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1 Introduction

It is well known that low-discrepancy sequences and their discrepancy play essential roles in quasi-Monte
Carlo methods [6]. The author constructed a new class of low-discrepancy sequences N [7] by using the f-adic
transformation {9][11]. Here, 8 is a real number greater than 1; when £ is an integer greater than 2, Ng becomes
the classical van der Corput sequence in base 8. Therefore, the class Ny can be regarded as a generalization
of the van der Corput sequence. Ng also contains a new construction by Barat and Grabner [1] [7]. The
principle of the construction of Njg is that we can consider the van der Corput sequence to be a Kakutani
adding machine [10]. Pages [8] and Hellekalek {4] also considered the van der Corput sequence from this point
of view. In [7], it is shown that when § satisfies the following two conditions:

e Markov condition: 3 is simple, that is to say, for this 3, the f-adic transformation becomes Markov,

o Pisot-Vijayaraghavan condition: All conjugatm of B with respect to its characteristic equatlon belong to
{zeC| |z <1},

the discrepancy of N decreases in the fastest order O(N~!log N). In this paper, we consider the case in which
B is not necessarily Markov. We introduce the function ¢g(z) from Ito and Takahashi [5]. It is shown that
when g satisfies the following condition:

o All zeroes of 1 — ¢g(2) except for z =1 belong to {z € C | |2| > B},
which is a generalization of the above Pisot-Vijayaraghavan condition, the discrepancy of Ng decreases in the
order O(N~!(log N)?).
2 Low-discrepancy sequence

First, we recall the notions of a uniformly distributed sequence and the discrepancy of points [6]. A sequence
T1,Tz,... in the s-dimensional unit cube I* = [];_,[0, 1) is said to be uniformly distributed in 7* when

lim —ZcJ(zn) ()

N—ooo N
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holds for all subintervals J C I*, where c; is the characteristic function of J and ), is the s-dimensional
Lebesgue measure. If z;,z5,... € [*is a uniformly distributed sequence, the formula

Jim —Zf(zn) [ o) @1)

holds for any Riemann integrable functlon on I*. The discrepancy of the point set P = {z1,zs,...,zn} in I*
is defined as follows:

where B C p(I”°) is a non-empty family of Lebesgue measurable subsets and A(B; P) is the counting function
that indicates the number of n, where 1 < n < N, for which z,, € B. When J* = {[];_;[0,4:),0 < w; < 1},
the star discrepancy D3 (P) is defined by D}(P) = Dyn(J*; P). When S = {1, 22, ...} is a sequence in I*, we
define D}/ (S) as Dy (Sn), where Sy is the point set {1, Z2,...,Zn}. Let S be a sequence in I*. It is known
that the following two conditions are equivalent:

1. S is uniformly distributed in I*;

sup [2C5) ()| 02

2. limy_,00 D3(S) =
The following classical theorem shows the importance of the notion of discrepancy:

Theorem 2.1 (Koksma-Hlawka [6]) If f has bounded variation V(f) on I® in the sense of Hardy and
Krause, then for any z1,x,,...,zN € I*, we have

1 N
NS~ [ s

Schmidt [12] showed that, when s = 1 or 2, there exists a positive constant C that depends only on s, and
the following inequality holds for an arbitrary point set P consisting of N elements:

SV(f)Dy(zs,...,zN)-

s—1
Di(P) > Cﬂggx)_. (2.3)
If (2.3) holds, then there exists a positive constant C that depends only on s, and any sequence S C I* satisfies
' N
D3(S) > C(l°g ) (2.4)

for infinitely many N. Taking account of (2.3) and (2.4), we define a low-discrepancy sequence for the one-
dimensional case as follows:

Definition 2.1 Let S be an one-dimensional sequence in [0, 1). If D},(S) satisfies
D3(S) = O(N'logN)
then S is called a low-discrepancy sequence.

Hereafter we consider only the case where s = 1. We now introduce the classical van der Corput se-
quence [2] [6].

Definition 2.2 Let p > 2 be an integer. Every integer n > 0 has a unique digit expansion

n=Y ajmp’,  aj(n)€{0,1,...,p—1} forall j >0,
j=0

in base p. Let 7 = {7;};>0 be a set of permutations 7; of {0,1,...,p — 1}. Then the radical-inverse function
¢ is defined by

#p(n) = ij(a,- (n))p31 for all integers n>0.
j=0
The van der Corput sequence in base p with digit permutations 7 is the sequence {¢5(n)}n20 C [0,1).

