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Abstract
Complex interaction phenomena are known to arise among standing free-surface
waves in fluids within containers subjected to small periodic vertical (Faraday)
oscillations. Here, we review theoretical and experimental work concerning (i)

hysteresis and limit-cycle behaviour of’puret standing waves; and (ii) instability of
a ’pure\dagger standing wave to a pair of neighbouring modes, and the subsequent
modulations. We also discuss the special case of (iii) second-harmonic resonance.

1 lntroduction
Study of wave motion excited by small periodic vertical vibrations of a cylindrical
container began with the pioneering studies of Faraday1 and Rayleigh.2,3 Such
vertical oscillation is now known as tFaraday excitationt. The waves most prone to
generation are those with frequencies close to one-half of the forcing frequency; a
situation now commonly referred to as $\mathfrak{l}\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{C}’,$

$’ \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{C}’$ , or $|\mathrm{F}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{a}\mathrm{y}^{1}$

resonance. The linear theory developed by Beniamin&Urse11 established that, in
the inviscid limit, each surface-wave mode is governed by an equation of Mathieu
type, and so exhibits the many zones of instability characterised by this equation;
but the strongest instability, and so that least likely to be suppressed by viscous
damping, is the subharmonic one. The corresponding linear viscous problem is
fully described by Kumar&Tuckerman5.

During the past fifteen years, interest in Faraday excitation has greatly increased,
due to important advances in the theory of nonlinear dynamical systems; and to
influential experimental studies that revealed a rich variety of behaviour, not all
yet fully understood. Most notably, Ciliberto&Gollub studied standing waves in
circular cylinders; $\mathrm{F}\mathrm{e}\mathrm{n}\mathrm{g}\ \mathrm{S}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{n}\mathrm{a}^{7}$ , Simonelli&Gollub8 those in square and almost
square rectangular containers; Ezerskii et $al^{9}.$, Douady &Fauve and Douady11
studied short capillary waves in containers large compared with wavelength;
Douady, Fauve&Thual12 excited, in an annulus, waves which could be standing
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or travelling; Wu, $\mathrm{K}\mathrm{e}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{a}\mathrm{n}\ \mathrm{R}\mathrm{u}\mathrm{d}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{k}^{1}3$ examined localised $|\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ solitonst in a
long rectangular tank; Craik & Armitage14 and Decent & Craik15 studied
neighbouring plane standing-wave modes in a long narrow tank; Jiang, Ting,
$\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{i}\mathrm{n}\ \mathrm{S}\mathrm{c}\mathrm{h}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{z}^{1}6$ examined large-amplitude waves and their modulations due to
slightly-perturbed tank vibrations. The earlier work, and related theory, are
described in the review by Miles&Henderson17. Additionally, fine experimental
studies and related theory of wave motion in tanks subject to horizontal, rather
than vertical, vibration have been made by Funakoshi & Inoue18, while
Krasnopolskaya&van Heijst19 have investigated wave-generation in an annular
tank with radially-vibrating inner wall, finding both tdirectt generation of
axisymmetric waves and parametric ’Faradayt excitation of non-axisymmetric
waves at the subharmonic frequency.

The mutual stability and nonlinear interaction of different spatial modes with
similar (or, in degenerate cases, identical) natural frequencies has also been a
subject of much activity. In addition to the above-mentioned experimental studies,
which also address theoretical issues, the theoretical papers of $\mathrm{M}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{n}\ \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{c}\mathrm{C}\mathrm{i}\mathrm{a}^{20}$,
$\mathrm{N}\mathrm{a}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{a}^{21}’ 2,$$\mathrm{U}2\mathrm{m}\mathrm{e}\mathrm{k}\mathrm{i}\ \mathrm{K}\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{e}^{2},$$\mathrm{K}3\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{e}\ \mathrm{U}\mathrm{m}\mathrm{e}\mathrm{k}\mathrm{i}^{24}$ , Umeki25 and Craik26 may be
mentioned. In all of these, the postulated interaction of two modes, each
characterised by a (slowly-varying) time-dependent complex wave amplitude, leads
to a pair of complex evolution equations. These have four real variables and the
structure of temporal orbits can be remarkably complicated. There are typically
several equilibrium states that correspond to fixed points of the governing
equations, some stable and some unstable. The actual behaviour depends crucially
on several constant parameters that appear in these equations; and these
parameters in turn depend (sometimes very sensitively) on the precise
experimental configuration. Theoretical determination of the parameter values for
a given configuration is not a trivial task and, once accomplished, investigation of
the nature of the solutions involves a mix of analysis-to determine fixed points
and their local stability-and extensive computations of solution trajectories. Even
after all this is accomplished, it is not easy to make meaningful connections
between the different sets of results for different configurations. No one set of
experimental or theoretical results is ’

$\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{t}$ : the richness of possible behaviours
and sensitivity to parameter values is too great.

