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1. INTRODUCTION

In this paper we consider the first order neutral differential equation

@y %[w(t) +h(@)a(r(®)] + o f(t,2(9(t))) = 0,

where 0 = +1or —1. It is assumed throughout this paper that:

(@) 7 :[to,00) — R is continuous and strictly increasing, 7(t) < ¢ for ¢ > ¢, and
lim; o 7(t) = o0 -

(b)  h:[r(te),00) — R is continuous;

()  g: [to,00) — R is continuous and lim;_,, g(t) = oo;

(d) f: [to,00) x (0, 00) — [0, 00) is continuous and f(¢,u) is nondecreasing in
u € (0,00) for any fixed t € [0, 00).

By a solution of (1.1), we mean a function z(t) which is continuous and satisfies
(1.1) on [ts, 00) for some t; > tp. '

Recently there has been considerable investigation of the existence of positive
solutions of first order neutral differential equations. We refer the reader to [1-20).
In particular, it is known that (1.1) has a solution z satisfying

(1.2) 0< litrg(i’gfx(t) < limsupz(t) < oo

t—o00

if and only if
o0

(1.3) / f(t,a)dt < oo for some a > 0
to

when one of the following cases holds:

(i)  |h(t)] £ A< 1and h(t)h(r(t)) >0 ([1, 5, 6, 13, 14, 16));
(i) h@)=landr(@t)=t—1 (r>0) (1, 17)); '
(i) 1< p<h(t) <A<oo([1,16)]).
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Here, A, 11 and 7 are constants. However, very little is known about the existence
of solution z of (1.1) satisfying (1.2) in a different case, such as

(1.4) hm 1nf h(t) <l< hm sup h(t)
In thls paper, we c0n81der the case |
(1.5) h(t) > -1 and h(r(t)) = h(t), t>t,.

A pair of the functions h(t) = 1 + (1/2)sint and 7(t) = t — 27 gives a typical
example satisfying (1.5). We easily see that if (1.5) holds, then

o
) = 153

is a positive solution of the unperturbed equation %[z(t) + h(t)z(7(t))] = 0, and

(b>0)

so it is natural to expect that, if f is small enough in some sense, (1.1) possesses
a solution z which behaves like the function b/[1 + h(t)] as ¢ — oo. In fact, the
following theorem will be shown.

Theorem. Suppose that (1.5) holds. Then (1.1) has a positive solution x
satisfying o

b
(1.6) z(t) = TTh0 +o0(1) (t—o00) forsomeb>0

if and only if (1.3) holds

f (1.5) holds, then there are constants x and A such that -1 < p < h(t) <A< 0
for t > t3. Then it is worthwhile to note that a positive solution z with the
asymptotic property (1.6) satisfies (1.2)

2. PROOF OF THEOREM

First we prove the “only if” part of Theorem.

Proof of the “only if” part. ~ Let z be a solution of (1.1) which satisfies (1.6).
Put y(t) = z(t) + h(t)z(7(t)). Then (1.5) implies that y(t) = b+ o(1) as t — oo.
Integration of (1.1) over [T, 00) yields

b=y(T) +0 [ Fls,2(g(s)))ds =0,

where T' > t;. Hence we obtain

[ (s, 2(0(s)))ds < oo

Noting that z satisfies (1.2) and using the monotonicity of f, we conclude that (1.3)
holds.



The following notation will be used:
) =t '{t)=70"1), i=1,2,...;
) = (e (1), i=2,3,...,
where 77(¢) is the inverse function of 7(f). We note here that 77P(£) — oo as
p — oo for each fixed t > ¢,. Otherwise, there is a constant ¢ > #, such that
limy_,o 77P(¢) = ¢, because of 77P(t) < 7=P*(¢). Letting p — oo in 77P(t) =
7Y (r~=1(t)), we have ¢ = 771(c) which contradicts 7(t) < ¢ for ¢ > t,.

