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GLOBAL ASYMPTOTIC STABILITY OF A PREDATOR-PREY

SYSTEM OF HOLLING TYPE

BIRXF BEBIPH &I =8B (JITSURO SUGIE)
BEXF BEBTHE AU A®” (MASAKI KATAYAMA)

1. INTRODUCTION

We consider a class of predator-prey models of the form

P
:b:rx(l—f)— Y

k a-+ P (1.1)
. pz? 5
y=yv a+zP ’
2(0) > 0, y(0) > 0,

where = d/dt, and where z(t) and y(t) are the densities of the prey and predator, respec-
tively, at given tirrzl’e t > 0. The parameters r, k, a,-4, D, and p are positive real numbers.
The function . d
functional response is said to belong to Holling type II if p < 1; to Holling type III if p > 1.

> in (1.1) represents a functional response of predator to prey. The

The functional response of Holling type is strictly increasing and bounded; if p < 1, then it
is upwards convex; otherwise, it has a inflection point, that is, the functional response curve
is sigmoid. This predator-prey model has been widely studied in many papers (for instance,
(1]-[10]). Also, we can find this system as an important example in the literature [11]-{17]
concerning a generalization of (1.1) which was proposed by Gause [18]

T =1zp(x) —yo(z),

. (12)
v=y(-7+9(@).
System (1.1) has two equilibria E((0,0) and E;(k,0). In case
def aD
p>D and k>N = D’ (1.3)

the third equilibrium E*(),, v,) appears in the region {(:r, Y): z > 0and y > 0}, where

T A
Vp‘—‘ B— (l—f') Ap.
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- The aim of this paper is to present a necessary and sufficient condition under which the
positive equilibrium E* of (1.1) is globally asymptotically stable. We say that the positive
equilibrium E* is globally aymptotically stable if E* is stable and if every solution of (1.1)
tends to E*. |
Generally speaking, if
(i) all solutions are bounded in the future,
(ii) a unique equilibrium exists and is asymptotically stable,
(iii) no closed orbits exist,
then, by the Poincaré-Bendixson theorem, the unique equilibrium is globally asymptotically
stable. ’ |
It is easy to show that all solutions of (1.1) and (1.2) are bounded in the future and remain
in the region {(a:, y): z>0andy > 0}. It is also well known that under the assumptions
which ensure that system(1.2) has a unique positive equilibrium,

(5%

implies that the positive equilibrium is (locally) asymptotically stable, where z* is the z-

<0 | (1.4)

T=x*

coordinate of the positive equilibrium (for example, see [13], [15], [19]). In system (1.1),
condition (1.4) coincides with
(»D — (P~ D)k < (pD - (p - 2)u) Ap. | (1.5)

If assumption (1.3) fails, then no positive equilibrium exists and, therefore, system (L1)
has no closed orbits. Recently Sugie, Kohno and Miyazaki [10] discussed the case that
the positive equilibrium E* exists and gave the following sufficient condition for the non-

existence of closed orbits of (1.1).

THEOREM A ([10]). Let p be a positive number with p < 1 or p > 1. If (1.3) and

(D — (p— 1))k < (pD — (p— 2)p) X | (1.6)
are satisfied, then system (1.1) has no closed orbits.

By virtue of Theorem A, we see that if (1.3) and (1.5) hold, then the positive equilibrium
E* of (1.1) is globally asymptotically stable when p < % or p > 1. However, the case

(D - (- D)k = (pD — (p— 2)u)Ap o

is delicate. To answer this delicate problem, we need to examine the behavior of trajectories
near the positive equilibrium E* of (1.1). | | ‘

A trajectory is said to be a homoclinic orbits if its o- and w-limit sets are the origin. If
system (1.1) has a homoclinic ‘orbit, then the positive equilibrium E* is not even stable. In
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Section 2 we show that system (1.1) has no homoclinic orbits.. Hence, it follows form (i)
that every positive semitrajectory of (1.1) keeps on rotating around the positive equilibrium
E*, in counterclockwise order; or ultimately, it approaches E* without rotating around E*.
Moreover, by Theofem A and (iii), we see that the positive equilibrium E* of (1.1) is also
globally asymptotically stable in the critical case (.7). '

In Section 3 we lift the restriction that p < 5 or p > 1. To be more exact, we consuier the
case 0 < p < 1 and prove that if (}1.6) is satisfied, then system (1.1) has no closed orbits.

