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A GENERALIZATION OF PROCESSES AND
STABILITIES IN ABSTRACT FUNCTIONAL
DIFFERENTIAL EQUATIONS

FEK BEFFHEZ (YOSHIYUKI HINO) *
LR A BB (SATORU MURAKAMI) 1

1. Introduction

The concept of processes discussed in [1-3] and [9] is a useful tool in the study of
mathematical analysis for some phenomena whose dynamics is described by equations
that contain the derivative with respect to the time variable. Indeed, Hale [3] derived
some stability properties for processes and applied those to get stability results for some
kinds of equatiohs, including functional differential equations, partial differential equa-
tions and evolution equations. As will be seen by an example in Section 3, however, the
concept of processes does not fit in with the study of p-stability in the stability problems
for functional differential equations with infinite delay. Here p-stability means that the
solution remains small with respect to the metric p, which induces the compact open
topology, if the initial function is small with respect to p. The p-stability is a useful tool
in the study of the existence of almost periodic solutions for almost periodic systems
[13].

To overcome the difficulty stated above, in this paper we generalize the concept of
processes and get a more extended concept which is called quasi-processes. In Section
2, we discuss some stability properties for quasi-processes and obtain some equivalence
relations concerning with stabilities for quasi-processes in connection with those for “lim-
iting” quasi-processes (Theorem 1), which is a generalization of [3, Theorem 3.7.4]. In
Section 3, we treat abstract functional differential equations with infinite delay defined on
some fading memory space B and, corresponding to B-metric and p-metric, we construct
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processes and quasi-processes associated with functional differential equations, respec-
tively. Finally, establishing that processes and quasi-processes fit in with the analysis of
B-stability problems and p-stability problems, respectively, we obtain some equivalence
relationships between these stabilities for the original equation and those for limiting
equations (Theorems 2 and 3).

2. Quasi-processes and some stability properties

In this section, we shall introduce the concept of quasi-processes which is a general-
ization of processes and deduce some results on stability properties for quasi-processes.
Suppose X is a metric space with metric d and let w : Rt X Rt x X — X, R* := [0, 00),
be a function satisfying the following properties for all ¢,7,s € Rt and z € X"

(p1) w(0,s,z) = z;
(p2) w(t+7,s,2) =w(t, 7+ s,w(T,s,z)).

Let Y be a nonempty closed set in X. We call the mapping w a Y-quasi-process on
X or simply a quasi-process on X, if w satisfies the condition,

(p3) the restricted mapping w : R* x R™ x ) ~— X is continuous,

together with the conditions (pl) and (p2). In case of J = &, the concept of quasi-
processes is identical with that of processes investigated in [1-3] and [9]. We emphasize
that the concept of processes does not fit in with the study of p-stabilities in functional
differential‘ equations in contrast with the concept of quasi-processes, as will be seen in
the next section.

Denote by W the set of all quasi-processes on X. For 7 € Rt and w € W, we define
the translation o(7)w of w by

(o(nw)(t,s,2) =w(t, 7 +s,2),  (ts,7) €RT x BT X X,

and set v} (w) = U o(t)w. Clearly v (w) C W. We denote by H,(w) all functions
x : Rt x R* x X — X such that for some sequence {r,} C R*, {o(7,)w} converges
to x pointwise on R* x Rt x X, that is, lim, (0 (mm)w)(t,s,2) = x(t,s,z) for any
(t,s,z) € R x R* x X. The set H,(w) is considered as a topological space with the
pointwise convergence, and it is called the hull of w.

Consider a Y-quasi-process w on & satisfying

(p4) Hy(w) CW.
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Clearly, H,(w) is invariant with respect to the tanslation o(r),7 € R*. For any t € R,
we consider a function 7(t) : X x Hy(w) — X x H,(w) defined by

W(t)('% X) = (X(ta 0, x)a U(t)X)

for (z,x) € X x H,(w). w(t) is called the skew product flow of the quasi-process w, if
the following property holds true:

(p5) m(t)(y, x) is continuous in (¢,y,x) € RT x Y x H,(w).