Note that [to, 00) = UXy[77P(t5), 7~ ®P+1(t,)] and that the range of h(t) for ¢ €
[to, 77 (t0)] is identical to the range of h(t) (= h(P(t))) for t € [77P(t,), 7=@+V)(¢,)],
p=20,1,2,.... Thus it is possible to take a sufficiently large number T > ¢, such
that

h(T) = max{h(t) : t € [ty,00)}
and |
T. = min{7(T), inf{g(t) : t > T}} > t,.

Let C[T, 00) denote the Fréchet space of all continuous functions on [T, 00) with
the topology of uniform convergence on every compact subinterval of [T%,00). Let
n € C[T,00) be fixed such that n(t) > 0 for ¢ > T and lim,,on(¢) = 0. We
consider the set Y of all functions y € C[T, 00) which is nondecreasing on [T, o)
and satisfies '

y(t) =y(T) forte[T,,T], 0<y(t)<n(t) fort>T.
It is easy to see that Y is a closed convex subset of C [T, 00).
To prove the “if” part of Theorem, the following Proposition is used.

Proposition. Suppose that (1.5) holds. Let n € C[T,00) with n(t) > 0 for

187

t 2 T and limy_,o,7(t) = 0. For this n, define Y as above. Then there erists a

mapping ® : Y — C[T,, 00) which possesses the following properties:
(a) ForeachyeY, ®[y| satisfies

Q)+ HOBI @) =y(0), 2T and lim Bal(r) = 0

(b) . @ is continuous on Y in the C[T,, co)-topology, i.c., if {y;}52, is a sequence in
Y converging toy € Y uniformly on every compact subinterval of [T, o), then
‘®ly;] converges to ®ly] uniformly on every compact subinterval of [T,,c0).

Let us first show the. “if” part of Theorem. The proof of Proposition is deferred
to the next section. - '
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Proof of the “if” part. Put
o = %) :
n(t) = / f(s,a)ds, t>T.
AREANS

We use Proposition for this 7. We can take constants b > 0,0 >0 and e >0 such
that ' ’

0<d+e<

<a-— >T*.
STrap S 12

Define the mapping F : Y — C[T,, 00) as folloWs:

e b | -
(Fy)(®) A FGQ:]GG§+GQWﬂﬂO®,tZﬂ

(Fy)(T), | - tel[l,T),
where | ,
| fte), u>a,
Fuw) =1 f(tu), §<u<a,
f(t,9), u<al.

It is easy to see that F is well defined on Y and maps Y into itself.

Since ® is continuous on Y, the Lebesgue dominated convergence theorem shows
that F is continuous on Y. ~ ‘ :

Let I be an arbitrary compact subinterval of [T, 00). We find that

(Fy)'(8)] < max{f(s,a) : s €I}, tel,

so that {(Fy)'(t)}yey is uniformly bounded on I. The mean value theorem shows
that F(Y) is equicontinuous on I. Since |(Fy)(t1) — (Fy)(t2)] = 0 for t1, to €
[T.,T], we conclude that F(Y) is equicontinuous on every compact subinterval of
[T, 00). Obviously, F(Y) is uniformly bounded on [T, c0). Hence, by the Ascoli-
Arzela theorem, F (Y) is relatively compact. Consequently, we are able to apply the
Schauder-Tychonoff fixed point theorem to the operator F and we conclude that
there exists a § € Y such that y = Fy. Set -

z(t) = + o ®[7](¢).

1+ h(2)

Proposition implies that z satisfies (1.6) and that there exists a number T > T
such that § < z(g(t)) < a for t > T. Then F(t,z(g(t))) = f(t,z(g(¢))) for t > T-
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Observe that

(2.1) z(t) + h(t)z(T(t))
| — o MO TRy + ol + RO
= b+ oi()
=b+0 [ f(s,a(g(s))ds, t2T.
By differentiation of (2.1), we see that z is a solution of (1.1). The proof is complete.