In Section 4 we prove the main result of this paper:

THEOREM 1.1. Assume (1.3). ‘Then the positive equﬂibﬁum E* of (1.1) is globally
asymptotically stable if and only if (1.6) is satisfied.

2. NON—EXISTENCE OF HOMOCLINIC ORBITS

We first examine the asymptotic beha.v10r of trajectories in a neighborhood of the origin
of the Liénard system

du :

—d—- =70 - F(U), ’ :
d; | (2.1)
a; = —g(U),

where F(u) and g(u) are continuously differentiable and
F(0)=0 and 1ug(u)>0 if u#0. (2.2)

In particular, we concentrate our attention on the problem when system (2.1) has homoclinic
orbits. Taking account of the vector field of (2.1) and assumption (2.2), we see that

(i) if there exists a homoclinic orbit of (2.1), then the origin is not stable,

(i) if system (2.1) has a homoclinic orbit, then all trajectoriés of (2.1) in the region that
is enclosed by the union of the homoclinic orbit and the origin are also homoclinic
orbits,

(iii) if a homoclinic orbit exists in the upper half-plane {(u,v): u > 0 and v € R} (resp.,
the lower half-plane {(u, v):u<0Oandv € R}), then other homoclinic orbits exist
in the upper (resp., lower) half-plane.

This problem resolves itself into the question whether the positive semitrajectory of (2.1)
starting at any point on the vertical isocline {(u,v): v € R and v = F(u)} crosses the
y-axis at some finite time or approaches the origin without intersecting the z-axis. Sugie
and Hara [20] discussed the question in detail and gave some sufficient conditions for the
non-existence of homoclinic orbits of (2.1). For the sake of convenience, we denote

Gz) = A “4(0)do,
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Ct={(z,y):z>0 and y=F(z)} and C":{(z,y):a:<0 and y = F(z)}.

THEOREM B ([20]). Suppose that

F(z) < 24/2G(z) — h(1/2G(z) ) (2.3)

for ¢ > 0 (resp., ¢ < 0), |z| sufficiently small, where h(c) is a non-negative continuous
function with

M) _Is non-decreasing and is not greater than 2
o (2.4)
for o > 0 sufficiently small,
g0
/ hsg)da oo for some og > 0. (2.5)
0

Then the positive (resp., negative) semitrajectory of (2.1) passing through any point on
the curve C* (resp., C~) meets the negative y-axis and, therefore, system (2.1) has no
homoclinic orbits in the upper half-plane.

THEOREM C ([20]). Suppose that

F(z) > -24/2G(z) + h(1/2G(z) ) (2.6)

for x > 0 (resp., ¢ < 0), |z| sufficiently small, where h(o) is a non-negative continuous
function satisfying (2.4) and (2.5). Then the negative (resp., positive) semitrajectory of
(2.1) passing through any point on the curve C* (resp., C~) meets the positive y-axis and,
therefore, system (2.1) ‘has no homoclinic orbits in the lower half-plane.

Let h(c) = 0. Then h(o) satisfy conditions (2.4) and (2. 5) For simplicity, let ' = d/du.
Suppose that F'(0) < 0. Then, by (2.2) we have

F(z) < 0< 4/2G(z) = 24/2G(z) — h(1/2G(z))
for > 0 sufficiently small, and
F(z) > 0> —/2G(z) = -2¢/2G(z) + h(/2G(z))

for z < 0, |z| sufficiently small. Hence, conditions (2.3) and (2.6) are also satisfied for z > 0
and z < 0, respectively. Thus, from Theorems B and C, we see that system (2.1) has no

homoclinic orbits. Similarly, if F7(0) > 0, then system (2.1) has no homoclinic orbits.
We consider the case that F”(0) = 0. If g’(0) > 0, then there exists an &o > 0 such that