The skew product flow () is said to be ) -strongly asymptotically smooth if, for
any nonempty, closed, bounded set B C Y x H,(w), there exists a compact set J C
Y x H,(w) with the property that {m(t,)(ys, X»)} has a subsequence which approaches
to J whenever sequences {t,} C R* and {(yn, xsn)} C B satisfy lim, ... t, = oo and
T(t)(Yn, Xn) € Bforallt € [0,2,]. In case of Y = X, the Y-strong asymptotic smoothness
of m(t) implies the asymptotic smoothness of 7 () introduced in [2-3]. In the next section,
we shall see that the V-strong asymptotic smoothness of 7(t) is ensured when w is a
quasi-process generated by some functional differential equations.

Now we suppose that H,(w) is sequentially compact and we discuss relationships
between some stability properties for the quasi-process w and those for the “limiting”
quasi-processes X € {2, (w); here Q,(w) denotes the w-limit set of w with respect to the
translation semigroup o(t). A continuous function p : Rt + Y is called an integral of
the quasi-process w on R™, if w(t, s, pu(s)) = pu(t + s) for all ¢,s € R (cf. [2, p.80]). In
the following, we suppose that there exists an integral x : R* — J of the quasi-process
w on R* such that the set Ot (u) = {u(t) : t € R*} is contained in ) and is relatively
compact in X. From (p5) we see that 7(6)(u(s), o(s)w) = (w(8, s, u(s)), (s + Sw) =
(1(s+6), 0(s+6)w) tends to (u(s), o(s)w) as § — 0 uniformly for s € R*; consequently,
the integral p must be uniformly continuous on R*. From Ascoli-Arzéla’s theorem and
the sequential compactness of H,(w), it follows that for any sequence {7/} C R, there
exist a subsequence {7} of {7}, a x € H,(w) and a function v : R* — Y such that
limy 00 0(Tn)w = x and limp e p(t + 7) = v(t) uniformly on any compact interval in
R*. In this case, we write as

(0™, 0(Tn)w) = (v,X) compactly,

for simplicity. Denote by Ho(u,w) the set of all (v,x) such that (u™,o(m)w) —
(v,x) compactly for some sequence {7,} C R*. In particular, we denote by (u, w)
the set of all (v,x) € Hy(u,w) for which one can choose a sequence {7,} C R" so
that limy, e 7 = 00 and (u™, 0(7,)w) — (v, x) compactly. We easily see that v is an
integral of the quasi-process x on Rt whenever (v, x) € H,(u, w).
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For any 2o € X and € > 0, we set Ve(zo) = {z € X : d(z,x,) < e}. We will give the
definition of stabilities for the integral u of the quasi-process w.

Definition The integral u: Rt — Y of the quasi-process w is said to be:

(i) Y-uniformly stable (Y-US) (resp. Y-uniformly stable in Q,(w)) if for any € > 0,
there exists a 6 := 6() > 0 such that w(t, s, YNVs(u(s))) C Ve(u(t+s)) for (¢,5) € Rt x
RY (resp. x(t,5,YNVs5(v(s))) C Vi(v(t+s)) for (,x) € Qo(p,w) and (¢, s) € R+ x R*);

(ii) Y-uniformly asymptotically stable (V-UAS) (resp. Y-uniformly asymptotically
stable in (5 (w)), if it is Y-US (resp. Y-US in Q,(w)) and there exists a 8o > 0 with the
property that for any e > 0, there is a ¢, > 0 such that w(t, s, YNVs,(11(s))) C Ve(u(t+s))
fort > to, s € R (resp. x(t,5,Y N Vs (v(s))) C Ve(v(t +5)) for (v, x) € U, w) and
t>1y, s€R"); ,

(iii) Y-attractive (resp. Y-attractive in Q,(w)) if there is a 8 > 0 such that for
y € YN Ve (u(0)) (resp. y € YN Vi (v(0) and (v, x) € Qo (1, w)), d(w(t, 0, ), u(t)) — 0
(resp. d(x(t,0,y),v(t)) — 0) as t — oo;

(iv) Y-weakly uniformly asymptotically stable (Y-WUAS) in Q,(w) if it is Y-US in
Q(w) and Y-attaractive in Qy(w).

