中立型微分方程式のある終局的正値解が存在するための 必要十分条件

Bride and the control of the second of the second

愛媛大・理工 田中 敏 (Satoshi Tanaka)

1. Introduction

In this paper we consider the first order neutral differential equation

(1.1)
$$\frac{d}{dt}[x(t) + h(t)x(\tau(t))] + \sigma f(t, x(g(t))) = 0,$$

where $\sigma = +1$ or -1. It is assumed throughout this paper that:

- (a) $\tau: [t_0, \infty) \longrightarrow \mathbb{R}$ is continuous and strictly increasing, $\tau(t) < t$ for $t \ge t_0$ and $\lim_{t \to \infty} \tau(t) = \infty$;
- (b) $h: [\tau(t_0), \infty) \longrightarrow \mathbb{R}$ is continuous;
- (c) $g:[t_0,\infty)\longrightarrow \mathbb{R}$ is continuous and $\lim_{t\to\infty}g(t)=\infty$;
- (d) $f:[t_0,\infty)\times(0,\infty)\longrightarrow[0,\infty)$ is continuous and f(t,u) is nondecreasing in $u\in(0,\infty)$ for any fixed $t\in[t_0,\infty)$.

By a solution of (1.1), we mean a function x(t) which is continuous and satisfies (1.1) on $[t_x, \infty)$ for some $t_x \geq t_0$.

Recently there has been considerable investigation of the existence of positive solutions of first order neutral differential equations. We refer the reader to [1-20]. In particular, it is known that (1.1) has a solution x satisfying

$$(1.2) 0 < \liminf_{t \to \infty} x(t) \le \limsup_{t \to \infty} x(t) < \infty$$

if and only if

(1.3)
$$\int_{t_0}^{\infty} f(t, a) dt < \infty \quad \text{for some } a > 0$$

when one of the following cases holds:

- (i) $|h(t)| \le \lambda < 1$ and $h(t)h(\tau(t)) \ge 0$ ([1, 5, 6, 13, 14, 16]);
- (ii) $h(t) \equiv 1 \text{ and } \tau(t) = t \tau \ (\tau > 0) \ ([1, 17]);$
- (iii) $1 < \mu \le h(t) \le \lambda < \infty \ ([1, 16]).$

Here, λ , μ and τ are constants. However, very little is known about the existence of solution x of (1.1) satisfying (1.2) in a different case, such as

(1.4)
$$\liminf_{t \to \infty} h(t) < 1 < \limsup_{t \to \infty} h(t).$$

In this paper, we consider the case

(1.5)
$$h(t) > -1 \text{ and } h(\tau(t)) = h(t), t \ge t_0.$$

A pair of the functions $h(t) = 1 + (1/2) \sin t$ and $\tau(t) = t - 2\pi$ gives a typical example satisfying (1.5). We easily see that if (1.5) holds, then

$$x(t) = \frac{b}{1 + h(t)} \quad (b > 0)$$

is a positive solution of the unperturbed equation $\frac{d}{dt}[x(t) + h(t)x(\tau(t))] = 0$, and so it is natural to expect that, if f is small enough in some sense, (1.1) possesses a solution x which behaves like the function b/[1+h(t)] as $t \to \infty$. In fact, the following theorem will be shown.

Theorem. Suppose that (1.5) holds. Then (1.1) has a positive solution x satisfying

(1.6)
$$x(t) = \frac{b}{1 + h(t)} + o(1) \quad (t \to \infty) \quad \text{for some } b > 0$$

if and only if (1.3) holds.

If (1.5) holds, then there are constants μ and λ such that $-1 < \mu \le h(t) \le \lambda < \infty$ for $t \ge t_0$. Then it is worthwhile to note that a positive solution x with the asymptotic property (1.6) satisfies (1.2)

2. Proof of Theorem

First we prove the "only if" part of Theorem.

Proof of the "only if" part. Let x be a solution of (1.1) which satisfies (1.6). Put $y(t) = x(t) + h(t)x(\tau(t))$. Then (1.5) implies that y(t) = b + o(1) as $t \to \infty$. Integration of (1.1) over $[T, \infty)$ yields

$$b - y(T) + \sigma \int_{T}^{\infty} f(s, x(g(s))) ds = 0,$$

where $T \geq t_0$. Hence we obtain

$$\int_{T}^{\infty} f(s, x(g(s))) ds < \infty.$$

Noting that x satisfies (1.2) and using the monotonicity of f, we conclude that (1.3) holds.

The following notation will be used:

$$\tau^{0}(t) = t;$$
 $\tau^{i}(t) = \tau(\tau^{i-1}(t)),$ $i = 1, 2, ...;$ $\tau^{-i}(t) = \tau^{-1}(\tau^{-(i-1)}(t)),$ $i = 2, 3, ...,$

where $\tau^{-1}(t)$ is the inverse function of $\tau(t)$. We note here that $\tau^{-p}(t) \to \infty$ as $p \to \infty$ for each fixed $t \ge t_0$. Otherwise, there is a constant $c \ge t_0$ such that $\lim_{p \to \infty} \tau^{-p}(t) = c$, because of $\tau^{-p}(t) < \tau^{-(p+1)}(t)$. Letting $p \to \infty$ in $\tau^{-p}(t) = \tau^{-1}(\tau^{-(p-1)}(t))$, we have $c = \tau^{-1}(c)$ which contradicts $\tau(t) < t$ for $t \ge t_0$.