V2G(z) > &olz|

for |z| > 0 small enough. Hence, we have

|F(z)] < eolz| < 1/2G(z) = 2¢/2G(z) — h(/2G(z))
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for |z| > 0 small enough and, therefore, conditions (2.3) and (2.6) hold for both z > 0 and
z < 0. Thus, system (2.1) has no homoclinic orbits. From Theorems B and C we also see
that all positive semitrajectories of (2.1) near the origin keep on rotating around the origin
in this case. ‘

To sum up, we have the following result.

THEOREM 2.1. If F'(0) # 0, then system (2.1) has no homoclinic orbits; if F'(0) = 0 and
g'(0) > 0, then all positive semitrajectories of (2.1) near the origin keep on rotating around
the origin and, therefore, system (2.1) has no homoclinic orbits.

Let us now return to the Gause predator-prey model (1.2). We assume that the functions

in system (1.2) are sufficiently smooth on [0, co) and satisfy the following:

(i) there exists a K > 0 such that (z — K)p(z) <0 if z # K,
(ii) ¢(0) =+(0) =0 and ¢'(z) > 0 and ¥'(z) >0 for =z > 0,
(iii) there exists an z* with 0 < 2* < K such that 1,b(a:*) =
z* p(z*) |

o(z*

For the sake of convenience, we define

“9() 4
P(z f
@)=, )
Then we can transform the Gause-type model (1.2) into system (2.1) with

F(u) = /Ou{(— Y+ +2%) + (0 +27) = ((" ;’?fg; z )) } exp{ —~®(0 + z*) }do,

o) = (u+ ")l -+ =) (= 7+ (u+ 2)) [exp{~0(u + 27} ]

In fact, changing variables

Put y* = . Then system (1.2) has a unique posmve equilibrium (z*,y*).

u=1r—zx",

v = —(zp(z) -y d(z)) exp{ —B(z)}
+ [{r4v0) + 0017 (55 fexe{ -0t}
dr = —exp{9(z) } dt,
we have | |
du

& = ~(2p(z) -y $(z)) exp{ ~8(x)}

—v-— /:{(— ¥+ 9(0)) + ¢(0)% <o¢p(f;;))}exp{—¢(o)}da
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and
W = {o0(a) + 20 @) — 5 9(0) v ¢ @)} [exp{ ~2(2)}]

- (20(2) =y (@) S s [ exp{-2()}]

_ { (=7 + () + ¢(z)— (%f((—)—)-)}i[exp{ -@(m)}]z

- {p(z) +zp(z) - %p(;()g(x) - ¢(x) 5= (x;z(a;)) } [exp{‘—fli(ac)}]2

(v vaps o) [enf-sen] ‘
= _{ (=7 +9¥(@))(zp(2) -y () + d(x)y (- v + ¥(2)) } [exp{ —51’(95)}]2

= ~2p(@)(~ 7+ 9(@)) [ exp{ ~2(@)}]
= —g(u). |

The change of variables transfers the positive equilibrium (z*,4*) of (1.2) to the origin of
(2.1). It is clear that F(0) = 0. By assumptions (i)—(iii) on p(z), ¢(z), and ¥(x) we see that

ug(u) >0 for —z* <u< K —z* and u #0.

Since
P = { (—r+ et ) + otu+27) 1 (CEIEE TN e —au-+27))
and ‘

§'@) = pluta7) (= 7+ ¥(u +27) [ ep{~0(u+2)}]
+ @+ (u+r)(-y+vu+ x*)) [exp{—@(u + x*)}]z'
+ (u+2")p(u+ 2" )¢ (u+z*) [e><p{—s15(u+:v")}]2

¢'(u+z*)

ot o) [exp{—@(u +x*)}]2,

= 2(u+2")p(u+ ") (= v +P(u +z7))

we get

F(0) = (= )—(

(u+zx*)p(u+ z*))
é(u+z*)

Hence, by Corollary 2.1 we have the following result.

and  ¢'(0) =2p(@" )/ (z") > 0.

u=0

THEOREM 2.2. System (1.2) has no homoclinic orbits. If

& (%) |-

=0,
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then all positive semitrajectories of (1.2) near the positive equilibrium (z*,y") keep on

rotating around (z*,y*).