We assume the following property on ), w and 7%

(p6) There is a 6; > 0 such that for any s € R* and ¢, > 0, w(to, s,y) € Y whenever
y €Y and w(t, s,y) € Vs, (u(t +s)) for all ¢ € (0, ).

If Y = X, then (p6) is clearly satisfied. In the next section, we will give a nontivial
example for which (p6) is satisfied.

Theorem 1 Let Y be a closed set in a metric space X and suppose that w is a Y-
quasi-process on X for which H,(w) is sequentially compact and that the skew product
flow m(t) : X X Hy(w) — X x Hy(w) of the quasi-process w is Y-strongly asymptotically
smooth. Also, suppose that p: R +— Y is an integral of w on Rt such that Ot (u) is
a relative compact subset of ¥ and that (p4) and (p6) are satisfied. Then the following
statements are equivalent:

(i) The integral p is Y-UAS.

(ii) The integral p is Y-US and Y-attractive in Q,(w).

(ili) The integral p is Y-UAS in Qq(w).

(iv) The integral p is Y-WUAS in Q,(w).

Proof. In the case of Y = &',u =0 and X is complete, the equivalence (i) < (ii) and
the implication (i)= (iii) are direct consequence of [3, Theorem 3.7.4 and Lemma, 3.7.3],
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because the )-strong asymptotic smoothness of 7 (t) implies the asymptotic smothness
of 7(t). Following the argument employed in [3, Theorem 3.7.4 and Lemma 3.7.3], we
can see that the equivalence and the implication mentioned above hold true even if
Y # X or p % 0 or X is not necessarily complete; we omit the details. In order to
establish the theorem, it suffices to show that (iv) yields the Y-US of the integral p.
To do this by a contradiction, we assume that the integral p is Y-WUAS in Q,(w), but
not Y-US. Then there exist an € > 0, ¢ < min{dy, 6}, and a sequence {(tn,5n, Yn)} in
R* x R* x Y such that d(yn, u(sn)) — 0 as n — 00, d(w(tn, S, Yn), (tn + sn)) = € and
d(w(t, Sn, Yn), u(t + sn)) < € for 0 < t < t,, where §; is the one ensured in (p6) and
8o is the one given for the Y-attractivity in Qs (w) of the integral u. Take a positive
constant 7y, v < €, so that x(¢,s,Y N V,(v(s))) C Ve(v(t + s)) for (t,s) € R x R*
and (v,x) € Qo(u,w), which is possible by the Y-US in Q,(w) of the integral x. Since
d(yn, p(8n)) — 0 as n — oo, there exists a sequence {7,}, 0 < 7, < t,, such that
A(W(Tr, Sy Yn)s (Tn + Sn)) = 7/2 and d(w(t, s, Yn), 1(t + 54)) > /2 for all t € [1,, L],

We assert that 7, — 00 as n — 00. Suppose that the assertion is false. Then,
without loss of generality, we may assume that 7, — 7o and (u*,0(sp)w) — (i, W)
as n — oo, for some 179 < oo and (&, W) € H,(u,w). From (p5) it follows that
(T3 ) (Yn, 0 (8n)w) tends to 7(70)(f(0),w) in YV X H,(w) as n — oo, which implies that
(0(80)W) (T 0, Yn) = W(Tn, Sn, Yn) tends to (7o, 0, i(0)) = fi(7o) asn — 00. On the other
hand, since d(w(Tn, Sny Yn)s (T + $n)) = /2, we must get d(@(7o, 0, £(0)), fi(70)) = v/2,
a contradiction.