Theorem 2.2 ([2][6]) For an arbitrary integer p > 2, the van der Corput sequence in base p is a low-
discrepancy sequence.
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3  fB-adic transformation

In this section we define the fibred system and the B-adic transformation, following [5] [13].
C, R, Z, and N are the sets of all complex numbers all real numbers, all integers, and all natural numbers,
respectively. We also set
R, = {reR|r>a}
Z>, = {i€Z|i>n}

and so on. For z € R, [z] denotes the integer part of z.

Definition 3.1 Let B be a set and T': B — B be a map. The pair (B, T) is called a fibred system if the
following conditions are satisfied:

1. There is a finite countable set A.
2. There is amap k: B — A, and the sets

B(i) = k"'({i}) = {z € B : k(z) = i}
form a partition of B.
3. For an arbitrary i € A, T'|p; is injective.

Definition 3.2 Let @ = AN and ¢ : © — Q be the one-sided shift operator. Let k;(z) = k(T97'z). We
derive a canonical map ¢ : B — Q from

ola) = {k; (=)

 is called the representation map.
We have the following commutative diagram:
B —— B
1 o
Q —
Definition 3.3 If a representation map ¢ is injective, ¢ is called a valid representation.
Definition 3.4 Let w € Q. If w € Im(y), w is called an admissible sequence.
Definition 3.5 The cylinder of rank n defined by a4, a,, ..., a, € A is the set
B(a1,az,...,a,) = B(a;) NT'B(az) N...N T "' B(a,,).
We define B to be a cylinder of rank 0.
For a sequence a € (2, we write the i-th element of ¢ as a(%), that is, a = (a(0), a(1),a(2), .. .).
Definition 3.6 Let 5> 1and 8 € R. Let f5 : [0,1) — [0, 1) be the function defined by
fo(@) = Pz — [pa).
Let A=7ZnN[0, ). Then we have the following fibred system ([0, 1), f5):
[0,1) L) [0,1)
o o 3.1)

Q — Q

The representation map ¢ of this fibred system is defined as follows:

p@)m) =k, if ¥ < mE) < &Y . L)
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where f3(z) =z, and f;‘“ (z) = fs(f3(z))- Let Xp be the closure of Im(yp) in the product space Q2 with the
product topology. The lexicographical order < (resp. ») is defined in 2 as follows: w < ' (resp. w > ) if
and only if there exists an integer n such that w(k) = w’/(k) for k < n and w(n) < o/(n) (resp. w(n) > u'(n)).

We also define < (resp. >) as < (resp. >) or equal. In this situation, we set
s 1
3 = lim ),

and "
ps(@) =) am)p "
n=0
‘We have the following diagram:

01 — @1

o| Jee ) ol Jee

Xﬁ _— X Y]
This diagram is called a f-adic transformation.

We use the following notation for periodic sequences:

‘(al’azv"yé‘n""én-i-m) :(01,02,-“, Ay Qntly - -« 3 Cntmy
Qny Qpt1y -« 3y Ontmy

Qn, 41y -« 3 Cnim,

)

We introduce the following proposition from Ito and Takahashi [5].

Proposition 8.1 For an arbitrary 8 € R-.; the following statements hold in (3.2).

1. cop=ypo fg on [0,1).

2. ¢ :[0,1] = X is an injection and is strictly order-preserving, i.e., t < s implies that p(t) < p(s).

3. pgop=id on [0,1].
4- pg oo = fgops onIm(p).

(3.2)

5. ps : Xg — [0,1] is a continuous surjection and is order-preserving, i.e., w < w' implies that pg(w) <

P ().

6. For an arbitraryt € [0, 1], p;l(t) consists either of a one point p(t) or of two points p(t) and sup{p(s) | s <

t}. The latter case occurs only when f2(t) = (0) for some n > 0.
We also remark that the following proposition holds:

Proposition 3.2
Xg={weQ|o"™w (s, foral n>0}

Definition 3.7 Let u € Xg. If there exist n € Z3; which satisfies u(i) = u(i + n) for any i € Z, u is
called a periodic sequence. When u € Xj is periodic, we define the period of u as min{n € Z»; | u(i) =

u(i +n) for any i € Z}.