Since system (1.1) is a special case of the Gause predator-prey model (1.2) with v = D,
K=k 'b p P
— _z - __7 . kT
plz) = r(l k) G a+zr’ and  ¥(z) a+zP’

the following is an immediate consequence of Theorem 2.2.

THEOREM 2.3. System (1.1) has no homoclinic orbits. If

(»D = (p— Yu)k = (pD — (p = 2)u) Ay,

then all positive semitrajectories of (1.1) near the positive equilibrium E* keep on rotating
around E*.

3. NON-EXISTENCE OF CLOSED ORBITS

In this section we will prove the following result concerning the non-existence of closed
orbits of (1.1). ‘

THEOREM 3.1. Let p be a positivé number with p < 1. If (1.6) is satisfied, then system
(1.1) has no closed orbits.

By a change of variables -

P
u=z—2Ap, v=logy—logy, ds= —af_zpdt,
system (1.1) can be transformed into the system
du U+ A\ _
'EZ%J‘TO“‘?l>hw+»fp+m+»m
dv : -
Pt —pu+D+aD(u+ A)7P.
To pay our attention to thevpa.ra.meter k, we put

filw)=r (1 - u";:"’) {a(u+2)1 7P+ (u+ )} — 15

for u > —\,. We also define

6(u) =p—D —aD(u+ Ap)7?

for u > —M,. Then we have
’ du

= =1p(e” = 1) - u(w)

%} = —6(u).

(3.1)
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Since , ‘
A.
I‘k(O):r(l——-kﬁ>)\p (/\%-Fl)—vpzo

1 1 . |
system (3.1) is of Liénard type.

Consider the plane curve (Fk (u), A(u)) for u > —A,, where

Au) = Lué(a)do.

This curve passes through the origin at u = 0. The second component A(u) is decreasing
for —\, < u < 0 and increasing for u > 0. Hence, the curve (Ik(u), A(u)) has a point of
intersection with itself if and only if there exist two constants u; < 0 and uz > 0 such that

, .Fk(ul) - Iv(uz) and A(u1) = A(ug).

It is known that if the curve (I (u), A(w)) has no point of intersection with itself, then
system (1.1) has no closed orbits .(a,nd neither has system (1. 1)). For the proof, we refer to
[21]-[23]. ' :

Condition (1.6) yields

k< M=k

“pD-(p-1p’" |
when 0 < p < 1. We intend to show that (1.6) implies the curve (I (u), A(u)) has no inter-
secting point with itself. To begin with, we examine a property of the curve (I‘k-(u), A(u)).

LEMMA 3.1. Let H(u) be the inclination of the curve (Fk~(w), A(u)), that is,

IO
If 0<p<1, then H(u) <0 and H'(u) >0 for u > —Xp and u #0.

" Proof. Since

Te(u) =7 (1 L -I:*Ap> {au+2) P+ (u+ )} —vp |

and
A =(u—D ,__aQ_ )\’ 1-p _ )\l-p
@ = (= D)= T {w+X)? = 77}
for u > —A,, we have

= { (14 2555 ) -2t ) - e -0+ ).
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wey_ T [ak*p(1—p) a(l-p)(2 —p)
Tis(u) = ——= {—__(u—}—)\p)lﬂ’ +(2+ @t A7 } <0,

e 55 - @ +1A;>v>’

and
apD

SRS W

>0

for u > —A,. Using the fact that aD = (u — D), we also have

Ii(0) = Er— { <1 +.M> k*—2), —a(2 - p)A;—P} |

7
~z {10 ipp)]()u D)y, - 280D, )
= ka{(pD +(1=p)E = (pD + (2= p)u)p } = 0
and |
A'(0) = aD (;p - 31;1;') —o.
Hence, we see
wli-(w) <0 and wA'(w)>0 if u0. (3.2)