Now we may assume that (u™"*" o(7, + sp)w) — (v,Xx) as n — oo, for some
(v, x) € Qo(i,w). Notice that 7(2)(Yn, o(sp)w) = (W(t, Sn, Yn), o(t + sa)w) € Vi, (u(t +
sn)) X Hy(w) for ¢ € [0,7,]. By virtue of (p6), we get w(t,sn,y.) € Y for all ¢ €
[0,7,]. Since m(t) is V-strongly asymptotically smooth, taking a subsequence if neces-
sary, we can assume that w(7y,sn,yn) — ¥ for some § € Y as n — o0o. Note that
§ € V,(v(0)). We first consider the case where the sequence {t, — 7,} has a con-
vergent subsequence. Without loss of generality, we can assume that ¢, — 7, — { as
n — 0o, for some £ < 00. Then (p5) implies that m(t, — 7)(W(Tn, Sn, Yn), O (Tn + Sn)W) =
(W(tn, Sny Un)s O(tn + sn)w) tends to w(£)(F, x) in Y x Hy(w) as n — oo. Letting n — oo
in the relation d((0(Tn + $2)W)(tn — Tn, 0, W(Tn, Spy Yn))s (e + 8n)) = d(W(tn — Tn, Sn +
Ty W(Ty Sy Yn))s (tn + Sn)) = d(w(tn, Sn, Yn)s i(tn +8n)) = €, We get d(x(¢,0,9), v(t)) =
e. This is a contradiction, because of x(£,0,%) € x(£0,Y N V,(v(0))) C Vi(v(2)).
Thus we must have limp_oo(tn — Tn) = o0. Now, letting n — oo in the relation
d((0(8n +Tn)w) (2, 0,W(Ts Sy Yn)), M+ T+ 5n)) = d(W(E+Tn, S, Yn)y p(E+Tot50)) S €
for t € [0,t, — 7], we get d(x(¢,0,9),v(t)) < e < & for all ¢ > 0. Then, from the
V-attractivity in Q,(w) of the integral u, it follows that d(x(t,0,%),v(t)) — 0 as ¢ — oo.
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On the other hand, since d(w(t + T, 8n, Yn), (t + 7o + sn)) > /2 for ¢ € [0, t, — 7], we
must get d(x(¢,0,%),v(t)) > v/2 for all ¢ > 0; hence d(x(¢,0,%),v(t)) 4~ 0ast — oo, a
contradiction.

3. Quasi-processes generated by abstract functional differential equations

In this section, we shall treat abstract functional differential equations on a fading
memory space (resp. uniform fading memory space) and show that quasi-processes (resp.
processes) are naturally generated by functional differential equations.

We first explain some notation and convention employed throughout this section.
Let X be a Banach space with norm |- |x. For any interval J C R := (—o0,00),
we denote by BC(J; X) the space of all bounded and continuous functions mapping
J into X. Clearly BC(J; X) is a Banach space with the norm | - |g¢(s,x) defined by
|plec(r,x) = sup{|p(t)|x : t € J}. If J = R~ := (—00, 0], then we simply write BC(J; X)
and | - |gc(;x) as BC and | - |gc, respectively. For any function u : (—00,a) = X
and t < a, we define a function u; : R~ — X by u(s) = u(t + s) for s € R™. Let
B = B(R™;X) be a real Banach space of functions mapping R~ into X with a norm
| - |5- The space B is assumed to have the following properties:

(A1) There exist a positive constant N and locally bounded functions K(-) and
M(-) on R* with the property that if u : (—00,a) — X is continuous on [0, a) with
u, € B for some o < a, then for all ¢ € [0, a),

i) weB,

(i)  uy is continuous in t (w.r.t. |- |s),

(i) N|u(t)lx < |wls < K(¢ — 0) supy<oct [u(s)|x + M(t — 0)|to|s.

(A2) If {¢™} is a sequence in BN BC converging to a function ¢ uniformly on any
compact intertval in R~ and sup,, |¢™|sc < 00, then ¢ € B and |¢" — ¢|zg — 0 as n — oo.

It is known [7, Proposition 7.1.1} that the space B contains BC and that there is a
constant £ > 0 such that
8l < £l¢lsc, ¢ € BC. (1)

Set By = {¢ € B: ¢$(0) = 0} and define an operator So(t) : Bo — By by

Pt +s) if t+5<0,

[So(t)l(s) =
0 ift+s>0
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for each ¢ > 0. In virtue of (A1), one can see that the family {So()}:>0 is a strongly
continuous semigroup of bounded linear operators on By. We consider the following
properties:

(A3)  lim[So(t)gls =0, ¢ € Bo.
(A3)  lim [|So(2)]| = 0.