Note that $[t_0, \infty) = \bigcup_{p=0}^{\infty} [\tau^{-p}(t_0), \tau^{-(p+1)}(t_0)]$ and that the range of h(t) for $t \in [t_0, \tau^{-1}(t_0)]$ is identical to the range of h(t) $(=h(\tau^p(t)))$ for $t \in [\tau^{-p}(t_0), \tau^{-(p+1)}(t_0)]$, $p = 0, 1, 2, \ldots$ Thus it is possible to take a sufficiently large number $T \geq t_0$ such that

$$h(T) = \max\{h(t) : t \in [t_0, \infty)\}$$

and

$$T_* \equiv \min\{\tau(T), \inf\{g(t) : t \geq T\}\} \geq t_0.$$

Let $C[T_*, \infty)$ denote the Fréchet space of all continuous functions on $[T_*, \infty)$ with the topology of uniform convergence on every compact subinterval of $[T_*, \infty)$. Let $\eta \in C[T, \infty)$ be fixed such that $\eta(t) \geq 0$ for $t \geq T$ and $\lim_{t \to \infty} \eta(t) = 0$. We consider the set Y of all functions $y \in C[T_*, \infty)$ which is nondecreasing on $[T, \infty)$ and satisfies

$$y(t) = y(T)$$
 for $t \in [T_*, T]$, $0 \le y(t) \le \eta(t)$ for $t \ge T$.

It is easy to see that Y is a closed convex subset of $C[T_*, \infty)$.

To prove the "if" part of Theorem, the following Proposition is used.

Proposition. Suppose that (1.5) holds. Let $\eta \in C[T, \infty)$ with $\eta(t) \geq 0$ for $t \geq T$ and $\lim_{t \to \infty} \eta(t) = 0$. For this η , define Y as above. Then there exists a mapping $\Phi: Y \longrightarrow C[T_*, \infty)$ which possesses the following properties:

(a) For each $y \in Y$, $\Phi[y]$ satisfies

$$\Phi[y](t) + h(t)\Phi[y](\tau(t)) = y(t), \quad t \ge T \quad and \quad \lim_{t \to \infty} \Phi[y](t) = 0;$$

(b) Φ is continuous on Y in the $C[T_*, \infty)$ -topology, i.e., if $\{y_j\}_{j=1}^{\infty}$ is a sequence in Y converging to $y \in Y$ uniformly on every compact subinterval of $[T_*, \infty)$, then $\Phi[y_j]$ converges to $\Phi[y]$ uniformly on every compact subinterval of $[T_*, \infty)$.

Let us first show the "if" part of Theorem. The proof of Proposition is deferred to the next section.

Proof of the "if" part. Put

$$\eta(t) = \int_t^\infty f(s,a) ds, \quad t \ge T.$$

We use Proposition for this η . We can take constants b > 0, $\delta > 0$ and $\varepsilon > 0$ such that

$$0 < \delta + \varepsilon \le \frac{b}{1 + h(t)} \le a - \varepsilon, \quad t \ge T_*.$$

Define the mapping $\mathcal{F}: Y \longrightarrow C[T_*, \infty)$ as follows:

$$(\mathcal{F}y)(t) = \left\{ egin{aligned} & \int_t^\infty Figg(s, rac{b}{1 + h(g(s))} + \sigma \Phi[y](g(s)) igg) ds, & t \geq T, \ & (\mathcal{F}y)(T), & t \in [T_*, T], \end{aligned}
ight.$$

where

$$F(t,u) = \left\{egin{array}{ll} f(t,a), & u \geq a, \ f(t,u), & \delta \leq u \leq a, \ f(t,\delta), & u \leq \delta. \end{array}
ight.$$

It is easy to see that \mathcal{F} is well defined on Y and maps Y into itself.

Since Φ is continuous on Y, the Lebesgue dominated convergence theorem shows that \mathcal{F} is continuous on Y.

Let I be an arbitrary compact subinterval of $[T, \infty)$. We find that

$$|(\mathcal{F}y)'(t)| \leq \max\{f(s,a) \,:\, s \in I\}, \quad t \in I,$$

so that $\{(\mathcal{F}y)'(t)\}_{y\in Y}$ is uniformly bounded on I. The mean value theorem shows that $\mathcal{F}(Y)$ is equicontinuous on I. Since $|(\mathcal{F}y)(t_1) - (\mathcal{F}y)(t_2)| = 0$ for $t_1, t_2 \in [T_*, T]$, we conclude that $\mathcal{F}(Y)$ is equicontinuous on every compact subinterval of $[T_*, \infty)$. Obviously, $\mathcal{F}(Y)$ is uniformly bounded on $[T_*, \infty)$. Hence, by the Ascoli-Arzela theorem, $\mathcal{F}(Y)$ is relatively compact. Consequently, we are able to apply the Schauder-Tychonoff fixed point theorem to the operator \mathcal{F} and we conclude that there exists a $\tilde{y} \in Y$ such that $\tilde{y} = \mathcal{F}\tilde{y}$. Set

$$x(t) = \frac{b}{1 + h(t)} + \sigma \Phi[\widetilde{y}](t).$$

Proposition implies that x satisfies (1.6) and that there exists a number $\tilde{T} \geq T$ such that $\delta \leq x(g(t)) \leq a$ for $t \geq \tilde{T}$. Then F(t, x(g(t))) = f(t, x(g(t))) for $t \geq \tilde{T}$.