Now, we consider the inclination

A'(u)  ak*D ; (u+ Ap)P — AB
Giu) — rap | ((w+ )P +a(1 —p))k* ~ 2w+ A) P —a(2 —-p)(u+Ay) [

H(u) =

Since I3+(0) = 0, the slope function H(u) is not defined for © = 0. From (3.2) it is clear that
H(u) < 0for u > —\p, and u # 0. We also obtain -

D . _ : A"(0)
uBEl PH(u) A=) ,}EEOH(U) =0, and lli%H(u) TE0) <0
We next show that :
A" (u)I§(u) — A'(u)[k(u)
H'(u) =
“ WP
is positive for u > —\, and u # 0. Since

" arD k*p ak’p(l1-p)  2p _ ap(2-p)

A"(w) () = { 7R W Rl TRy W s TRy R (O W
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and 4
Aty arD [ ak*p(1—p) 2 a(l-p)(2-p)
At =S Gt R e o |
_aek'p(l-p) 2 a(l—p)(2—p)}
(u+Ap)H20 (w4 A,)P (u+ Ap)2P
_ _arD {k*p(l —p)(up~D) n 2 + (1-p)2-p)(u—-D)
-k D(u+ Ap)ite Y4 D(u+A,)P
_ekp(l-p) 2  a(l-p)2-p) }
(u+ )22 (u+ Ap)? (u+Ap)%r ’
- we have

" Lia) — A wy_ arD k*p(pD +(1 “p)”') 2
A e(w) = A(w)Te(u) = k* { - D(u+ Ap)itr * A5

LA-D@-pu-*-p+4D _ a2-p) }
D(u+ Ap)P (u+ Ap)?P
_arD [ p(pD + (2 —p)u)A, 2
ok D(u + Ap)itr Y3
L1-PN@-pu- @ -p+4D _ a2-p) }
D(u+A)P (u+ Ap)?P
_ arW (u)
Tk (ut )T

where
W(u) =p(pD+ (2 - P Ap(u+ Ap)? + i—g(u + 2,)1 %P |
+(A-p2-p)u— ©* —p+4)D)(u+ )P —a(2 - p)D(u + Xy).
Hence, the sign of H'(u) coincides with that of W (u). We get
P*(pD + (2 = p)u) Ay L 20+2p)D

W) = RS T (A
+(1+p)(Q-p)(2-pu— (® —p+4)D)(u+ \)? —a(2-p)D
and |
4 2p)D
W”(u) = m{— (1= p)p*(pD + (2= plu) A + —p—(-l-j\rg—m—(u + )P

+p(1+7) (1= D)2 - P - 0F —p+ D) (u-+ 1)
We here define

w(w) = = (1= P (D + 2 - P, + LD

+p(1+p)(1-p)(2-p)— P* —p+4)D)(u+ Ap).

(u+ )‘p) e
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for u > —Ap,. Then we have
w(0) = p(p(5 — P)D + (1 = P)(2 = P)u)Xp > 0
and

'u_limA w(u) = —(1—p)p* (pD + (2 — p)p) Ay < 0.
“Ap '
Also, we see that the function w(u) is downwards convex. In fact, we have

4p(1+ p)(1+ 2p)D
b

w'(u) = (w+Ap)? +p(1+p)((1- P2~ P~ #* —p+4)D)

and '
4p%(1+ p)(1+ 2p)D
2B

for u > —),. Hence, there exists a @ < 0 such that w() =0,

W' (u) =

(u+ )P 1 >0

ww) <0 for =Xy <u<é and w(u)>0 for u>1d.

Since W"(u) = @-+w—§z))-:q:5,

ing for u > 0. Noticing that

the function W’ (u) is decreasing for —A, < u < 0 and increas-

lim W (u) = X{ (5° + 21+ 29) - (L + D)@ —p+4) + 2~ 7))D
| +(PE-p) +1+n)(1-pC-p) - 2-P)n}
=0
and
A W) = co,
we conclude that W’ (@) = 0 for some @ € (—Ap, 4),

W'(u) >0 for -\ <u<@oru>0 and W(u)<0 for a<u<0.