Here and hereafter, we denote by || - || the operator norm of linear bounded operators.
The space B is called a fading memory spdcé (resp. a uniform fading memory space),
if it satisfies (A3) (resp. (A3’)) in addition to (A1) and (A2). It is obvious that B is
a fading memory space whenever it is a uniform fading memory space. It is known 7,
Proposition 7.1.5] that the functions K(-) and M(-) in (A1) can be chosen as K (t) = ¢
and M(t) = (1 + (¢/N))||So(t)||. Note that (A3) implies SUP;>o [|S0(t)|| < oo by the
Banach-Steinhaus theorem. Therefore, whenever B is a fading memory space, we can
assume that the functions K(-) and M(-) in (Al) satisfy K(-) = K and M(-) = M,
‘constants. :

We provide a typical example of fading memory spaces. Let g : R~ + [1,00) be any
continuous, nonincreasing function such that g(0) = 1 and g(s) — 0o as s — —oo0. We
set

Cy:=Cy(X)={¢: R™— X is continuous with Jim [g(s)|x/g(s) = 0}.

Then the space Cg equipped with the norm

¢(s)lx 0
= ’ €C, )
|8l w0 €0
is a separable Banach space and it satisfies (A1)~(A3). Moreover, one can see that (A3’)
holds if and only if sup{g(s +t)/g(s) : s < —t} — 0 as t — oco. Therefore, if g(s) = e~*,
then the space Cj) is a uniform fading memory space. On the other hand, if g(s) = 1+/s|*
for some k& > 0, then the space C’g is a fading memory space, but not a uniform fading

memory space.

Throughout the remainder of this paper, we assume that 3 is a fading memory space
or a uniform fading memory space which is separable and let C(R* x B; X) be the space
of all continuous functions on Rt x B with values in a Banach space X, which is equipped

with the compact open topology.
Now we consider the following functional differential equation

du_

22 = Au(t) + F(t,w), | 2)



35

where A is the infinitesimal generator of a compact semigroup {T'(t)}s>0 of bounded
linear operators on X and F(t,¢) € C(R" x B; X). In what follows, we shall show
that (2) generates a quasi-process on an appropriate space under some conditions and
deduce equivalence relationships between some stability properties of (2) and those of
its limiting equations as an application of Theorem 1.

We assume the following conditions on F:

(H1) F(t, ) is uniformly continuous on R* x K for any compact set X in B, and
{F(t,¢) | t € R*} is a relative compact subset of X for each ¢ € B.

(H2) For any H > 0, there is an L(H) > 0 such that |F (¢, ¢)|x < L(H) for all t € R*
and ¢ € B such that |¢|g < H.

For 7 € R*, we denote the T-translation F™ of F(t, ¢) by’
F(t,¢) = F(t+7,4), (t,¢) € R" x B.
Clearly, F™ is in C(R* x B; X), too. Set
H(F)={F";7 € R},

where {F"; 7 € R*} denotes the closure of {F™;T € R*} in C(R x B; X). The subspace
H(F) of C(R* x B; X) is called the hull of F. It is known [7, Proposition 8.1.3] that
H(F') is metrizable. Clearly, the hull H(F') is invariant with respect to the 7-translation;
that is, G™ € H(F) whenever G € H(F) and 7 € R*: Moreover, from (H1) and [7,
Theorem 7.1.4] it follows that H(F') is a compact set in C(R™ x B; X). If G € H(F),
one can choose a sequence {7,} C R* so that F'™ tends to G in C(R" x B; X), that
is, F(t + 7o, ) — G(t,¢) as n — oo uniformly on any compact subset of RT x B. It is
easy to see that each G € H(F) satisfies (H1) and (H2) (with the common L(-)) when
F' does. We denote by Q(F) the set of all elements G in H(F) for which one can choose
a sequence {7} C R" so that {r,} - c0asn — 0o and F — G in C(R x B; X). If
G € H(F), the system