Observe that

$$(2.1) x(t) + h(t)x(\tau(t))$$

$$= \frac{b}{1+h(t)} + h(t)\frac{b}{1+h(\tau(t))} + \sigma[\Phi[\widetilde{y}](t) + h(t)\Phi[\widetilde{y}](\tau(t))]$$

$$= b + \sigma \widetilde{y}(t)$$

$$= b + \sigma \int_{t}^{\infty} f(s, x(g(s)))ds, \quad t \ge \widetilde{T}.$$

By differentiation of (2.1), we see that x is a solution of (1.1). The proof is complete.

3. Proof of Proposition

The purpose of this section is to prove Proposition. Throughout this section, we assume that (1.5) holds.

For each $y \in Y$, we define the function $\Psi[y]$ by

$$\Psi[y](t) = \begin{cases} \sum_{i=1}^{\infty} (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t)), & t \ge \tau(T), \\ \Psi[y](\tau(T)), & t \in [T_*, \tau(T)], \end{cases}$$

where $H(t) = \max\{1, h(t)\}$. We note that $H(\tau(t)) = H(t)$ and $H(t) \ge 1$ for $t \ge t_0$.

Lemma 1.

(i) For each $y \in Y$, the series

$$\sum_{i=1}^{\infty} (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t))$$

converges uniformly on $[\tau(T), \infty)$, hence $\Psi[y]$ is well defined and is continuous on $[T_*, \infty)$;

(ii) For each $y \in Y$, $\Psi[y]$ satisfies

(3.1)
$$0 \le \Psi[y](t) \le \eta(\tau^{-1}(t)), \quad t \ge \tau(T),$$

and

(3.2)
$$\Psi[y](t) + H(t)\Psi[y](\tau(t)) = y(t), \quad t \ge T;$$

(iii) Ψ is continuous on Y in the $C[T_*, \infty)$ -topology.

Proof. (i) Let $y \in Y$. We set

$$\Psi_m[y](t) = \sum_{i=1}^m (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t)), \quad t \ge \tau(T), \quad m = 1, 2, \dots.$$

Now we claim that

(3.3)
$$0 \le \Psi_m[y](t) \le \eta(\tau^{-1}(t)), \quad t \ge \tau(T)$$

for $m=1,2,\ldots$. Since y is nondecreasing on $[T,\infty)$ and $H(t)\geq 1$, we have

$$(3.4) y(\tau^{-1}(t)) - [H(t)]^{-1}y(\tau^{-2}(t)) \ge 0, \quad t \ge \tau(T),$$

and

$$(3.5) [H(t)]^{-1}y(\tau^{-1}(t)) \le \eta(\tau^{-1}(t)), t \ge \tau(T).$$

Hence, we easily see that (3.3) holds for the cases m=1 and 2. If $m \geq 3$ is odd, we can rewrite $\Psi_m[y](t)$ as

$$\Psi_m[y](t) = \sum_{j=1}^{(m-1)/2} [H(t)]^{-(2j-1)} [y(\tau^{-(2j-1)}(t)) - [H(t)]^{-1} y(\tau^{-2j}(t))] + [H(t)]^{-m} y(\tau^{-m}(t))$$

and

$$\Psi_m[y](t) = [H(t)]^{-1} y(\tau^{-1}(t))$$

$$- \sum_{j=1}^{(m-1)/2} [H(t)]^{-2j} [y(\tau^{-2j}(t)) - [H(t)]^{-1} y(\tau^{-(2j+1)}(t))].$$

If $m \geq 4$ is even, we can rewrite $\Psi_m[y](t)$ as

$$\Psi_m[y](t) = \sum_{j=1}^{m/2} [H(t)]^{-(2j-1)} [y(\tau^{-(2j-1)}(t)) - [H(t)]^{-1} y(\tau^{-2j}(t))]$$

and

$$\Psi_{m}[y](t) = [H(t)]^{-1}y(\tau^{-1}(t))$$

$$-\sum_{j=1}^{(m/2)-1} [H(t)]^{-2j}[y(\tau^{-2j}(t)) - [H(t)]^{-1}y(\tau^{-(2j+1)}(t))]$$

$$-[H(t)]^{-m}y(\tau^{-m}(t)).$$

From (3.4) and (3.5) we conclude that (3.3) holds for $m = 3, 4, \ldots$. Using (3.3), we find that if $m \ge p \ge 1$, then

(3.6)
$$\left| \sum_{i=p}^{m} (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t)) \right|$$

$$= \left| \sum_{i=1}^{m-p+1} (-1)^{(i+p-1)+1} [H(t)]^{-(i+p-1)} y(\tau^{-i}(\tau^{-p+1}(t))) \right|$$

$$= \left| (-1)^{(p-1)} [H(t)]^{-(p-1)} \Psi_{m-p+1}[y](\tau^{-p+1}(t)) \right|$$

$$\leq \eta(\tau^{-p}(t)), \quad t \geq \tau(T).$$

Here, we have used the equality $H(t) = H(\tau^{-p+1}(t))$, $p \ge 1$. Since $\eta(\tau^{-p}(t)) \to 0$ as $p \to \infty$, the series $\sum_{i=1}^{\infty} (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t))$ converges for each fixed $t \in [\tau(T), \infty)$. From (3.6) it follows that

$$\sup_{t \in [\tau(T), \infty)} \left| \sum_{i=p}^{\infty} (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t)) \right|$$

$$\leq \sup_{t \in [\tau(T), \infty)} \eta(\tau^{-p}(t)) = \sup_{t \in [\tau^{-p+1}(T), \infty)} \eta(t) \to 0 \quad \text{as } p \to \infty,$$

which shows that the series $\sum_{i=1}^{\infty} (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t))$ converges uniformly on $[\tau(T), \infty)$.

