/2 \notin \mathbb{N}^*$ であり

- 1) $u \equiv 0$ がただ一つの正則解.
- 2) (1.2) は更に次の様な解を持っている.

$$u(t) = \frac{\sqrt{t}}{c - 2\sqrt{t}}$$
 $(c \in \mathbf{C}$ は任意定数)

この様に、Briot-Bouquet の方程式は、正則解以外にも t=0 に特異点をもつ面白い解をいろいろ持っている. t=0 に特異点をもつ解(以下ではこれを特異解と呼ぶことにする)については次が最も基本的である.

定理 2 もしも $\lambda \notin \{1,2...\} \cup \{a \in \mathbf{R} : a \leq 0\}$ ならば、Briot-Bouquet 方程式 (e) の解 u(t) で 条件

$$u(t) \longrightarrow 0 \ (t \longrightarrow 0) \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}$$

を満たすものは、すべて次で与えられる.

$$u(t) = a_{1,0}t + At^{\lambda} + \sum_{i+j \ge 2} a_{i,j}t^{i}(At^{\lambda})^{j}$$

ここで $A \in C$ は任意定数,

$$a_{1,0}t + w + \sum_{i+j \ge 2} a_{i,j}t^i w^j$$

は 2 変数 (t,w) の収束べき級数, その係数 $a_{i,j}$ は方程式から一意的に決まるものである.

2. Briot-Bouquet 型の偏微分方程式

1990年, Gérard-Tahara[2] は「Briot-Bouquet の常微分方程式」をモデルにして, その偏微分方程式版とでもいうべき次の偏微分方程式を導入した.

(E₁)
$$t\frac{\partial u}{\partial t} = F\left(t, x, u, \frac{\partial u}{\partial x}\right).$$

ここで, $t \in \mathbb{C}$, $x = (x_1, \dots, x_n) \in \mathbb{C}^n$, u = u(t, x) は未知関数,

$$\frac{\partial u}{\partial x} = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right),\,$$

 $v = (v_1, \ldots, v_n) \in \mathbb{C}^n$ とし F(t, x, u, v) は $(t, x, u, v) \in \mathbb{C} \times \mathbb{C}^n \times \mathbb{C} \times \mathbb{C}^n$ を変数とする関数である.

定義 1 F(t,x,u,v) が次の条件 (A_1) , (A_2) , (A_3) を満たすとき, 方程式 (E_1) は Briot-Bouquet 型の偏微分方程式であるという.

- (A_1) F(t,x,u,v) は原点 (0,0,0,0) の近傍で正則;
- (A_2) x = 0 の近傍で $F(0, x, 0, 0) \equiv 0$;

$$(A_3)$$
 $x=0$ の近傍で $\frac{\partial F}{\partial v_i}(0,x,0,0)\equiv 0$ $(i=1,\ldots,n).$

条件 (A_1) , (A_2) は Briot-Bouquet の常微分方程式の 条件 (a_1) , (a_2) に対応している. (A_3) は以下の議論で本質的に使われるものである.

このとき, (E_1) の特性指数は次で与えられる.

$$\lambda(x) = \frac{\partial F}{\partial u}(0, x, 0, 0).$$

明らかに、これは x=0 の近傍での正則関数である.

第1節の 定理1 (正則解に関するもの) に対応する結果は次の通りである.

定理 $\mathbf{1}^*$ ([2]) もしも $\lambda(0) \not\in \mathbf{N}^*$ ならば, 方程式 (\mathbf{E}_1) は 原点の近傍 での正則解 u(t,x) で $u(0,x) \equiv 0$ を満たすものをただ一つ持つ. (以下この正則解を $u_0(t,x)$ とかく)

定理 2 (特異解に関するもの) に対応する結果を述べるため, 少し定義 を準備する

定義 2 \tilde{O} でもって, 次の条件を満たす関数 u(t,x) 全体の集合を表す: 「ある 正値連続関数 $\varepsilon(s) \in C^0(\mathbf{R})$ と r > 0 が存在して, u(t,x) は $\{(t,x) \in \mathcal{R}(\mathbf{C} \setminus \{0\}) \times \mathbf{C}^n ; 0 < |t| < \varepsilon(\arg t), |x| \le r\}$ 上での正則関数である 」. ただし, $\mathcal{R}(\mathbf{C} \setminus \{0\})$ は $\mathbf{C} \setminus \{0\}$ の普遍被覆空間とする.

