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For a compact complex manifold X, we have the Chern class ¢(X), which
is the Chern class ¢(T'X) of its tangent bundle TX, in the cohomology H*(X).
For a possibly singular complex algebraic or analytic variety X, there are at least
three kinds of Chern classes in the homology H,(X). Namely, the Chern-Schwartz-
MacPherson class c,(X), the Chern-Mather class ¢™(X) and the canonical class or
Fulton-Johnson’s Chern class ¢F'7/(X). These three classes all reduce to ¢(X) ~ [X]
when the variety has no singularities. We discuss here the relation among them,
particularly in the case of local complete intersections with isolated singularities.

We briefly review the above mentioned Chern classes. Let X be a compact
subvariety of dimension n in a complex manifold M. The Chern-Mather class ¢™ (X))
is, roughly speaking, the Chern class of the bundle of limiting tangent spaces of the
non-singular part of X. To be a little more precise, let # : Go(TM) — M be the
Grassmann bundle of n-planesin TM and v : Xg — Gn(TM) the map which assigns
the tangent space T, X to each point p in the non-singular part Xo = X \ Sing(X) of
X. The Nash modification X of X is defined to be the closure of Im 7 in G,(TM).
It is equipped with the projection w : X — X, which is the restriction of %, as well
as the Nash tangent bundle 7, which is the restriction of the tautological bundle 7
over Gp(TM). Then the Chern-Mather class is defined by

M(X) = mu(e() ~ [X)),

‘where ¢(7) is the total Chern cohomology class of the vector bundle 7 and [X] is
the fundamental class of X.

The Chern class for a singular variety X in a complex manifold M was
first constructed by M.-H. Schwartz [Sc] in the relative cohomology H*(M, M \ X)
using radial vector fields. On the other hand, the existence of the theory of Chern
homology class as a natural transformation of funtors was conjectured by P. Deligne
and A. Grothendieck and was proved by R. MacPherson [M]. Basic ingredients for
this theory are the Chern-Mather classes and the “local Euler obstructions”. Let
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F(X) be the abelian group of constructible functions on X, which is freely generated
by the local Euler obstruction functions Euy of reduced, irreducible subvarieties V
of X. It is proved in [M] that there exists a morphism ¢, : F(X) — H.(X)
which is functorial and satisfies the extra condition that, if X is non-singular then
c(1x) = ¢(X) ~ [X], where 1x denotes the characteristic function of X. In fact,
c« is given by cu(Xynv Euy) = Sy nv cM(V). If we set co(X) = ci(1x), in
[BS], it is shown that it corresponds to the Schwartz class by the Alexander duality
H.(X)~ H*(M,M \ X). We call c,(X) the Chern-Schwartz-MacPherson class of
X.

"The canonical class or Fulton-Johnson’s Chern class cF7(X) is defined in
terms of the Segre class of X in general, and is relatively easy to understand when
X is a local complete intersection. Thus let X be a local complete intersection in
a complex manifold M. Then the normal bundle to the non-singular part of X is
canonically extended to a vector bundle Nx over the whole X. More precisely, let
Ix be the ideal sheaf of X in the structure sheaf Oy of M and Ox = Op/Ix,
then the vector bundle N is identified with the normal sheaf Homo, (Tx /Z%,0x),
which is locally free in this case. For such X, we have the virtual tangent bundle
TM|x — Nx, whose total Chern cohomology class is given by ¢(TM|x — Nx) =
o(TM|x) - c(Nx)~!. Then Fulton-Johnson’s Chern class in this case is given by

(X)) = o(TM|x — Nx) ~ [X].

Here we consider varieties X satisfying a little stronger condition. Namely,
we assume that there exist a holomorphic vector bundle £ — M of rank k over M
and a holomorphic section s of E so that X = s~1(0). We further assume that the
ideal sheaf Tx is locally generated by the local components of s. Thus X is a local
complete intersection and the restriction E|x coincides with the normal bundle Nx.
For example, this condition is satisfied in the following cases, with a naturally given
vector bundle E: ’

Examples. 1) X a hypersurface in M (k = 1). In this case, we may take as E the
line bundle determined by the divisor X.

2) X a (projective algebraic) complete intersection in the projective space CP"*¥,
This means that the ideal Ix of homogeneous polynomials vanishing on X is gen-
erated by k homogeneous polynomials Py,..., Px. In this case, we may take as E
the bundle H% @ --- @ H%, where H denotes the hyperplane bundle and d; the
degree of P; for: =1,...,k.

Theorem I [Su]. Let X be a compact variety of dimension n as above with isolated
singularities py,...,p,. Then we have

cx(X) = cFJ(X) + (=1)"H! Zm,

where p; is the Milnor number of X at p;.