- (ii) Letting $m \to \infty$ in (3.3), we have (3.1). It is easy to check that (3.2) holds.
- (iii) Let $\varepsilon > 0$. There is an integer $p \ge 1$ such that

$$\sup_{t \in [\tau(T), \infty)} \eta(\tau^{-(p+1)}(t)) = \sup_{t \in [\tau^{-p}(T), \infty)} \eta(t) < \frac{\varepsilon}{3}.$$

Let $\{y_j\}_{j=1}^{\infty}$ be a sequence in Y converging to $y \in Y$ uniformly on every compact subinterval of $[T_*, \infty)$. Take an arbitrary compact subinterval I of $[\tau(T), \infty)$. There exists an integer $j_0 \geq 1$ such that

$$\sum_{i=1}^{p} |y_j(\tau^{-i}(t)) - y(\tau^{-i}(t))| < \frac{\varepsilon}{3}, \quad t \in I, \quad j \ge j_0.$$

It follows from (3.6) that

$$\begin{split} &|\Psi[y_{j}](t) - \Psi[y](t)|\\ &\leq \sum_{i=1}^{p} [H(t)]^{-i} |y_{j}(\tau^{-i}(t)) - y(\tau^{-i}(t))|\\ &+ \left| \sum_{i=p+1}^{\infty} (-1)^{i+1} [H(t)]^{-i} y_{j}(\tau^{-i}(t)) \right| + \left| \sum_{i=p+1}^{\infty} (-1)^{i+1} [H(t)]^{-i} y(\tau^{-i}(t)) \right|\\ &\leq \sum_{i=1}^{p} |y_{j}(\tau^{-i}(t)) - y(\tau^{-i}(t))| + 2\eta(\tau^{-(p+1)}(t)) < \varepsilon, \quad t \in I, \quad j \geq j_{0}, \end{split}$$

which implies that $\Psi[y_j]$ converges $\Psi[y]$ uniformly on I. It is easy to see that $\Psi[y_j] \to \Psi[y]$ uniformly on $[T_*, \tau(T)]$. Consequently, we conclude that Ψ is continuous on Y. This completes the proof.

For each $y \in Y$, we assign the function $\varphi[y]$ as follows:

$$\varphi[y](t) = \begin{cases} \frac{y(T)}{1 + h(T)} & \text{if } h(T) < 1, \\ \Psi[y](t) & \text{if } h(T) \ge 1, \end{cases} \quad t \in [T_*, T].$$

Lemma 2.

(i) For each $y \in Y$, $\varphi[y]$ satisfies

$$\varphi[y](T) + h(T)\varphi[y](\tau(T)) = y(T);$$

(ii) Suppose that $\{y_j\}_{j=1}^{\infty}$ is a sequence in Y converging to $y \in Y$ uniformly on every compact subinterval of $[T_*, \infty)$. Then $\varphi[y_i]$ converges to $\varphi[y]$ uniformly on $[T_*, T]$.

Proof. It is obvious that (i) and (ii) hold for the case h(T) < 1. For the case $h(T) \ge 1$, (i) and (ii) follow from (ii) and (iii) of Lemma 1.

For each $y \in Y$, we define the function $\Phi[y]$ as follows:

$$\Phi[y](t) = \begin{cases} \sum_{i=0}^{m} (-1)^{i} [h(t)]^{i} y(\tau^{i}(t)) + (-1)^{m+1} [h(t)]^{m+1} \varphi[y](\tau^{m+1}(t)), \\ t \in [\tau^{-m}(T), \tau^{-(m+1)}(T)], & m = 0, 1, \dots, \\ \varphi[y](t), & t \in [T_{*}, T]. \end{cases}$$

Lemma 3. Let $y \in Y$.

- (i) $\Phi[y]$ is continuous on $[T_*, \infty)$;
- (ii) $\Phi[y]$ satisfies

$$\Phi[y](t) + h(t)\Phi[y](\tau(t)) = y(t), \quad t \ge T;$$

(iii) For $t \in [\tau(T), \infty)$ with $h(t) \ge 1$,

$$\Phi[y](t) = \Psi[y](t);$$

- (iv) Φ is continuous on Y in the $C[T_*, \infty)$ -topology.
- *Proof.* (i) It is easy to see that $\Phi[y]$ is continuous on

$$[T_*, \infty) \setminus \{\tau^{-m}(T) : m = 0, 1, 2, \dots\}.$$

From (i) of Lemma 2, it follows that

$$\lim_{t\to T-0}\Phi[y](t)=\varphi[y](T)=y(T)-h(T)\varphi[y](\tau(T))=\lim_{t\to T+0}\Phi[y](t)$$