A different scenario is more appropriate for interaction between modes with
$s$ imilar spatial structure in a long narrow tank like that of Craik&Armitage14. In
their configuration, where neighbouring modes have very similar spatial structure
but slightly different wavelengths, the interaction of three (and perhaps more)
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modes is important. Then, a single dominant finite-amplitude mode may be
unstable to a pair of neighbouring modes. Such instability has similarities with the
well-known $\mathrm{E}\mathrm{c}\mathrm{k}\mathrm{h}\mathrm{a}\mathrm{u}\mathrm{s}^{27}$ and Beniamin-Feir28 instability, but with additional forcing
effects. This topic has recently been comprehensively treated by $\mathrm{D}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\ \mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}^{29}$ ,
extending an earlier exploratory analysis of $\mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}3$ , and it is discussed in section 3
below.

At, and near to, a precise frequency, second-harmonic resonance occurs among
capillary-gravity waves: see e.g. $\mathrm{M}\mathrm{c}\mathrm{G}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{k}^{3}1$ . Then, two waves have respective
frequencies and wavenumbers in the ratio 1 : 2. When Faraday forcing has
frequency close to twice that of one of the resonant pair of waves, an interesting
mutual interaction occurs that is not described by theories that exclude such
resonance. Such situations have been considered by Henderson $\ \mathrm{M}\mathrm{i}\mathrm{l}\mathrm{e}\mathrm{s}^{32}$, and
similar equations arise for a forced resonant double pendulum $(\mathrm{B}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{r}\ \mathrm{M}\mathrm{i}\mathrm{l}\mathrm{e}\mathrm{s}^{33})$ .
Recent work of Forster &Craik draws attention to the fact that the simplest
model equations for this situation admit solutions that display unbounded growth
: see section 4.

2 Hystere$s\mathrm{i}\mathrm{s}$ and single-mode limit cydes
Even for a single dominant standing-wave mode, theoretical description is far

from straightforward, for the simplest approximation does not yield results in
agreement with observation. A full account, and a particular examination of
hysteresis of such waves as the imposed frequency and amplitude of vibrations are
altered, is given by $\mathrm{D}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\ \mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}^{15,3}5$ . Earlier, Miles36 and $\mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}\ \mathrm{A}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{g}\mathrm{e}^{14}$

had shown that nonlinear forcing and damping can significantly affect single-
mode hysteresis boundaries. Decent & $\mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}^{15,3}5$ retained also higher-order
conservative terms, obtaining results that agree fairly well with their experiments
and with those of Craik&Armitage for three separate liquid depths. A novel
feature of their results is the prediction of a periodically-modulating standing
wave, corresponding to a single-mode limit-cycle solution, in a limited region of
parameter space: but dear experimental confirmation of this does not yet exist.
Their results for one spatial mode with liquid depth of $2\mathrm{c}\mathrm{m}$ are reproduced in
Figure 1, together with experimental results of Craik&Armitage on the linear
instability boundary and nonlinear lower hysteresis boundary for that mode. The
horizontal axis represents a scaled frequency parameter $\Omega$ which measures the
small $\mathrm{d}\mathrm{i}.\mathrm{f}$ference between half the forcing frequency and the natural linear
frequency of the mode; the vertical axi$s$ denotes the scaled parameter $F$ which
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measures the amplitude of the tank vibrations. In contrast, results for lcm and

1. $3\mathrm{c}\mathrm{m}$ depth$s$ display no limit cyde behaviour.
The analysis of $\mathrm{D}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\ \mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}^{15,3}5$ incorporates an assumed value for their

nonlinear damping coefficient $Nj$ and the range of approximate validity of their

composite evolution equation (obtained by combining two rationally-derived
evolution equations at successive orders of a governing small parameter $\epsilon$) is

unknown. Nevertheless, their results show quite good agreement with

experiment; and alater attempt by Decent37 to estimate theoretically the parameter
$N$ gives a value consistent with that previously assumed. Certainly, their results at

all three liquid depths are in reasonable agreement with observation.

$F$

$sl$

Figure 1. Location of neutral curve, hysteresis boundary and limit-cycle boundaries for one mode at

$2\mathrm{m}\mathrm{d}\mathrm{e}_{\mathrm{P}^{\mathrm{t}\mathrm{h}}}$, from $\mathrm{D}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\ \mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}^{15}$ . The experimental points for neutral curve and hysteresis boundary

are from $\mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}\ \mathrm{A}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{g}\mathrm{e}^{14}$ . The axes are frequency-detuning and forcing parameters $\Omega$ and $F$.