The following definition and theorem are from Parry [9].
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Definition 3.8 When (p is periodic and its period is m,  and ﬂ-adicfransfoMation (3.2) are called Markov
or simple. In this case, 8 is the unique z > 1 solution of the following equation:
. m . . B
2™ — Eai_lz'”_‘ =0 (3.3
et , .

where (g = (dp, @1,...,0m_2, (am_l —1)). This equation is called the characteristic equation of 5. When S is
Markov, p(5) denotes the length of the period of (g.
Theorem 3.1 The conjugates of B with respect to its charaéten'stic equation have absolute values less than 2.

When £ is not necessarily Markov, the notion of the characteristic equation is generalized as follows. This
function was first studied in Takahashi [14][15] and Ito and Takahashi [5].

Definition 3.9 :
) 2 ntl
40(2) =3 6ot ()

- n>0
We also have the following proposition from Ito and Takahashi [5].

Proposition 3.3 ¢g(2) converges in a neighborhood of the unit disk {z € C | |z] < 1} and the function
1 — ¢g(2) has only one simple root at z = 1 in a neighborhood of the unit disk. -

Remark 3.1 When g is Markov, 1 — ¢5(3/2) = 0 becomes the characteristic equation of 3.

4 Constructing the sequence

In this section, a sequence N C [0, 1) is defined by the use of f-adic transformation, following [7]. Let 8 €
R and let ([0, 1}, f5, Xp, 0, , pg) be a f-adic transformation (3.2). Let B = [0, 1), and A,Q, (s, B(ay,...,an)
be the same as in the previous section.

Definition 4.1 Let n € Z>q. Define
0)}, n=20

Xo(m) = {we Xg | o™ w ;Z ((('1))} and o"w=(0)}, n#0’

Ypm)= {(@(O),...,w(n— 1) | we X},
and

Y2(1) = {(@0r-»an1) | (@, -, Gn_3,n_1 +1) € Yp(m)}.

Let k € Zyo, u € Yp(k), and v € Yp(l). Define Ys(u;n), Y5 (u;n), Yp(u; n;0), Yg(u; m;v), G’,g(n), Gs(u; ),
G%(n), G3(u;n), and Gj(u; n; v) as follows: '

Yo(u;n) = {u-w|u-weYs(k+n)}
Yown) = fu-w|u-weY9(k+n)
Ys(uin;v) = {v-w-v|u-w-veYs(k+n+l)}

Yi(umo) = {uv-w-v]|u-w-ve Y;;)(k+n'+l)}
Gp(n) = {Y¥p(n)
Gy(n) = {Yg(n)
Galwin) = W¥a(uim)
Ga(un) = {Yg(un)
Ga(y;m;v) = §Ys(u;n;0)
Gplunv) = Y5 (u;m;v)
where u - v means the concatenation of u and v, that is to say,
u-v = ((0),...,u(n —1),v(0),v(1),...).

Finally we set Y3(0) = Y7(0) = {€} where € is the empty word and satisfies €- u = u- € = u for any u € Ys(n).
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Definition 4.2 Define the right-to-left lexicographical order Jin LI o Xp(n) as follows: w 2 o if and
only if (w(n — 1), - w(0)) < (W'(m - 1),...,u'(0)) where w € Xg(n) and o' € Xg(m).

Definition 4.3 (N3 [7]) Define Lg = {w,}‘_0 as | [o7, Xp(n) ordered in right-to-left lexicographical order,
that is, Lg is Lr:’:o Xp(n) as a set and w; >y wj holds for all i < j. Then, the sequence N is defined as follows:

Np = {op@)}2 -

Example 4.1 If § = 145 then (g = (i,0) and elements of N are calculated as follows:

Np(©) = pp(0)=0
Ns(1) = ps(1) = 0.618033988749895. ..
Ns(2) = pp(01) = 0.381966011250106. ..
Ns(3) = pp(001) = 0.23606797749979. ..
Ns(4) = pp(101) = 0.854101966249686. . .
~ Ns(5) = pp(0001) = 0.145898033750316. ..
Np(8) = pp(1001) = 0.763932022500212. ..
Ns(7) = pp(0101) = 0.527864045000422.. ..
Ns(8) = ps(00001) = 0.0901699437494747 ..
Ns(9) = pp(10001) = 0.70820393249937 . ..
Np(10) = pg(01001) = 0.472135954999581. ..
Ns(11) = ps(00101) = 0.326237921249265. ..
Ns(12) = ps(10101) = 0.944271909999161. .
Np(13) = ps(000001) = 0.0557280900008416. . .
Ns(15) = ps(100001) = 0.673762078750737 . .
Np(16) = ps(010001) = 0.437694101250047 . .