定義 3 $\tilde{\mathcal{O}}_+$ でもって、次の条件を満たす関数 $u(t,x) \in \tilde{\mathcal{O}}$ 全体の集合を表す: 「ある a>0 が存在して、任意の $\theta>0$ に対して

$$\max_{|x| \le r} |u(t, x)| = O(|t|^a) \quad (S_\theta \ni t \longrightarrow 0)$$

が成り立つ 」. ただし, $S_{\theta} = \{t \in \mathcal{R}(C \setminus \{0\}); |\arg t| < \theta\}.$

また, $C\{x\}$ でもって原点 $x=0\in C^n$ の近傍で正則な関数全体を表すとする. 次が 定理 2 (特異解に関するもの) の偏微分方程式版である.

定理 2^* ([2]) 方程式 (E_1) の $\tilde{\mathcal{O}}_+$ 解の全体を \mathcal{S}_+ とおく. $\lambda(0) \notin \mathbf{N}^*$ のもとでは, \mathcal{S}_+ は次で与えられる.

$$\mathcal{S}_{+} = \left\{ egin{array}{ll} \{u_{0}\}, & \operatorname{Re}\lambda(0) \leq 0 \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}, \\ \{u_{0}\} \cup \{U(\varphi); \ 0 \neq \varphi(x) \in \mathbf{C}\{x\}\}, & \operatorname{Re}\lambda(0) > 0 \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}. \end{array} \right.$$

ここで, u_0 は 定理 1^* でのただ一つの正則解を表し, $U(\varphi)$ は $\varphi(x)$ に依存して決まる (E_1) の $\tilde{\mathcal{O}}_+$ -解であって, 次の様な展開式をもっている.

$$U(\varphi) = \sum_{i \ge 1} u_i(x)t^i + \varphi(x)t^{\lambda(x)} + \sum_{\substack{i+2j \ge k+2\\j \ge 1\\(i,j,k) \ne (0,1,0)}} \phi_{i,j,k}(x)t^{i+j\lambda(x)}(\log t)^k.$$

上の 定理 1 * と 定理 2 * は Briot-Bouquet の常微分方程式に対する結果 (定理 1, 2) と酷似している. それが, Gérard-Tahara [2] で方程式 (E₁) を「Briot-Bouquet 型の偏微分方程式」と呼んだ理由である.

3. 高階の非線型偏微分方程式

ここでは、「Briot-Bouquet 型の偏微分方程式」の高階版とでもいうべき 次の非線型偏微分方程式を考えてみる.

(E)
$$\left(t\frac{\partial}{\partial t}\right)^m u = F\left(t, x, \left\{\left(t\frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^\alpha u\right\}_{\substack{j+|\alpha| \leq m \\ j < m}}\right).$$

ここで, $t \in \mathbb{C}$, $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$,

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n},$$

u(=u(t,x)) は未知関数である. 更に

$$Z = \{Z_{j,\alpha}\}_{\substack{j+|\alpha| \leq m \ j < m}}, \qquad Z_{j,\alpha} \in \mathbf{C}$$

とし, F(t,x,Z) は (t,x,Z) を複素変数とする関数であって次の条件を満たすものとする.