3 Standing-wave instability and modulations
When the experimental configuration admits modes of $s$ imilar spatial

structure at similar frequencies, as does the long narrow channel of Craik &

Armitage14, then a single finite-amplitude standing wave is prone to instability
due to growth of its two tnearest neighbours:t for, the latter, though linearly stable

when the liquid surface is flat, may be unstable when the standing wave is present.
The stability of a pure standing wave to its neighbours, and the nature of the
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resultant three-mode interactions, are subjects of a recent paper of Decent &
Craik29.

Their analysis incorporates all cubic conservative interaction terms involving
the three modes, and estimates parametrically the effect of nonlinear damping and
quintic conservative terms. When their equations are linearised with respect to
infinitesimal ’sidebandt modes, with complex amplitudes $A$ and $C$ say, and the
standing wave amplitude $B$ corresponds to the known finite-amplitude
equilibrium solution, a 4-dimensional eigenvalue problem results. Its numerical
solution determines the $\mathrm{i}\mathrm{n}s$tability threshold for the growth of the modes $A$ and C.

Though their results for lcm depth do not agree particularly well with the
observed threshold of Craik&Armitage’s experiment, those for $2\mathrm{c}\mathrm{m}$ depth show
much better agreement. The latter are shown in Figure 2. The observed onset of
wave modulations associated with sideband growth agrees rather well with the
theoretical results. Note that the limit-cycle region shown in Figure 1 is much
reduced by the availability of the sideband instability; but thi $s$ effect will be absent
in experimental configurations that prohibit such’close neighbours’.

When the neighbouring modes grow, mutual interactions occur and three-
mode nonlinear solutions display rich structure, often with fast and slow
timescales. One feature, however, $\mathrm{d}\mathrm{i}s$plays no modulations at all. This is the
region labelled $|\mathrm{s}\mathrm{i}\mathrm{x}$ -dimensional stationary pointl. Within this, the pure standing
wave $B$ is unstable to the sideband modes $A$ and $C$ but the resultant state, in which
all three spatial modes are present, displays no temporal modulation: this,
therefore, is a three-mode standing wave, with each component locked in phase.
Decent &Craik point out that this standing wave never passes through a flat
surface during its oscillation. Experimental confirmation of such standing-wave
motion remains to be found.

Temporal modulations can be of various sorts. Decent&Craik found that, for
a water depth of $\mathrm{l}\mathrm{c}\mathrm{m}$, intervals of strong wave activity are separated by recurrent
nearly calm periods; but this recurrent calming does not occur with the larger
depth of $2\mathrm{c}\mathrm{m}$, for which modulations are typically periodic or chaotic. These
findings are in broad agreement with some observations of Craik&Armitage.Two
of $\mathrm{D}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\ \mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}_{\mathrm{S}}^{\mathrm{t}}$ figures are reproduced in Figures 3 and 4 below. The former
shows a case for lcm depth, in which quite long calm periods are seen, between
bouts of wave activity. The central $B$ -mode appears to grow, and equilibrate, before
the sideband modes $A$ and $C$ are driven unstable; but the growth of the sideband$s$

causes modulations that lead to the decay of all three modes to an almost calm
state. Qualitatively similar behaviour was observed by Craik&Armitage at this
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$\mathrm{F}$

$1l$

Figure2. Three-mode stability diagram bomDecent&Craik for water depth of $2\mathrm{c}\mathrm{m}$. The axes are
frequency-detuning and forcing parameters $\Omega$ and $F$ . Experimental points are from Craik &
Amitage14. Diamonds and dotted-dashed curve show the measured and theoretical lower hysteresis
boundary (cf Figure 1 above); squares and solid curve denote observed and theoretical onset of
temporal modulations as $F$ is increased. The dashed curve is the linear stability boundary for a flat
surface. Regions of stable single-mode limit cycles and 6-dimensional (3-mode) stationary points are
also indicated.

depth, and is recorded on videotape. In contrast, no such calming was observed by
them with water of $2\mathrm{c}\mathrm{m}$ depth; and none is found theoretically either. Figure 4
shows a typical theoretical example at this larger depth. Somewhat similar
behaviour, observed experimentalIy by Armitage &Sterratt (unpublished), is
reported, with permission, $\mathfrak{h}^{\gamma \mathrm{D}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}}\mathrm{t}\ \mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}^{29}$.