From this definition, we immediately have the following proposition:

Proposition 4.1 If § is an integer greater than 2 then Ng is the van der Corput sequence in base B with all
digit permutations 7; = id.

From Theorem 2.2 and Proposition 4.1, we see that if § € Z>2 then Njp is a low-discrepancy sequence, that
is to say, D},(Ng) = O(M~'log M) holds for all § € Z>2. We also have the following theorem:

Theorem 4.1 Let 3 be a real number greater than 1, and let the following condition (PV) hold:
(PV) All zeroes of 1 — ¢p(2) ezcept for z =1 belong to {z € C | |2| > B}.
Then, )
. _ o [(og M)
Di(ip) = 0 (L2
holds. Moreover, if 8 is Markov, then
. _ofleM
Di(p) = 0 (% )
holds.

Remark 4.1 When § is Markov, the condition (PV) is equivalent to the condition that all conjugates of 8
with respect to its characteristic equation (3.3) belong to {z € C | || < 1}.

Remark 4.2 In [7], the case in which 8 is Markov is proved.



135

To prove this theorem, we provide lemmas and definitions. We use the following notations:

Do - (w(@),...,w(i—-1)), i<j

w[“):{ (@), wG=1),  i<i

€, i=j

wherew € X and i, j € Z>o. Rp(u) = A(B(u)) where, X is the one-dimensional Lebesgue measure, u € Xg(n),

and B(u) is the cylinder (3.5). For a sequence S, S[N| denotes the point set consisting of the first N' elements
of S, and S[N; M] = S[N + M]\ S|N].

Definition 4.4 For any k > 0 and u € Yp(k), define
e(u) ={i €20 | (l0,i+1)-u ¢ Yg(k+i+1))}.

Lemma 4.1 ([5]) For an arbitrary k > 0 and u € Y3(k), we have the following partitioning of Yp(u; n):
Yp(wn) = | | Y9(;3) - Gol0,n — )| |max{¥a(u;m)}
j=1

Proof. 1t is trivial to show that the left-hand side includes the right-hand side.
If v = (ay,...,8n4x) € Yp(u;n) \ Y5(z;n) and v # max{Y¥s(u;n)}, then there exists an integer I that
satisfies
" k+1<I<n+k

and .
min{w € Ys(u;n) | w > v} = (ay,...,q + 1,0,...,0).

This means that N

(al-i-l; v 1an+k) = Cp[(),‘n +k— l)
and

(alr- a1, + 1) € Y};)(u;l’— k)
hold. ' O

Taking account of Lemma 4.1, we give the following definition:

Definition 4.5. For an arbitrary u € Yz(n), define an integer d(u) as follows: d(u) = k if
ue Y9(K) - (o0, n — )
holds. Remark that max{Yz(n)} = {3[0,n).

From Lemma 4.1, Definition 4.4, and Definition 4.5 we have the following lemma:
Lemma 4.2 For any k,l,n > 0, u € Ys(k), and v € Y5(l), we have the following partitioning of Ys(u; n; v):

Ys(u; n; v)
L Y3) Gal0,m ), o ot k- dma{Yp(wm)}) ~ 1 € <o)
n~j:jl?62(v) .
LI Y5(w3)-¢pl0,n —5) | jmax{Ys(u;n)}, otherwise.

1<j<n
n—j—1¢e(v)

1R

Lemma 4.3 For any n > 0 and u € Yp(n),

n—d(u)—-1

1 i

holds.
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Proof. Let u = u° - {3[0,n — d(u)) where u° € Yg(d(x)). From Definition 3.6,

Rp(6) = pp((6°(0) . 8°((0) = )+ 1) = pp((W°(0), .., 8°(w) — 1) = 55

and
- n—d(u)—1 1
Ro(GlOn—d)) =1- Y- A
i=0
When v - w € Yg(m), it follows that Rg(v - w) = Rg(v) Rg(w). Then, the lemma holds. O

Remark 4.3 From Definition 3.6, it follows that

n—1 .
p@)=p" (x - Z_; __sol(;l(:))
for any z € [0,1] and n > 0. Then, we have |

Ro(w) = 5 540 ()

for any u € Yp(n) and n > 0, from Lemma 4.3.