This together with various known formulas imply the following,
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Theorem II [OSY]. Let X be as in Theorem I. Then we have

M(X) = FI(X) 4 (<1 Y ma(X, ),

i=1
where mn (X, p;) is the n-th polar multiplicity of X at p; in the sense of [Ga]. |

Now we recall Milnor numbers and polar multiplicities. Let X be a. complete
intersection variety in C"t* with an isolated singularity at the origin. We list
[Mi], [H], [Lé], [Gr] and [Lo] as general references for the Milnor number of such a
singularity (cf. also [E1], [E2]). Let n = dim X and suppose that the germ (X, 0) is
given as the zero set f~1(0) of an analytic map-germ f = (f1s++os F&) 1 (C™FE0) —
(CF,0). For general t € CF, the inverse image X; = f~1(t) is non-singular and the
intersectin X; N B, with a sufficiently small ball B, about 0 is called the Milnor
fiber. It is known that it has a homotopy type of a bouquet of spheres of dimension
n. The number of spheres appearing is the Milnor number p, (X) of X at 0. There
is an algebraic formula for this ([Lé], [Gr]). We set, for i = 1,...,k,

a; = dimCOn+l_c/(J(fla'.°')fi))fla”'7fi—1)7

where J(f1,...,fi) is the Jacobian ideal of the map (f1,--+, fi) : (C™*F0) —
(C%,0). Then we have

k
po(X) =Y (—-1)*as.

=1

Also, the n-th polar multiplicity of T. Gaffney [Ga] is defined by

mn(XaO) = dimCOn+k/(J(f1’-'-7fk,e)af1,-",fk)a

where £ is a general linear function £ on C***. Note that it is equal to the sum
po(X) + po(X N H), where H is the hyperplane defined by £. We recall that there
are polar multiplicities m;(X,0) of Lé-Teissier for i = 0,...,n — 1.

For the proof of Theorem I, we use the following formula.

Theorem III [SS2]. Let X be as in Theorem I. Then the Euler-Poincaré charac-
teristic x(X) of X is given by

X(X) = [ en(TMlx = Nx) + (-1 Y i

i=1

Remarks. 1) When X is non-singular, the formula in Theorem III reduces to

X(X) = [ en(x),
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which is the “Gauss-Bonnet” theorem. ‘

2) When n =k =1, we have [, ;(TM|x — Nx)=—-Ky-X - X - X where Ky
denotes the canomcal bundle of M. Thus the formula in Theorem III becomes the
classical “adjunction formula” for singular curves in a complex surface ([K]).

3) If X is a complete intersection in M = CP™**, Nx is determined by its multi-
~ degree (d,...,di) (see Example 2) above) and we have

k
o(TM|x — Nx) ~[X] = ((1’4’ R)mHEHL H i ) ~ [CP™+¥]

1+d;h

((1 + h)n+k+1 H T d h) ~ [CP"],

Where h denotes the first Chern class of the hyperplane bundle and CP" a linear
subspace of dimension n. This together with Theorem I or II give the Chern-
Schwartz-MacPherson class ¢,(X) or the Chern-Mather class ¢M(X) of X.

Theorem III is proved as an application of the study of various kinds of
indices of a vector field on.a singular variety. For a vector field v on a singular
variety X, we consider the “Schwartz index”, the “GSV-index” and the “ virtual
index” at the singularity of v. All these reduce to the usual Poincaré-Hopf index
when the singularity of v is in the regular part of X, so we compare them when it
is in the singular part of X.

M.-H. Schwartz defined an index for “radial” vector fields on a singular
variety X ([Sc], [BS]). This definition can be extended to vector fields which are not
radial and we call the corresponding index the Schwartz index of a vector field. For
a global vector field on a compact variety X, the sum of the Schwartz indices gives
x(X). . |
The GSV-index, which is introduced in [Se], [GSV] and [SS1] is defined
for an isolated singularity of a vector field on a local complete intersection X in a
complex manifold M and it takes into account the topology of X as well as the way
X is embedded in M. The difference of the Schwartz index and the GSV-index is
given in terms of the Milnor number of X at the singularity, which, together with
the formula for the sum of the Schwartz indices, give a formula for the sum of the
GSV-indices of a global vector field.

The virtual index is introduced in [LSS]. It is defined by differential geo-
metric method and for this, besides X being a local complete intersection, we need
the additional condition described above (in fact we could develope a similar theory
under a weaker condition). This index is defined equally well at singularities which
may not be isolated and, in the global situation, the sum of the virtual indices gives
the top Chern class of the virtual tangent bundle TM|x — Nx. Thus using the
fact that, if the singularity is isolated, the virtual index coincides with the GSV-
index ([LSS]) and also noting that there is always a global vector field with isolated
singularities on X, we obtain Theorem III.
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Final remarks. 1) A. Parusiniski [P] defined a generalized Milnor number for each
compact connected component of the singular set of a hypersurace and proved a
formula for the sum of these numbers, which coincides with the one in Theorem III,
if the singularities are isolated. '

2) For hypersurfaces with arbitrary singularities, P. Aluffi [A] has obtained a formula
similar to the one in Theorem I.

3) Our method outlined above applies in more general settings such as the case of
non-isolated singularities of local complete intersections, and it will be treated in a
forthcoming work (cf. the article of D. Lehmann in this volume).
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