and that if $m \geq 1$, then

$$\begin{split} &\lim_{t \to \tau^{-m}(T) = 0} \Phi[y](t) \\ &= \sum_{i=0}^{m-1} (-1)^{i} [h(\tau^{-m}(T))]^{i} y(\tau^{i-m}(T)) + (-1)^{m} [h(\tau^{-m}(T))]^{m} \varphi[y](T) \\ &= \sum_{i=0}^{m-1} (-1)^{i} [h(\tau^{-m}(T))]^{i} y(\tau^{i-m}(T)) \\ &+ (-1)^{m} [h(\tau^{-m}(T))]^{m} [y(T) - h(T) \varphi[y](\tau(T))] \\ &= \sum_{i=0}^{m} (-1)^{i} [h(\tau^{-m}(T))]^{i} y(\tau^{i-m}(T)) \\ &+ (-1)^{m+1} [h(\tau^{-m}(T))]^{m+1} \varphi[y](\tau^{(m+1)}(\tau^{-m}(T))) \\ &= \lim_{t \to \tau^{-m}(T) + 0} \Phi[y](t). \end{split}$$

Consequently, $\Phi[y]$ is continuous on $[T_*, \infty)$.

- (ii) An easy computation shows that (ii) follows.
- (iii) If h(T) < 1, then there is no number $t \in [\tau(T), \infty)$ such that $h(t) \ge 1$ (recall the choice of T). Assume that $h(T) \ge 1$. Then

$$\Phi[y](t) = \varphi[y](t) = \Psi[y](t)$$
 for $t \in [\tau(T), T]$.

We suppose that there is an integer $m \geq 0$ such that $\Phi[y](t) = \Psi[y](t)$ for all $t \in [\tau^{-(m-1)}(T), \tau^{-m}(T)]$ with $h(t) \geq 1$. In view of (ii) of Lemma 3 and (3.2), we find that if $t \in [\tau^{-m}(T), \tau^{-(m+1)}(T)]$ and if $h(t) \geq 1$, then

$$\Phi[y](t) = y(t) - h(t)\Phi[y](\tau(t)) = y(t) - H(t)\Psi[y](\tau(t)) = \Psi[y](t).$$

By induction, we conclude that $\Phi[y](t) = \Psi[y](t)$ for $t \in [\tau(T), \infty)$ with $h(t) \ge 1$.

(iv) Let $\{y_j\}_{j=1}^{\infty}$ be a sequence in Y converging to $y \in Y$ uniformly on every compact subinterval of $[T_*, \infty)$. Lemma 2 implies that $\Phi[y_j]$ converges to $\Phi[y]$ uniformly on $[T_*, T]$. It suffices to prove that $\Phi[y_j] \to \Phi[y]$ uniformly on $I_m \equiv [\tau^{-m}(T), \tau^{-(m+1)}(T)], m = 0, 1, 2, \ldots$ Since $|h(t)| \leq \lambda$ on $[t_0, \infty)$ for some $\lambda \geq 1$, we observe that

$$\begin{split} \sup_{t \in I_m} |\Phi[y_j](t) - \Phi[y](t)| \\ &\leq \sum_{i=0}^m \lambda^i \sup_{t \in I_m} |y_j(\tau^i(t)) - y(\tau^i(t))| \\ &+ \lambda^{m+1} \sup_{t \in I_m} |\varphi[y_j](\tau^{m+1}(t)) - \varphi[y](\tau^{m+1}(t))| \\ &\leq \lambda^m \sum_{i=0}^m \sup_{t \in I_{m-i}} |y_j(t) - y(t)| + \lambda^{m+1} \sup_{t \in [T_*, T]} |\varphi[y_j](t) - \varphi[y](t)|. \end{split}$$

Then, $\sup_{t\in I_m} |\Phi[y_j](t) - \Phi[y](t)| \to 0$ as $j \to \infty$, so that $\Phi[y_j]$ converges to $\Phi[y]$ uniformly on I_m for $m = 0, 1, 2, \ldots$

Lemma 4. Let $\{t_j\}_{j=0}^{\infty}$ be a sequence satisfying $\lim_{j\to\infty} t_j = \infty$ and $|h(t_j)| \le \nu < 1, \ j=1,2,\ldots$ for some $\nu > 0$. Then $\lim_{t\to\infty} \Phi[y](t_j) = 0$ for each $y\in Y$.

Proof. Let $\varepsilon > 0$. Since $\lim_{t \to \infty} y(t) = 0$, there is an integer $p \ge 1$ such that

$$\frac{y(\tau^{-p}(T))}{1-\nu} < \frac{\varepsilon}{3}.$$

There exists an integer $q \geq 1$ such that

$$\frac{y(T)\nu^{r-p+1}}{1-\nu} < \frac{\varepsilon}{3} \quad \text{and} \quad \nu^{r+1} \sup_{t \in [T_*,T]} |\varphi[y](t)| < \frac{\varepsilon}{3} \quad \text{for all } r \ge p+q.$$