Lemma 4.4 ([5]) Letr be the absolute value of the second smallest zero of 1—¢g(z), thatis, r = min{|z|| 2€ C, z#1
Then for any small £ > 0, there ezists a constant C,; > 0 and

0 PR | g \"
an-F5050 <% ()

holds for anyn >0, k > 0 and u € Yz(k).
Proof. Let k > 0 and u € Y3(k). Remark that

Ry(w)= D  Rplu-v) | (4.1

- w-v€Yg(u;n)
holds. From (4.1), Lemma 4.1, and Remark 4.3, we have

n—1

B Rp(u) =Y fH(DGH(wn—4) + £31(1) (4.2)
=0
where | = k — d(max{Yp(u;n)}) > 0. Remark that the formal power series

Zz Z.fﬁ(l)Go(u n-— J)ﬁ—(n+k)

n>1

converges for |z] < 1. We have the following equality from (4.2):

FS Ry = 3 ( ﬂ)"'ffp (VG5 @wn—7)+ 3 ( ﬁ) 2R (43)

= D .

We also have 5

. ,.Z:l(%) > G wn )
_;gﬂ )G (i m — J+1)( )n
_pr(n( ) Y &3 n)( )

§>0 n>1
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and, from Remark 4.3,

(1—z)2:f"(1)( )

n>0

:(1—2)+(1—z)2( Z%’;&))

n>1 =0

n—1 .
:1—%@+E(1-z) (152%%))%

n>2
nt+1
=1-Y 60 (3) =14
n>0
By using these two equalities, we obtain from (4.3) that

win) (2 = ZPERa(w) _ (1 - 2) Ysa 5P () (2/8)"
; o7 ( ) T 1-¢5(2) 1-05(2) : (4.4)
Consider the function
ha(2)= ) (Gg(u; n) (f)" i Rp(u) )
2B*Rp(w)  (1-2)F o> fp“(l)(z/ﬂ)" 2B*Rg(u)
1—¢5(2) 1-¢5(2) C(1-2¢,Q)

The second equality comes from (44) From Proposition 3.3, we see that hu(z) is analytic in a neighborhood
of {z€ C||z] < r—¢, z# 1}. We also see from (4.5) that lim,_,,(1 — 2)h,(2) = 0. Considering the fact
that f*Rg(u) < 1 for any u € Ys(k), ¥ > 1 and that the second term of the right-hand side of (4.4) and its
derivative are bounded uniformly in I, we see that there exists a constant C, and

sup |hl,(2)| < Ce (4.6)

E>1, u€Yg (k)
Izl—r—e

holds. Then we have

m | B0 _ ﬁ';’,:gl‘)“) - o)
= |G
= [mime fo R
< -V
and the lemma follows. Ol

Lemma 4.5 If § € R, is Markov and (g = (do,...,am—2, (a,,,,_l — 1)), where m = p(f), then we have the
following statements: o :

1. For an arbitrary v € Xp, {Gj(n)}2o and {Gp(n)}no satisfy the following linear recurrent equation:

m—1
Gs(gn+m;v) — Za;Gp(e;n+m—i—l;v):0. 4.7)
i=0

2. For arbitrary u € Yg(k), k > m and v € Xp, the following equation holds for any n >m—k+d:
m—k+a
Z er—4+iGg(en —3;v) when d>k—m

=1

Gp(u; m;v) = (4.8)
Gp(en;v) when d=k-m

where d = d(u[max{0,k —m +1},k+ 1)) + k —m.
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Proof. From Proposition 3.2, we have the following partitioning:

m—1a6;—1
Ya(en+m;v) = Ll I__| ¢l0,5)-i-Ya(en+m—j—1;v).
4=0 i=0 -
When d = k —m, it is trivial to obtain this partitioning from Proposition 3.2. When d > k — m, we obtain the
following partitioning from the same proposition.

m—k+dGx—atji—1
Ys(u;n;v) = LI V Ll u-i-Ya(en —j;v)
=1  i=0 o
The lemma follows from these partitionings. : : -0
Proof of Theorem 4.1. Let k > 0, u € Ys(k). Let M €Nand b= (bo bl, ybm—1) = Lg(M). We assume
' M to satisfy m > k. Define v
A(I; P) = A(I; P) - M)\(I),

where I is an intérva.l in [0,1) and P = {z;,%3,...,z4} C [0, l) For any finite sets of points P, P’ in'[0, 1)
and any intervals I, I' C [0,1), INnI' =,

A(I;PUP')
A(IUTI;P)

A(I; P)+ A(L; P')

A(I; P) + A(I; P) (4.9)

hold. Here, P U P’ is the d.ls_]omt union of P and P’ or the union of P and P’ with multlpllclty From
Deﬁmtlon 4.3 and (4 9), we have

m-—-1bj—1
A(B(u); Np[M]) =AB(w); || || Yale i) :
m-1b;—1 30 =0 (4.10)