- (C_1) F(t,x,Z) は原点 (0,0,0) の近傍で正則;
- (C_2) x = 0 の近傍で $F(0, x, 0) \equiv 0$;

$$(C_3)$$
 $|\alpha| > 0$ ならば、 $x = 0$ の近傍で $\frac{\partial F}{\partial Z_{j,\alpha}}(0,x,0) \equiv 0$.

m=1 のときは, (C_1) , (C_2) , (C_3) は第2節の (A_1) , (A_2) , (A_3) そのものであり, このときは (E) は Briot-Bouquet 型の偏微分方程式である. いま,

$$C(\lambda, x) = \lambda^m - \sum_{j < m} \frac{\partial F}{\partial Z_{j,0}}(0, x, 0)\lambda^j$$

とおき, $C(\lambda, x) = 0$ の解 $\lambda_1(x), \ldots, \lambda_m(x)$ を「(E) の特性指数」と呼ぶ. 一般的には, これは x = 0 の近傍での連続関数である.

正則解に関しては,次の結果が成り立つ.

定理 3 ([3]) もしも $\lambda_i(0) \notin \mathbf{N}^*$ $(i=1,\ldots,m)$ ならば、方程式 (E) は原点の近傍での 正則解 u(t,x) で $u(0,x)\equiv 0$ を満たすものをただ一つ持つ. (以下この正則解を $u_0(t,x)$ とかく.)

特異点をもつ解に関しては、次の結果(定理4)が基本的である.

$$\mu = \#\{i; \operatorname{Re}\lambda_i(0) > 0\}$$

とおく. 条件 $\mu=0$ は、「 $\operatorname{Re}\lambda_i(0)\leq 0$ $(i=1,\cdots,m)$ 」が成り立つことと同値である. $\mu>0$ のときは、適当に番号を付け替えることにより

(3.1)
$$\begin{cases} \operatorname{Re}\lambda_{i}(0) > 0, & 1 \leq i \leq \mu \text{ odd } \xi, \\ \operatorname{Re}\lambda_{i}(0) \leq 0, & \mu + 1 \leq i \leq m \text{ odd } \xi \end{cases}$$

となっているとして差し支えない.

定理 $\mathbf{4}$ ([3]) (C_1), (C_2), (C_3), (3.1) を仮定する. S_+ でもって, (E) のすべての $\tilde{\mathcal{O}}_+$ -解の集合を表すものとする. 次が成り立つ.

- (I) $\mu = 0$ のときは, $S_+ = \{u_0\}$ となる. ここで, u_0 は (E) のただ一つ の正則解である.
 - (II) $\mu > 0$ のときは,
 - 1) $\lambda_i(0) \neq \lambda_j(0)$ $(1 \leq i \neq j \leq \mu)$,
 - 2) $C(1,0) \neq 0$,
- 3) $i+j_1+\cdots+j_{\mu}\geq 2$ を満たす任意の $(i,j_1,\cdots,j_{\mu})\in \mathbf{N}\times\mathbf{N}^{\mu}$ に対して $C(i+j_1\lambda_1(0)+\cdots+j_{\mu}\lambda_{\mu}(0),0)\neq 0$ が成り立つ という付加条件のもとで次が成り立つ.

$$S_{+} = \left\{ U(\varphi_{1}, \dots, \varphi_{\mu}) ; (\varphi_{1}, \dots, \varphi_{\mu}) \in \mathbf{C}\{x\}^{\mu} \right\}.$$

ここで, $U(\varphi_1, \ldots, \varphi_\mu)$ は $(\varphi_1, \ldots, \varphi_\mu) \in \mathbb{C}\{x\}^\mu$ に依存した (E) の \mathcal{O}_{+} -解 であって, 次の様な展開式をもっている.

$$U(\varphi_{1}, \dots, \varphi_{\mu}) = \sum_{i \geq 1} u_{i}(x)t^{i} + \varphi_{1}(x)t^{\lambda_{1}(x)} + \dots + \varphi_{\mu}(x)t^{\lambda_{\mu}(x)} + \sum_{\substack{i+2m|j| \geq k+2m \\ |j| \geq 1 \\ (i,|j|) \neq (0,1)}} \phi_{i,j,k}(x)t^{i+j_{1}\lambda_{1}(x)+\dots+j_{\mu}\lambda_{\mu}(x)}(\log t)^{k}.$$

上の定理4の(I)は、定理3と次の命題からすぐにでてくる.