Let $m \geq p+q$. Then $\tau^{m-p}(t) \geq \tau^{-p}(T)$ for $t \in [\tau^{-m}(T), \tau^{-(m+1)}(T)]$. In view of the monotonicity of y, we see that if $t \in [\tau^{-m}(T), \tau^{-(m+1)}(T)]$ and $|h(t)| \leq \nu$, then

$$\begin{split} |\Phi[y](t)| &\leq \sum_{i=0}^{m} \nu^{i} y(\tau^{i}(t)) + \nu^{m+1} |\varphi[y](\tau^{m+1}(t))| \\ &\leq \sum_{i=0}^{m-p} \nu^{i} y(\tau^{i}(t)) + \sum_{i=m-p+1}^{m} \nu^{i} y(\tau^{i}(t)) + \frac{\varepsilon}{3} \\ &\leq y(\tau^{m-p}(t)) \sum_{i=0}^{m-p} \nu^{i} + y(T) \nu^{m-p+1} \sum_{i=0}^{p-1} \nu^{i} + \frac{\varepsilon}{3} \\ &\leq \frac{y(\tau^{-p}(T))}{1-\nu} + \frac{y(T) \nu^{m-p+1}}{1-\nu} + \frac{\varepsilon}{3} < \varepsilon. \end{split}$$

This implies that $|\Phi[y](t)| < \varepsilon$ for $t \in [\tau^{-(p+q)}(T), \infty)$ with $|h(t)| \le \nu$ and hence the conclusion follows.

Lemma 5. Let $m=0,1,2,\ldots$ If t satisfies $t\geq \tau^{-m}(T)$ and $0\leq h(t)\leq 1$, then

(3.7)
$$\left| \sum_{i=0}^{m} (-1)^{i} [h(t)]^{i} y(\tau^{i}(t)) \right| \leq 2y(\tau^{m}(t)), \quad y \in Y.$$

Proof. Let $t \ge \tau^{-m}(T)$ and $0 \le h(t) \le 1$. Put

$$A(t) \equiv \sum_{i=0}^{m} (-1)^{i} [h(t)]^{i} y(\tau^{i}(t)).$$

It is easy to see that (3.7) holds for m=0 and 1. If $m\geq 3$ is odd, we can rewrite A(t) as

$$A(t) = y(t) - \sum_{j=1}^{(m-1)/2} [h(t)]^{2j-1} [y(\tau^{2j-1}(t)) - h(t)y(\tau^{2j}(t))] - [h(t)]^m y(\tau^m(t))$$

and

$$A(t) = \sum_{j=0}^{(m-1)/2} [h(t)]^{2j} [y(\tau^{2j}(t)) - h(t)y(\tau^{2j+1}(t))].$$

If $m \geq 2$ is even, we can rewrite A(t) as

$$A(t) = y(t) - \sum_{j=1}^{m/2} [h(t)]^{2j-1} [y(\tau^{2j-1}(t)) - h(t)y(\tau^{2j}(t))]$$

and

$$A(t) = \sum_{j=0}^{(m/2)-1} [h(t)]^{2j} [y(\tau^{2j}(t)) - h(t)y(\tau^{2j+1}(t))] + [h(t)]^m y(\tau^m(t)).$$

Since y is nondecreasing on $[T, \infty)$, we see that

$$y(t) - h(t)y(\tau(t)) \le [1 - h(t)]y(t), \quad t \ge \tau^{-1}(T)$$

Hence, for the case where $m \geq 3$ is odd, we have

$$A(t) \geq -\sum_{j=1}^{(m-1)/2} [h(t)]^{2j-1} [1 - h(t)] y(\tau^{2j-1}(t)) - [h(t)]^m y(\tau^m(t))$$

$$\geq -\sum_{j=1}^{(m-1)/2} [h(t)]^{2j-1} [1 - h(t)] y(\tau^m(t)) - [h(t)]^m y(\tau^m(t))$$

$$= y(\tau^m(t)) \sum_{i=1}^m (-1)^i [h(t)]^i$$

$$= -y(\tau^m(t)) h(t) \frac{1 - [-h(t)]^m}{1 + h(t)} \geq -2y(\tau^m(t)).$$

In the same way, we can show that $A(t) \leq 2y(\tau^m(t))$ for the case where $m \geq 3$ is odd, and that $-2y(\tau^m(t)) \leq A(t) \leq 2y(\tau^m(t))$ for the case where $m \geq 2$ is even.

Lemma 6. Let $y \in Y$. Then $\lim_{t\to\infty} \Phi[y](t) = 0$.

Proof. Assume that $\lim_{t\to\infty} \Phi[y](t) = 0$ does not hold. Then we first claim that there is a sequence $\{t_j\}_{j=1}^{\infty}$ such that

(3.8)
$$\begin{cases} \lim_{j \to \infty} t_j = \infty, & \lim_{j \to \infty} \Phi[y](t_j) \text{ exists in } \mathbb{R} \cup \{\infty, -\infty\} \setminus \{0\}, \\ 0 < h(t_j) < 1 \text{ for } j \ge 1 \text{ and } \lim_{j \to \infty} h(t_j) = 1. \end{cases}$$