3. PrROOF OF PROPOSITION

The purpose of this section is to prove Proposition. Throughout this section, we
assume that (1.5) holds.

For each y € Y, we define the function ¥[y] by

(e <]

(—L)™HHG] (T (¢ ).), t> %(T),
wyi =1 & e
_ \Il[y](T(T))a te [T*,T(T)]’ '
where H(t) = max{1, h(t)}. We note that H(7(t)) = H(t) and H(t) > 1 for t > t,.
Lemma 1. 7
(i) Foreachy€Y, the series
> (-1 HOI )

converges uniformly on [1(T),00), hence ¥[y] is well defined and is continuous on
[T, 00); '
(i) For each y € Y, ¥[y] satisfies

(3.1) 0 < Ulyl(t) <n(r7H (1), t=>7(T),
and '
(3:2) yl(t) + HO)Pl](r(8)) =y(@), t=2T;

(iii) U is continuous on Y in the C[T.,0o)-topology.
Proof. (i) Lety €Y. Weset
Unmly](t) = Z( DPHOI (@), t27(T), m=12....

Now we claim that

(3.3) 0 < Un[yl(t) < n(r7'(1), t>7(T)
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for m =1,2,... . Since y is nondecreasing on [T, 00) and H(t) > 1, we have
(3.4) y(r7 () = [H(®)]'y(r72(1)) = 0, t>7(T),

and , :

(3.5) ' [H®y(r7H (@) < a(r7'(@), t>(T).

Hence, we easily see that (3.3) holds for the cases m = 1 and 2. If m > 3 is odd,
we can rewrite Uy, [y](?) as

(m-1)/2

Unly]®) = 3 [HEOI @ Dy(r-@0@) - [HE)] 'y (¢)]

+ [HO]™y(r™(2))
and

Unly](t) = [H(®)]y(r7(2))
(m=1)/2

- Z [HOI [y(r(t) — [H®)] y(r~ @+ (2)].

If m > 4 is even, we can rewrite ¥,,[y](t) as

m/2

Un[y](t) = 3 [HE]HDy(r=®D () — [H()]'y(r(1))]

and |
Un[yl(t) = [H®)] " y(r7'(2))

(m/2)-1

- Z O y(r(8)) — [HE) " y(r~ @D (1))

[H( T y(r7™()).

From (3.4) and (3.5) we conclude that (3.3) holds for m = 3,4, ... .
Using (3.3), we find that if m > p > 1, then

m

2 DTHHOI ()

S (I HE] Dy e )

=|(= 1)(” DHG DY pa[y] (P (1))
<n(r*@®), t>7(T).

(3.6)
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Here, we have used the equality H(t) = H(r7P*!(t)), p > 1. Since n(77?(t)) = 0
as p — 0o, the series }2°,(—1)"*[H(¢)]*y(77*(t)) converges for each fixed t €
[7(T), 00). From (3.6) it follows that

sup Z( DHEO Y "( ))

[T(T),OO) —p
< sup n(r7P(t)) = sup n(t) >0 asp— oo,
te[r(T),00) ‘ te[r—P+1(T),00)

which shows that the series -2, (—1)"*'[H(t)] y(7*(t)) converges uniformly on
[7(T), 00).. _ , ‘ .
(i) Letting m — oo in (3.3), we have (3.1). It is easy to check that (3.2) holds.
(i) Let &€ > 0. There is an integer p > 1 such that’

. &
sup n(T C@) = sup  nt) < 3
e[ (T),00) te[r=(T),00)

Let {y; };";1 be a sequence in Y converging to y € Y uniformly on every compact
subinterval of [T, co). Take an arbitrary compact subinterval I of [7(T'), 00). There
exists an integer 7o > 1 such that

SO~y < 5 el 524
It follows from (3.6) that
LACR TG
< SHOF s ©) - o)

+ i (1) HH®) g (r 7 @)| + i (1) HO] (i (@)|
i=p+1 i=p+1

< Sl 0) v ) + W) <e, tel e

- which implies that ¥[y;] converges ¥[y] uniformly on I. It is easy to see that \If[yj] -
U[y] uniformly on [T, 7(T)]. Consequently, we conclude that ¥ is continuous on
Y. This completes the proof.