命題 1 もしも $\operatorname{Re} \lambda_i(0) \leq 0$ $(i=1,\ldots,m)$ が成り立つならば、 $\tilde{\mathcal{O}}_+$ の中で 方程式 (E) の解の一意性が成り立つ.

4. 解の一意性について

ここでは、命題1の「解の一意性」を拡張することを考えてみたい。まず、未だ証明に成功していない一つの予想について述べておく。

区間 (0,T) で定義された実数値関数 $\mu(t)$ が次の条件 μ_1) $\sim \mu_4$) を満たすとき 「ウェイト関数」であるという.

- μ_1) $\mu(t) \in C^0((0,T)),$
- μ_2) (0,T) の上で $\mu(t) > 0$, かつ t に関して単調増加,
- μ_3) $\int_0^T \frac{\mu(s)}{s} ds < \infty$,
- μ_4) ある c > 0 に対して $\mu(t+ct) = O(\mu(t))$ $(t \longrightarrow +0$ のとき).

 μ_2) と μ_3) から, $\mu(t) \longrightarrow 0$ ($t \longrightarrow +0$ のとき) が成り立つ. 次の関数がその代表的な例である.

$$\mu(t) = t^a, \frac{1}{(-\log t)^b}, \frac{1}{(-\log t)(\log(-\log t))^c}.$$

ただし a > 0, b > 1, c > 1.

定義 4 a>0 とする. 次の条件を満たす関数 u(t,x) の全体を $\mathcal{S}_a(\mu(t))$ で表す.

(条件) u(t,x) は領域 $\{(t,x) \in \mathcal{R}(\mathbf{C} \setminus \{0\}) \times \mathbf{C}^n ; 0 < |t| < \varepsilon, |\arg t| < \theta, |x| \le \delta \}$ (ただし, $\varepsilon > 0$, $\theta > 0$, $\delta > 0$) での正則関数であって, $t \longrightarrow +0$ のとき次が成り立つ.

$$\max_{|x| \le \delta} |u(t, x)| = O(\mu(t)^a).$$

予想 もしも $\operatorname{Re} \lambda_i(0) \leq 0$ $(i=1,\ldots,m)$ が成り立つならば, $S_m(\mu(t))$ の中で 方程式 (E) の解の一意性が成り立つ.

m=1 のときは解決済み ([2]). $m \ge 2$ のときは未だ未解決である. ここでは、少し強い条件の下での結果を紹介しておく.

定理 5 ([6]) もしも 原点 x = 0 の近傍で $\operatorname{Re} \lambda_i(x) \leq 0$ (i = 1, ..., m) が成り立つならば, $S_m(\mu(t))$ の中で 方程式 (E) の解の一意性が成り立つ.

これが割合良い結果になっていることは,次の例を見れば理解されるであろう.

例 3 $(t,x) \in \mathbb{C}^2$ とし、次の方程式を考える.

$$\left(t\frac{\partial}{\partial t}\right)^2 u = 6u\left(\frac{\partial u}{\partial x}\right).$$

特性指数は $\lambda_1 = 0$ と $\lambda_2 = 0$ である. このとき次が成り立つ.

- 1) $u(t,x) \equiv 0$ が $u(0,x) \equiv 0$ のもとでのただ一つの正則解である.
- 2) (4.1) はさらに次の様な解をもっている.

$$u(t,x) = \frac{x+\alpha}{(c-\log t)^2}$$
 $(\alpha, c \in \mathbf{C}).$

これより次が分かる. 「 もしも 0 < a < 2 ならば, $S_a(\mu(t))$ の中では (4.1) の解の一意性は必ずしも成り立たない 」 実際, ウェイト関数として $\mu(t) = 1/(-\log t)^c$ (ただし $1 < c \le 2/a$) をとってくればよい.