By assumption there is a sequence $\{s_j\}_{j=1}^{\infty}$ for which $s_j \to \infty$ and $\Phi[y](s_j) \to c \in \mathbb{R} \cup \{\infty, -\infty\} \setminus \{0\}$ as $j \to \infty$. Since $-1 < \mu \le h(t) \le \lambda$ for $t \ge t_0$, there is a subsequence $\{t_j\}_{j=1}^{\infty}$ of $\{s_j\}_{j=1}^{\infty}$ such that $\lim_{j\to\infty} h(t_j) = d \in [\mu, \lambda]$. Lemma 4 implies that $d \ge 1$. It can be shown that $h(t_j) < 1$, $j \ge j_0$ for some j_0 . Otherwise,

there exists a subsequence $\{\tilde{t}_j\}_{j=1}^{\infty}$ of $\{t_j\}_{j=1}^{\infty}$ such that $h(\tilde{t}_j) \geq 1$ for all j. From (iii) of Lemma 3 and (ii) of Lemma 1, it follows that

$$|c| = \left| \lim_{j \to \infty} \Phi[y](\widetilde{t}_j) \right| = \left| \lim_{j \to \infty} \Psi[y](\widetilde{t}_j) \right| \le \lim_{j \to \infty} \eta(\tau^{-1}(\widetilde{t}_j)) = 0,$$

which is a contradiction. Since $d \geq 1$, we see that d = 1, so that $0 < h(t_j) < 1$, $j \geq j_1$ for some $j_1 \geq j_0$. This proves the existence of $\{t_j\}_{j=1}^{\infty}$ satisfying (3.8).

Suppose that $\{t_j\}_{j=1}^{\infty}$ is a sequence satisfying (3.8). Let $\varepsilon > 0$ be arbitrary. There is an integer $p \ge 1$ such that

$$\eta(t)$$

There is a number $\delta > 0$ such that if $s_1, s_2 \in [\tau^{-p}(T), \tau^{-(p+1)}(T)]$ with $|s_1 - s_2| < \delta$, then

$$(3.9) |\Phi[y](s_1) - \Phi[y](s_2)| < \varepsilon.$$

Consider the mapping $N: [\tau^{-p}(T), \infty) \longrightarrow \mathbb{N} \cup \{0\}$ such that

$$\tau^{N(t)}(t) \in [\tau^{-p}(T), \tau^{-(p+1)}(T)) \text{ for } t \ge \tau^{-p}(T).$$

We note that $\lim_{t\to\infty} N(t) = \infty$. It is easily verified that $\{t_j\}_{j=1}^{\infty}$ has a subsequence $\{u_j\}_{j=1}^{\infty}$ such that

$$\lim_{j \to \infty} \tau^{N(u_j)}(u_j) \quad \text{exists in } [\tau^{-p}(T), \tau^{-(p+1)}(T)].$$

Put $\overline{u} = \lim_{j \to \infty} \tau^{N(u_j)}(u_j)$. Then we find that

$$h(\overline{u}) = \lim_{j \to \infty} h(\tau^{N(u_j)}(u_j)) = \lim_{j \to \infty} h(u_j) = 1.$$

There exists an integer j_0 such that $u_j \geq \tau^{-p}(T)$ and $|\tau^{N(u_j)}(u_j) - \overline{u}| < \delta$ for $j \geq j_0$. From (ii) of Lemma 3, we observe that

(3.10)
$$\Phi[y](t) = y(t) - h(t)\Phi[y](\tau(t))$$

$$= y(t) - h(t)y(\tau(t)) + [h(t)]^{2}\Phi[y](\tau^{2}(t))$$

$$= \sum_{i=0}^{m-1} (-1)^{i}[h(t)]^{i}y(\tau^{i}(t)) + (-1)^{m}[h(t)]^{m}\Phi[y](\tau^{m}(t))$$

for $t \geq \tau^{-m+1}(T)$. Since $h(\overline{u}) = 1$, we have

$$(3.11) \qquad |\Phi[y](u_{j}) - \Phi[y](\tau^{-N(u_{j})}(\overline{u}))|$$

$$\leq \left| \sum_{i=0}^{N(u_{j})-1} (-1)^{i} [h(u_{j})]^{i} y(\tau^{i}(u_{j})) \right| + \left| \sum_{i=0}^{N(u_{j})-1} (-1)^{i} y(\tau^{i}(\tau^{-N(u_{j})}(\overline{u}))) \right|$$

$$+ \left| [h(u_{j})]^{N(u_{j})} \Phi[y](\tau^{N(u_{j})}(u_{j})) - \Phi[y](\tau^{N(u_{j})}(\tau^{-N(u_{j})}(\overline{u}))) \right|.$$

Lemma 5 implies that if $j \geq j_0$, then

(3.12)
$$\left| \sum_{i=0}^{N(u_j)-1} (-1)^i [h(u_j)]^i y(\tau^i(u_j)) \right| \le 2y(\tau^{N(u_j)-1}(u_j))$$

$$\le 2\eta(\tau^{N(u_j)-1}(u_j)) < 2\varepsilon$$

and

$$(3.13) \qquad \left| \sum_{i=0}^{N(u_j)-1} (-1)^i y(\tau^i(\tau^{-N(u_j)}(\overline{u}))) \right| \leq 2y(\tau^{N(u_j)-1}(\tau^{-N(u_j)}(\overline{u})))$$

$$\leq 2\eta(\tau^{-1}(\overline{u})) < 2\varepsilon.$$

From (iii) of Lemma 3, (ii) of Lemma 1 and the fact that $h(\overline{u}) = 1$, it follows that

$$|\Phi[y](\overline{u})| = |\Psi[y](\overline{u})| \le \eta(\tau^{-1}(\overline{u})) < \varepsilon.$$