— = Au(t) + G(t,u;)  te R (3)

is called an equation in the hull of System (2). In particular, if G € Q(F), then it is
called a limiting equation of (2). |
Under the conditions (H1) and (H2), it is known that for any (o, ¢) € R* x B, there
exists a function u € C((—00,%;); X) such that u, = ¢ and the following relation holds:
1

u(t) = Tt — 0)(0) + / T(t — 5)G(s,us)ds, o <t<t,

[
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(cf. [5, Theorem 1]). The function v is called the (mild) solution of (3) through (o, ¢)
defined on [o,¢;] and denoted by u(t) := u(t, 0,9, G). In the above, t; can be taken as
t1 = 00 if sup;<,, |u(t)|x < oo (cf. [5, Corollary 2]). In the following, we always assume
the following condition, too: '

(H3) For any G € H(F) and (0,¢) € Rt x B, Equation (3) has a unigue solution
through (o, ) which exists for allt > o.

Consider a mapping & : R*x R*xBx H (F) — B defined by

é(t7sa¢7G) = ut+s(sa¢7 G) € B) (t737¢7 G) € R+ X R+ X B x H(F)

Proposition 1  Assume that B is a fading memory space and that conditions (H1)—
(H3) are hold. Then the mapping ® is continuous.

Proof.  Assume that the mapping ® is not continuous. Then there exist an & > 0,
(to, s0,4% G) € R* x Rt x B x H(F) and sequences {tx} C R*,{sx} C R",{¢*} C B
and {Gy} C H(F) such that (t, sk, ¢*,Gr) — (to, 50,4, G) and |®(tk, s, %, Gi) —
®(tg, s0, 9%, G)|s > 3¢ for k € N (N denotes the set of all positive integers). Since
®(t, 50, 4%, G) € B is continuous in t € R by (Al-ii), we may assume that |z} —z¢ |5 >
2% for all k € N, where z(t) = u(t + so, S0, ¢°, G) and z*(t) = u(t + s, sk, 9%, Gi) for
k € N. There exist v > 0, o and 7%, 0 < 0x < 7% < g, such that v < min{e/(1 +
M),Ne/K}, |

=¥ — 2ol =",  |of — 2|8 =2,

lzF —as <y (0<t<oy)

and
lzF —ay|p <26 (0<t <)

for k € N; here the functions M(-) and K(-) in (A1) maybbe chosen as positive constants
M and K, respectively, because B is a fading memory space. By choosing a subsequence
if necessarily, we may assume that o, — 0o € [0,%]. We claim that

oo > 0. (4)
Indeed, if (4) is false, then we have, for any 0 <t < min{o%, 1},
o) —o(Olx = [TW0)+ [ T —7)Gu(ss+78)dr
~T(t)2(0) - [ Tt — 7)G(s0 + 7, 2 )dT|x

G/ — #ls+2 [ L(H)dr),

IA



37

where H = sup{|z|s, |zF|5 : 0 < t < 7,k € N} and C; = SuPogsg» [|T(s)||; hence

K sup |:ck(t) — w(t)lx + M|¢* — ¢°|s

OStSO‘k

< KC{(1/N)|¢* — ¢°|5 + 204 L(H)} + M|¢* — ¢z — 0

IA

as k — 00, a contradiction.

Next we prove that the set O := {z*(t) : 0 <t < 7, k € N} is relatively compact
in X. To do this, we consider the sets O, = {z*(t) : n <t <7 k€ N} and
Op ={z*t):0<t<m ke N} for any 1 > 0 such that < infy 7. Then o(0) =
max{a(0,), a(0,)}, where af-) is Kuratowski’s measure of noncompactness of sets in
X. For the details of the properties of a(-), see [10, Section 1.4]. Let 0 < v < min{1, n}.
Since z¥(t) is a mild solution of (d/dt)u = Au(t) + G (t + sg, w) through (0, ¢¥), we get