0 < a < m なる a に対して $S_a(\mu(t))$ の中で (E) の解の一意性が成り立つかどうかについては、次が成り立つ.

定理 6 ([5][6]) p を $0 \le p \le m-1$ なる整数とし、原点 x=0 の近傍で

$$\begin{cases} \operatorname{Re} \lambda_i(x) \leq 0, & i = 1, \dots, p \text{ obs}, \\ \operatorname{Re} \lambda_i(0) < 0, & i = p + 1, \dots, m \text{ obs} \end{cases}$$

が成り立つとする. このとき, もしも a>p ならば $\mathcal{S}_a(\mu(t))$ の中で 方程式 (E) の解の一意性が成り立つ.

 \mathbf{M} 4 $(t,x) \in \mathbb{C}^2$ とし、次の方程式を考える.

(4.2)
$$\left(t\frac{\partial}{\partial t}\right)^2 u + \left(t\frac{\partial}{\partial t}\right) u = (2u + x + 1) \left(\frac{\partial u}{\partial x}\right)^2.$$

特性指数は $\lambda_1 = 0$ と $\lambda_2 = -1$ である. このとき次が成り立つ.

- 1) $u(t,x) \equiv 0$ が $u(0,x) \equiv 0$ のもとでのただ一つの正則解である.
- 2) (4.2) はさらに次の様な解をもっている.

$$u(t,x) = \frac{x+1}{c-\log t}$$
 $(c \in \mathbf{C}).$

これより次が分かる. 「 もしも 0 < a < 1 ならば, $S_a(\mu(t))$ の中では (4.2) の解の一意性は必ずしも成り立たない 」 実際, ウェイト 関数として $\mu(t) = 1/(-\log t)^c$ (ただし $1 < c \le 1/a$) をとってくればよい.

- 4) 定理 6 より 「 a>1 ならば, $S_a(\mu(t))$ の中で (4.2) の解の一意性が成り立つ 」.
- 5) a = 1 のとき, 任意のウェイト関数 $\mu(t)$ に対して $S_1(\mu(t))$ の中で (4.2) の解の一意性が成り立つかどうかは目下のところ未解決である.

5. 注意

(1)

(5.1) ある i に対して $\operatorname{Re}\lambda_i(0) > 0$ となる

という場合は、定理 4 の (II) で見たように適当な条件のもとで 無数の \tilde{O}_{+} -解 が出てくる. \tilde{O}_{+} -解 u(t,x) は, $t \longrightarrow +0$ のとき相当速いスピード で $u(t,x) \longrightarrow 0$ となるため、「 (5.1) の場合に、解の一意性を論じるのは あまり意味がない」といえそうである.

(2) (5.1) のときは、むしろ問題設定としては次の方が自然であろう.

問題 次の「」が成り立つのはいつか?

参考文献

- [1] R. Gérard and H. Tahara: Nonlinear singular first order partial differential equations of Briot-Bouquet type, Proc. Japan Acad., 66 (1990), 72-74.
- [2] R. Gérard and H. Tahara: Holomorphic and singular solutions of nonlinear singular first order partial differential equations, Publ. RIMS, Kyoto Univ. 26 (1990), 979-1000.

- [3] R. Gérard and H. Tahara: Solutions holomorphes et singulières d'équations aux dérivées partielles singulières non linéaires, Publ. RIMS, Kyoto Univ. 29 (1993), 121-151.
- [4] R. Gérard and H. Tahara: Singular nonlinear partial differential equations, Aspects of Mathematics, E 28, Vieweg-Verlag, 1996
- [5] H. Tahara: Uniqueness of the solution of non-linear singular partial differential equations, J. Math. Soc. Japan, 48 (1996), 729-744.
- [6] H. Tahara: On the uniqueness theorem for nonlinear singular partial differential equations, submitted.