= E Z A(B(u); Ya(e j;vi5))

i=0 =0
where v;; =i - b[j + 1,m). Consider the 0 < j < k part of the right hand side of (4.10).
E bi—1
Z 3 1AB); Ya(e 55 vi9))| < Z([ﬁl +1)Gp(j)Rs(u) (4.11)
3=0 i=0
holds from the definition of A. Since Rg(u) < f~* and Gs(j) < ([B] + 1)/, there exists a constant Cp, and
k
> (81 + 1)Gp(i)Ra(u) < Co
3=0

is satisfied for any k. Then, from (4.10) and (4.11), we have

m—1 bj—1
A(B);NsIM)) < Co+ Y > |A(B); Ya(e; b5 vi))] - ‘ (4.12)
i=k+1 i=0
Define Ry ()
6(y;n) = G?a(u;n) —ﬂ:mg—
én) = Gpn)- PAG)

for u € Yg(k) and k,n > 0. From this definition,

|A(B(u); Yg(n))l = |Gj(u;n) — Rp(u)Gh(k+n)|

|6(u; ) — Ra(u)é(k +n)| (4.13)
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holds. Then, from Lemma 4.2 we have

m—1.b;—1

Z E IA(B(U'): Yﬁ(er ;)|

j=k+1 i=0
m—1 bj—1 .

<Y Y Y |AG@YEO-Gli-D)+1 (4.14)
j=k+1 i=0 =1,...,5 .

J—1-1¢e(vi;)

m—1 b;—1
<>y ¥ (Z |A(B(w); Y°(l))|+1)

J—k-l-l =0 \l=1

From the (PV) condition and Lemma 4.4, there exist r > § and a constant C,. that satisfy

| < & (E) (4.15)

r

for any n, k > 0 and u € Yg(k). From (4.12), (4.13), (4.14), (4.15), and r > B, we see that

A(B(u); Np[M])

m—1 j l kH
<Co+C(A1+1) Y (}: (% &)+ (5) Rp(u)) + 1) (416)
=1

i=k+1
= O(m) = O(log M)
holds.

Choose an arbitrary ¢ € [0,1). Let M € N and Lg(M) = (bo,...,bm—1). Let B(to,...,tm—1) be a cylinder
of rank m that satisfies t € B(to,...,tm—1). Then we have

[0,t) = B,, UB,,U...UB, UR,

where 0 < 51 < $2 ... < s =m — 1, By, is a cylinder of rank s; and A(R) < ~™*1. Then from (4.9) and
(4.16), we have '
|A([0,2); Ng[M])| = O((log M)?),

and therefore

P (= 11a)

In the following part,, we consider the case in which g is Ma.rkov Let I = p(B) and (g = (do, . .., a2, (a,_l. —1)).
Then, £ is the unique 2 > 1 solution of

-1
2 - Za,-z'—l—" =0. . (4.17)
i=0

Let oy, ...,a, be the conjugates of # with respect to the equation (4.17), that is,

A Za,zl ~1-d —(z—ﬂ)l‘[(z—a)"

i=0
where ; > 1, s Zajforalli#jand 37 L, =1—-1 We also have

log| <1, forallie{l,...,q} - (4.18)
from the (PV) condition. Let v € X3. From Lemma 4.5, there exist complex numbers ¢, ¢;; (i =1,...,q, j =
0,...1; — 1) that satisfy the following equation:

r ;-1

Gg(gn;v) =cf™ + E Z cinfa? forall neN. (4.19)

i=1 j=0
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From Lemma 4.3, Lemma 4.5, and (4.19), we have

A(B(u) Ns[Gs(e;k + n;v)])

Z 'fc,., (n of — k(k +n)id4§*") :

h=1 j=0
when d=k -1 (4.20)
=y 1 q -1

T a X X o (0= diaft - Lo nadin),

i=k—d h=13=0
{ when d>k—1

where u € Yg(k), n € N, and d = d(u[max{0,k — 1+ 1},k + 1)) + k — L. From (4.9), (4.12), (4.14), (4.18), and
(4.20), there exists a constant C that satisfies the following inequality (4.21) for any cylinder B(u) of any rank
k and M > Gg(l + d).

|A(B(u); Ns[M])| < C (4.21)
Then, we obtain
log M
D) =0 (“BM1)
by the above reasoning,. - . | a
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