Then we observe that

$$(3.14) |[h(u_{j})]^{N(u_{j})}\Phi[y](\tau^{N(u_{j})}(u_{j})) - \Phi[y](\tau^{N(u_{j})}(\tau^{-N(u_{j})}(\overline{u})))|$$

$$\leq |[h(u_{j})]^{N(u_{j})}||\Phi[y](\tau^{N(u_{j})}(u_{j})) - \Phi[y](\overline{u})|$$

$$+ |[h(u_{j})]^{N(u_{j})} - 1||\Phi[y](\overline{u})|$$

$$\leq |\Phi[y](\tau^{N(u_{j})}(u_{j})) - \Phi[y](\overline{u})| + 2|\Phi[y](\overline{u})| < 3\varepsilon, \quad j \geq j_{0},$$

because of (3.9). Combining (3.11)–(3.14), we obtain

$$|\Phi[y](u_j) - \Phi[y](\tau^{-N(u_j)}(\overline{u}))| < 7\varepsilon, \quad j \ge j_0.$$

This means that

$$\lim_{j\to\infty} |\Phi[y](u_j) - \Phi[y](\tau^{-N(u_j)}(\overline{u}))| = 0.$$

On the other hand, in view of (iii) of Lemma 3 and (ii) of Lemma 1, we see that

$$\lim_{j \to \infty} |\Phi[y](\tau^{-N(u_j)}(\overline{u}))| \le \lim_{j \to \infty} \eta(\tau^{-N(u_j)-1}(\overline{u})) = 0.$$

From (3.8) it follows that

$$\lim_{j\to\infty} |\Phi[y](u_j) - \Phi[y](\tau^{-N(u_j)}(\overline{u}))| \quad \text{exists and is not equal to } 0.$$

This is a contradiction. The proof is complete.

Proposition mentioned in Section 2 follows from Lemmas 3 and 6.

Acknowledgment. The author would like to thank Professor M. Naito for many helpful suggestions.

References

- [1] M. P. Chen, J. S. Yu and Z. C. Wang, Nonoscillatory solutions of neutral delay differential equations, Bull. Austral. Math. Soc. 48 (1993), 475-483.
- [2] Q. Chuanxi, G. Ladas, B. G. Zhang and T. Zhao, Sufficient conditions for oscillation and existence of positive solutions, Appl. Anal. 35 (1990), 187-194.
- [3] K. Gopalsamy and B. G. Zhang, Oscillation and nonoscillation in first order neutral differential equations, J. Math. Anal. Appl. 151 (1990), 42-57.
- [4] E. A. Grove, M. R. S. Kulenović and G. Ladas, Sufficient conditions for oscillation and nonoscillation of neutral equations, J. Differential Equations 68 (1987), 373-382.
- [5] J. Jaroš and T. Kusano, On a class of first order nonlinear functional differential equations of neutral type, Czechoslovak Math. J. 40 (1990), 475-490.
- [6] J. Jaroš and T. Kusano, Oscillation properties of first order nonlinear functional differential equations of neutral type, Differential Integral Equations 4 (1991), 425-436.
- [7] Y. Kitamura and T. Kusano, Oscillation and asymptotic behavior of solutions of first-order functional differential equations of neutral type, Funkcial. Ekvac. 33 (1990), 325-343.
- [8] Y. Kitamura and T. Kusano, Existence theorems for a neutral functional differential equation whose leading part contains a difference operator of higher degree, Hiroshima Math. J. 25 (1995), 53-82.
- [9] W. Lu, Existence of nonoscillatory solutions of first order nonlinear neutral equations, J. Austral. Math. Soc. Ser. B 32 (1990), 180-192.
- [10] W. Lu, Nonoscillation and oscillation of first order neutral equations with variable coefficients,
 J. Math. Anal. Appl. 181 (1994), 803-815.
- [11] W. Lu, Nonoscillation and oscillation for first order nonlinear neutral equations, Funkcial. Ekvac. 37 (1994), 383-394.
- [12] Y. Naito, Nonoscillatory solutions of neutral differential equations, Hiroshima Math. J. 20 (1990), 231-258.
- [13] Y. Naito, Existence and asymptotic behavior of positive solutions of neutral differential equations, J. Math. Anal. Appl. 188 (1994), 227-244.
- [14] Y. Naito, A note on the existence of nonoscillatory solutions of neutral differential equations, Hiroshima Math. J. 25 (1995), 513-518.
- [15] O. Quijada and A. Tineo, Oscillatory and nonoscillatory results for first order neutral differential equations, J. Math. Anal. Appl. 180 (1993), 37-42.
- [16] S. Tanaka, Existence of positive solutions of first order nonlinear differential equations of neutral type. (in preparation)
- [17] S. Tanaka, Existence of oscillatory solutions of neutral differential equations. (in preparation)
- [18] B. Yang and B. G. Zhang, Qualitative analysis of a class of neutral differential equations, Funkcial. Ekvac. 39 (1996), 347-362.
- [19] J. S. Yu, Z. Wang and Q. Chuanxi, Oscillation of neutral delay differential equations, Bull. Austral. Math. Soc. 45 (1992), 195-200.
- [20] B. G. Zhang and J. S. Yu, Existence of positive solutions for neutral differential equations, Sci. China Ser. A 35 (1992), 1306-1313.