For each y € Y, we assign the function ¢[y] as follows:

y(T) |
iy = THR@ MO g gy

Uly(t) i A(T) 21,
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‘Lemma 2.
(i) Foreachy €Y, [y satisfies

¢[y)(T) + A(T)elyl(r(T)) = y(T);

(i)  Suppose that {y;}32, is a sequence in Y converging to y € Y uniformly
~on every compact subinterval of [T, 00). Then p[y;] converges to oly] uniformly on
[T, T). :

Proof. It is obvious that (i) and (ii) hold for the case h(T') < 1. For the case
h(T) > 1, (i) and (ii) follow from (ii) and (iii) of Lemma 1.
For each y € Y, we define the function ®[y] as follows:

m

ZO (1) [R@)Fy (@) + ()™ RO e[yl (7 (1)),
oyl(t) = te [T‘m(T),T‘(m“) (T)], m=0,1,...,
elol(t), | t € [T,,T).

Lemma 3. LetyeY.
(i) ®[y] is continuous on [T, 00);
(i) @[y] satisfies
Oy](t) + h(®)RWI(r (1)) = y(t), ¢=T;
(iti) Fort € [r(T),o00) with h(t) > 1,
ofy](2) = Y[y](®);
(iv) @ is continuous on'Y in the C[T},o0)-topology.
Proof. (i) It is easy to see that ®[y] is continuous on

[Ty c\{F™(T) : m=0,1,2,....}.

From (i) of Lemma 2, it follows that

Jim @fy](t) = [y)(T) = y(T) — M(T)ely)(r(T)) = lim @[y](?)

t—-T+4+0



~and that if m > 1, then -

lim  P[y] (t)

t—-}T_m(T) -0

= Z (=1 h(T”“(T))]iy(Ti‘m(T)) +v(—1)‘m[h(7‘m(T))]m<p[y](T)v

= el @)
+ (PG @)U - Kl ()]

= 2 (CVE @)y ()

=0

+ (=)™ R(r (T ly) (rI (e ™(T)))

= t—whnn(lTHo [y](®)-

Consequently, ®[y] is continuous on [T}, 00).

(i) An easy computation shows that (ii) follows.

(ii) If A(T) < 1, then there is no number ¢t € [7(T), c0) such that h(t) > 1
(recall the choice of T'). Assume that h(T) > 1. Then

O[y](t) = ¢lyl(t) = Ylyl(¢) for t € [7(T), T].

We suppose that there is an integer . > 0 such that ®[y](t) = ¥[y|(t) for all
t € [r=m=1(T),7=™(T)] with h(t) > 1. In view of (i) of Lemma 3 and (3.2), we
find that if t € [r~™(T), 7~ ™*+D(T)] and if h(t) > 1, then

B[y1(0) = y(t) — h(H2[)(r (1) = y(t) - H()W)(r(0)) = Tly](2).

By induction, we conclude that ®[y](¢t) = ¥[y|(¢) for t € [7(T), 00) with h(t) >

(iv) Let {y;}2, be a sequence in Y converging to y € Y uniformly on every
compact submterval of [T,,00). Lemma 2 implies that ®[y;] converges to ®[y]
uniformly on [T}, T]. It suffices to prove that ®[y;] — @[y] uniformly on I,
[r=™(T), 7~ ™+)(T)], m = 0,1,2,.... Since |h(t)| < X on [to,00) for some A > 1,
we observe that : '

sup |@[y;](2) — @[y](2)]

< zx sup ly;(r'(6) — ¥( ()]

+ At sup loly;1(7™ 1 (®) - w[y](f’"“(t))l

m

<A™y sup |y;(t) — y(t)| + A" e |ly;1(t) — ely](t)]-

i=0 t€Im—i

193



194

Then, supy,, [2[y;](t) — @[y](t)] — 0 as j — oo, so that ®[y;] converges to P[y]
uniformly on I, for m=0,1,2,....