Moreover, we can get
W(0)=0 and limA W(u) =0.

Hence, it turns out that
W(u) >0 for u>—Xp and u#0.

Since the signs of W (u) and H’(u) are the same, H'(u) is also positive for u > —A, and

u#0.

The proof of Lemma 3.1 is now complete.

Remark 3.1. Let (u1,uz) be a pair of constants satisfying

“Ap <up <0<uz and Alur) = Auz).
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Then it follows from Lemma 3.1 that I'ks(up) < Ik=(u1). That is, the curve (Tke(u), A(u))
has no point of intersection with itself (see Figure 1).

I(w)

Fig. 1. The curve (I} (u), A(w)) withr=1,a=1, p=4, D=3, p=2 andk=
2.2, 1.5, 1.1. The amount of u increases in the direction of arrows.

Proof of Theorem 3.1. It is enough to show that the curve (I’k(u), A(w)) has no point of
intersection with itself. :
Partially differentiate I';(u) to obtain

0 T - . H

E&Fk(ﬂ;) = ﬁ(a(u -+ Ap)2 p + (U 4+ Ap)z - 5)\%).
Define

_ b
f@) = alu+ AP+ (ut X)* = 5N

for 4 > —Ap. Then we have

HOERH (&‘BQH-%) =0

and
fllw) =a2—p)(u+ )P +2(u+Ap) >0 for u> =X,
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Hence, we get
flu) >0 for u>0 and f(u)<0' for —Ap<u<0 '
and, therefore,

3} 0
ﬁfk(u)>0 for u>0 and EZF",(U’)<O for — A, <u<0.

By (1.6) and the fact that 0 < p < 1, the parameter k is not greater than k*. We therefore

conclude that
Ii(u) < Tx<{u) for u>0 and TIy(u) > Ie(w) for — X, <u<0.
Thus, from Lemma 3.1 and Remark 3.1 it follows that
Iy (ug) < Iio(ug) < Ip+(u1) < T(1)
for any pair (u;,ug) satisfying |
“Ap<u1<0<ug and A(u1) = A(ue).

This means that the curve (1”,c (u), A(u)) has no intersecting point with itself (see Figure 1

again). The proof is complete.

It is clear that no closed orbits exist when asuumption (1.3) fails. Hence, combining

Theorem 3.1 with Theorem A, we have
THEOREM 3.2. If (1.6) is satisfied, then system (1.1) has no closed orbits.

We are now ready to prove Theorem 1.1 which is the main result of this paper. In the

next section, we give the proof of Theorem 1.1.

4. PROOF OF THE MAIN RESULT

Because of (1.3), system (1.1) has the unique positive equilibrium E*. Taking the vector
field into account, we can easily see that all solutions of (1.1) are positive and bounded in
the future. '

Sufficiency. Suppose that (1.6) is satisfied. We have to show that the positive equilibrium
E* is stable and every solution of (1.1) tends to E*.

Let J* be the variational matrix about E*. Then we have

()
N 0
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where
M = { (D~ (0~ D)k - (oD - (0 - D), }
and '
N= %(k —A)(u — D) > 0.
If

(pD — (p— Yu)k < (pD — (p — 2)u)Ap,
then M is negative and, therefore, the eigenvalues of J* have negative real parts. Hence, we
see that the positive equilibrium E* is (locally asymptofica.lly) stable.

 In case - |

(pD = (0= Dp)k = (pD — (p — 2)u)Ap, o
form Theorem 2.3, all positive semitrajectory of (1.1) near the positive equilibrium E* keep
on rotating arround E*. Suppose that the positive equilibrium E* is not stable. Then every
positive semitrajectory of (1.1) starting in the neighborhood of E* go away from E*. Hence,
by the uniqueness of solutions for the initial value problem and the Poincaré-Bendixson
theorem, system (1.1) has a closed orbit. This is a contradiction to Theorem 3.2. Thus, the
positive equilibrium E* is also stable in the case.