In recent experiments, Jiang, Ting, Perlin $\ \mathrm{S}\mathrm{c}\mathrm{h}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{z}^{1}6$ reported spontaneous
temporal modulation of a single gravity-wave mode, of the sort expected of the limit
cycle described above. However, these authors express doubt over the origins of thi$s$

modulation, which was not a consistently reproducible feature of their observations.
Their subsequent investigations, employing deliberately-introduced sideband
perturbations to the tank vibrations, showed that weak perturbations produced strong
wave modulations, with a pronounced resonance peak. Certainly, inadvertent or
deliberate signal noise is a possible source of modulations; but their dismissal of the
possibility of a limit cyde seems premature without closer study.
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Figure 3. An example of three-mode modulations, for lcm depth, from $\mathrm{D}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\ \mathrm{C}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{k}^{29}$ .

Figure 4. An example of three-mode modulations, for $2\mathrm{c}\mathrm{m}$ depth, from Decent&Craik29.
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4 Second-harmonic resonance
Second-harmonic wave resonance with Faraday excitation was considered by

$\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{o}\mathrm{n}\ \mathrm{M}\mathrm{i}\mathrm{l}\mathrm{e}s^{32}$, who derived coupled evolution equations identical to those
governing a forced resonant double pendulum (Becker $\ \mathrm{M}\mathrm{i}\mathrm{l}\mathrm{e}\mathrm{S}^{33}$). Then, two

standing waves have wavenumbers in the ratio 1 : 2 and natural frequencies also
equal to, or very dose to, that ratio. One or other of these waves is supposed excited by
Faraday excitation close to twice its natural frequency. Various aspects of the structure
of solutions are examined by these authors; but they do not mention that their model
equations permit unbounded wave growth under suitable circumstances. Recent
work of Forster &Craik34 draws attention to such unbounded solutions. Though
unlimited growth is certainly ’

$\mathrm{u}\mathrm{n}\mathrm{p}\mathrm{h}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}’$ , the presence of such solutions must
indicate a transition to larger amplitudes that cannot adequately be described by the
truncation, at quadratic order, implicit in the model equations.

The equations studied by Forster&Craik are a subset of those of Henderson&
Miles, restriced to exactly resonant tuning with no viscous damping. These
are either

$\dot{a}_{1}=\lambda_{1}a_{1}a_{2}*+\mu a_{1^{*}}$ , $\dot{a}_{2}=\lambda a_{1}^{2}2$

’

or
$\dot{a}_{1}=\lambda_{1}a_{1^{*}}a_{2}$ , $\dot{h}=\lambda_{2}a_{1}^{2}+\mu a_{2}*$ ,

for the respective complex wave amplitudes $a_{1}$ and $a_{2}$, depending on whether the
forcing drives the first $(a_{1})\mathrm{o}\mathrm{r}$ second $(a_{2})$ harmonic. Here, the overdot denotes time-
derivative, the star denotes complex conjugate, $\lambda_{1},$ $\lambda_{2}$ are known real constants with
opposite signs, and $\mu$ is a known imaginary constant. The former set is particularly
simple, for the forcing term in $\mu$ may be eliminated by a simple change of variables,
yielding the unforced equations which are solved in terms of elliptic functions.

The second set, with forcing at the second harmonic, is more challenging. These
may be rescaled to

$\dot{B}_{1}=-B_{1}^{*}B_{2}$

, $\dot{B}_{2}=B_{1}^{2}+B_{2^{*}}$

where the overdot is now the rescaled time-derivative. Expressed in real and
imaginary parts $B_{1}\overline{=}x_{1}+iy_{1}$ , $B_{2}\equiv x_{2}+iy_{2}$ , the corresponding real four-dimensional
autonomous system is

$\dot{x}_{1}=-x_{1}x_{2^{-\mathcal{Y}_{1}}}\mathcal{Y}_{2}$, $\dot{y}_{1}=x_{2}y_{1}-\chi_{1\mathcal{Y}_{2}\prime}$

$\dot{x}_{2}=x_{1}^{22}-y1+x_{2}$ , $\dot{y}_{2}=2\eta y_{1^{-}}y_{2}$ .
Various computed solutions, both bounded and showing unbounded growth, are

given by Forster &Craik. Transformed equations yield further insight and better
enable delineation of the sets of initial data that lead to bounded evolution and
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unbounded growth respectively. In particular, a Hamiltonian constant of motion may
be employed as a parameter; and thi$s$ eventually leads to a two-dimensional set of
coupled first-order non-autonomous equations, with a phase angle as independent
variable. Poincar\’e sections then graphically reveal the domain of bounded initial data
corresponding to the chosen value of the constant of motion.
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