Lemma 4.  Let {t;}22, be a sequence satisfying lim; ,oot; = 0o and |h(t;)] <
v<1,j=12,... forsomev >0. Then lim o ®y](t;) =0 for eachy €Y.

Proof. Let € > 0. Since lim;_,o, y(t) = 0, there is an integer p > 1 such that
Yo HT) e |
1—v 3
There exists an integer ¢ > 1 such that

YT e ,
T, < 3 and v
Let m > p+gq. Then 7™?(t) > 772(T) for t € [r~™(T), ™+ (T)]. In view of

the monotonicity of y, we see that if ¢ € [r~™(T'), 7=(m+)(T')] and |h(t)| < v, then

|®ly](B)] < i vy(r' (@) + ™ ply) (7 ()]

i=0 ’

+1 s[upT] lely](?)] < —;— for all 7 > p+gq.

*y

m

sgvz‘w"(tm 2 o)+

i=m—p+1 :

m-p . p—1 )
Sy(rmrO) 3 v (T v
=0

1=0

V—P m—p+1
<y T) | y(@ L.
1-v 1-v 3 A
This implies that |®[y](t)| < ¢ for ¢ € [r~®+9)(T'), 00) with |h(t)| < v and hence the

conclusion follows.

Lemma 5. Let m = 0,1,2,.... If t satisfies t > 7~™(T) and 0 < h(t) < 1,
then '

371 f;(—l)i[h(t)ry(fi(t» <), yev.
Proof. Lett> 77™(T) and 0 < h(t) < 1. Put
Alt) = i(—l)i[h(t)]iyv"(t))..

It is easy to see that (3.7) holds for m =0 and 1. If m > 3 is odd, we can rewrite
A(t) as
(m-1)/2 . )

AR =yt)— X [P y(r¥(t) — bty (2))]

=1

= [R®O]y(r™(t))
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and _
- (m-1)/2

A) = 3 [P ly(r™ (2) — Ay (r7+ (2)].

3=0
If m > 2 is even, we can rewrite A(t) as

m/2

At) = y(t) - ;[h(t)]” Tly) - Ay (1))

and
(m/2)-1

AW = Z_g (O ly(r(8)) = hEYEZH@)] + RO™y(r™(2)).
Since y is nondecreasing on [T, 00), we see that |

y(t) = h(y(r() < [1 - h@Oly(®), ¢>77}(T).

Hence, for the case where m > 3 is odd, we have

(m~1)/2

AW 2 = X O RO @) - OImuG0)

(m—1)/2 '

> - Zl @O = ANy (®) ~ W@y (™ (#))

= 7)) LV
1— [
1+ h(t)

In the same way, we can show that A(t) < 2y(7™(t)) for the case where m >3is
odd, and that —2y(7™(t)) < A(t) < 2y(r™(¢)) for the case where m > 2 is even.

= — (™ (D)h(t) > =2y(r™(1)).

Lemma 6. Lety €Y. Thenlim, o <I>[y] (t) =0.

Proof.  Assume that lim; ;oo @[y](t) = 0 does not hold. Then we first claim
that there is a sequence {t;}52, such that

68) { Jim ¢j = oo,  lim ‘.I>[y](t'j) exist? in RU {o0, —00}\{0},

_ 0<h(tj)<l forj>1 and jll’rgo h(t;) = 1.