From Theorem 3.2, system (1.1) has no closed orbits. Hence, by the Poincaré-Bendixson
theorem again, we see that all positive semitrajectory appréa.ch the unique positive equilib-
rium E*. That is, every solution of (1.1) tends to E*. '

Necessity. Supposse that

(vD — (p— Du)k > (D — (p — 21

namely, M is positive. Then the eigenvalues of J* have positive real parts. Thus, the
positive equilibrium E* is unstable. ‘

We have completed the proof.
5. DISCUSSION
Consider the system

& =z p(x) — £(y)o(x),

g =n(y)(—7+9(),
where the functions p, &, ¢, 17, ¥ are sufficiently smooth and the following assumptions:

(5.1)

there exists a K > 0 such that (xr — K)p(z) <0 if z#K, (5.2)
#(0) = ¥(0) =0 and ¢'(x) >0 and ¢'(z) >0 for z >0, (5.3)
£(0) =n(0) =0 and &(y) >0 and 7'(y) >0 for y >0, (5.4)
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there exists an z* with 0 < z* < K such that ¢(z*) =1, - (5.5)

. z*p(z*)
ylll,f}o §(y) > @) (5.6)
d
%@%U_f“ 67
Let y* be a positive constant satisfying B
. _ T'p(z*)

Assﬁmptipns (5.2)-(5.6) guarantee that (z*,y*) is a unique positive equilibrium and as-
sumption (5.7) guarantees that (z*,y*) is locally asymptotically stable.

Kuang [19] gave some sufficient conditions for the positive equilibrium (z*, y*) of (5.1) to
be globally asymptotically stable.

THEOREM D ([19]). Assume (5.2)—(5.7). If one of the following conditions is satisfied,
then the positive equilibrium (z*,y*) of (5.1) is globally asymptotically stable:

(2’(’;")’) —§(y*)) (@-2)<0 for 0<T<K; (5.8)
%(%()g—))<0 for 0<z<K; _ (5.9)
d (zp(z)
W)E( o) ) +B(—v+¥() <0 for 0<z<K, (5.10)
where 3 is a suitable positive constant;
i 7'(27) *
da:(__——'y+¢(z))20 for 0<z < K and x # ", 6.10
where T(z) = ¢(z)% (-%%) .

Comparing system (1.1) with system (5.1), we see that * = X\, ¥* =1, v =D, K =k,
EW)=n(y) =y

pa)=r(1-3), 9=

Hence, we have

P uzP
d = .
i ¥(@) a+zxP

T gy = o)t =1+ 6(e) = 4o~ )

where I';, and § are defined in Section 3 and, therefore, conditions (5.7)—(5.10) are equivalent
to '

Ix(0) < 0, (5.7
ulp(u) <0 for = A Su K-, (5.8)’
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W) <0 for =\, <u<K-X, (5.9)
Llu)+ 66(u) <0 for =Ny <u< K =), (5.10)’

d [ 6(u) -
_ < — _ !
T (I’i&(u)) <0 for — A\, <u<K-X, and u#0, (5.11)

respectively.
Since I'x(u) is a C'-function and I'x(0) = 0, condition (5.8) implies I %(0) <0, that is,

(8D — (p— W)k < (pD — (0 — 2)p) M

which is the necessary and sufficient condition for the global asymptotic stability of the
equilibrium E* of (1.1). Of course, (5.7)" or (5.9)" implies I}/(0) < 0. Since §(0) = 0,
condition (5.10)’ also implies I}(0) < 0. Thus, condition (5.7) is somewhat heavy and
conditions (5.8)—(5,10) are unnecessary to ensure that the positive equilibrium E* of (1.1)
is globally asymptotically stable.

It was shown in the proof of Lemma 3.1 that
I(0) =0

d (6w _d A\ _
@(W>_E(W>—H(u)>0 for u>—Xp, and u#0.

Hence, conditions (5.7), (5.9) and (5.11) are not satisfied in the critical case

(pD — (p— Vu)k = (pD — (p — 2)1) My,

namely, k= k*.
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