By assumption there is a sequence {s;}32, for which s; — oo and ®ly|(s;) = c €
RU{oo, —0o}\{0} as j — oo. Since —1 < u < h(t) < A for ¢ > to, there is
a subsequence {t;}72, of {s;}%2, such that lim; . h(t;) = d € [, A]. Lemma 4 _
implies that ¢ > 1. It can be shown that h(t;) < 1, j > j, for some jq. Otherwise,
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there exists a subsequence {t;}32; of {¢;}32, such that h(f;) > 1 for all j. From
(iif) of Lemma 3 and (ii) of Lemma 1, it follows that '

. I\ = n 7. < I “1(7)) —
Jim ®[y](¢;)| = | im Cy](;)| < lim (7™ (2;)
which is a contradiction. Since d > 1, we see that d = 1, so that 0 < h(t]-)' <1,
j 2 Ji1 for some j; > jo.. This proves the existence of {t;}%2; satisfying (3.8).

~ Suppose that {t;}%2, is a sequence satisfying (3.8). Let € > 0 be arbitrary. There
is an integer p > 1 such that

|| =

n(t) <e t>7PYT).

There is a number § > 0 such that if 51, s, € [r7?(T), 7~ ®+1)(T)) w1th |31 - szl <4,
then

(39) O ell(sn) — @ll(ea)] <
Consider the mapping N : [77?(T), 00) — NU{0} such that
™0 (1) e ‘[T_”(T), 7=+ (T)) for t > 77P(T).

~ We note that lim;,o, N(¢) = co. It is easily verified that {t;}32, has a subsequence
{u;}32, such that

lim V) (y;)  exists in [T-p(T),T_(p+1)(T)].
j—oo '

Put @ = lim;_,0o 7V)(u;). Then we find that

h(u) = lim h(rV®)(y;)) = Jim n h(u;) = 1.

J—)'OO

There exists an integer jo such that u; > 77?(T) and |7V ("1)(u ) —a| < 8 for j > jo.
From (ii) of Lemma 3, we observe that

(310)  2[y](t) = y(t) — h(E)2[y)(r(¥))
=y(t) — h(t)y(r(t)) + [h(H) BLy)(7*(2))

3 OO ) + () Ol 0)
for t > 7=™*1(T). Since h(7) = 1, we have

B [@fyl(uy) - 2[)(r N (@)

Mot Nt
Y, ORIy w)+| 3 (—1)’y(r’(¢“”"”(ﬂ))‘)’

Hh) YR () — Byl (N )|



Lemma 5 implies that if j > jp, then

' N(u;)-1- ' -
(3.12) Z(:) (=1)" Ry (7" (u5) < 2y(rNV) " (uy))
< 2q(rNOD T () < 2
and |
: N(uj)-1 -
(3.13) ' 2; (—D)iy(ri (=) (@))) S2y(TN("")_1(T N (7))

< 217(T_‘1(ﬂ)) < 2.
From (iii) of Lemma 3, (ii) of Lemma 1 and the fact that h(@) = 1, it follows that

[2[y)(@)| = [¥y](@)]| < n(r™" (@) <e.

Then we observe that
(314) (R )VIR(TV (uy)) ~ @[y (rV I (r=N ) (@)
< aug) V@[] (T (ug)) — @[y] (@)
+ |[R(uy)IN™) — 1]|@[y] ()]
< |@[y)(rV (uy)) — @y](@)] + 2@[Y]@)| < 3¢, 5 = Jo,
because of (3.9). Combining (3.11)—(3.14), we obtain
|®[y](u;) — WI(r V@) < Te, G 2 o

This means that

Jim [#[5](u) ~ @[] @) =0,
On the other hand, in view of (iii) of Lemma 3 and (ii) of Lemma 1, we see that
jllr{.loqu)[y](T—N(uj)(ﬁ))l < }i)rgon(T—N(uj).—l(ﬂ)) —0.
From (3.8) it follows that
jli)rglo |®[y](u;) — ®y](r~V™)(w))| exists and is not equal to O.
This is a contradiction. The proof is complete.

Proposition mentioned in Section 2 follows from Lemmas 3 and 6.
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