() = TE)¢*(0) +/tTt—s B (s)ds

= T[Tt —n)¢*(0) +/ T(t —n — s)h*(s)ds] + t; T(t — s)h*(s)ds

= Tt —m)+TW) [ Tt —s—v)hi(s)ds+ [ T(t— 5)h*(s)ds

t—n t—v

fort > 1, where h*(t) = G (t+sk, zf). Theset {[{7) T(t—s—v)h¥(s)ds:n<t<m, ke
N} is bounded in X, and hence T(z/){ftt__,',’ T(t—s—v)hk(s)ds:n<t<m, keN}is
relatively compact in X by the compactness of the semigroup {7'(t)}:>o. Similarly, one
can get the relative compactness of the set T'(n){z*(t — ) : n<t<m ke&N}. Since

<

{/ t—shk (s)ds:n<t<m, keN})
Ci1L

V’
letting v — 0 in the above, we get a(O,) = 0. Hence

a(0) = a(Oy)

a({T(1)+(0) + | Tt — s)hE(s)ds: 0 <t <7, keN})

_ a({/OtT(t _ )k (s)ds: 0<t<m, keN})
< CiL(H)n

for all 0 < n < infy 7%, which shows a(O) = 0; consequently, O must be relatively
compact in X.

Since the set {z*(o%), z(ox) : k € N} is relatively compact in X, |[T(¢t — o%) —
I)(z*(0x)—z(ok))|x — Oas [t—ox| — 0. Therefore, repeating almost the same arguments
as in the proof of (4), we obtain inf{7, — o} : kK € N} =: 2a > 0, because of the inequality
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|25, — 278 < K sup,, <<, [2°(2) — 2(t)|x + M|z —z5 g ore < K supg, <<, |2*(t) —
z(t)|x. Noting that |z*(t) — z*(s)|x < sup{|T(t —s)z —z|x : z € O} + CiL(H)|t - s
when 0 < s <¢ < gp+a andt < s+1, we have that z*(t) is equicontinuous on [0, oo+al.
Hence, one may assume that z*(t) converges to some continuous function y(t) uniformly
on [0,y + a] as k — oo. Putting yo = ¢°, we have z¥ — 1, in B uniformly on [0, 60 + a],
because of zf = ¢* — ¢° in B. Letting k — 0o in the relation

z*(t) = T(t)p*(0) + /Ot T(t — 7)G(sy + 7, 2%)dr

for t € [0, 0%, + a], we have

v(®) = TOY(0) + [ T(t — "G50 +7,9.)dr

for ¢ € [0, 00 + (a/2)]; hence y(t — s0) = ult, so, ¢°, G) = z(t — s0) on [s0, 50 + 00 + (a/2)]
by (H3). Consequently |ys, — Zs,|s = 0. This is a contradiction, because we must get
Yoo — Zools = ¥ by letting k — oo in |25 — z,, |5 = . This completes the proof of the
proposition. '

Now we take X = ) = B and consider a function wg : Rt x Rt x B+ B defined by

wg(ta 3, ¢) = ut+8(37¢: G), (t, 3,¢) € Rt x Rt x B.

By virtue of (H3), we see that the mapping w§. satisfies (p1) and (p2) with X = B.
Moreover from Proposition 1 it follows that w§ satisfies (p3). Thus the mapping w§ is
a B-quasi-process on B. In fact, w§ is precisely a process on B in a sense of [1-3]. We
call w§ a process on B generated by (3).

Now we consider the process w§ on B generated by (2). (H3) yields the relation
ut+T1,s+ 7,6, F) = u(t,s,, F") for t € R and (s,7,¢) € R" x RT x B. Hence
, (U(T)wg)(tv $,¢) = wg(t> T+ 8,¢0) = Utrris(T + 5,8, F) = urys(s, 9, FT) = ng(tu $,¢)

for (t,s,4) € Rt x Rt x B; in other words,

o(T)wg = wg .

Therefore H,(w5) = {w§ : G € H(F)} and Q,(wf) = {w§ : Ge Q(F)}. In particular,
the process w§ satisfies the condition (p4). Moreover, we see that H,(w5) is sequentially
compact and that a mapping 75(t) : B x H,(wf) — B x H,(wk) defined by

() (6 w) = (w(0,4,G),0(tws), (¢, wS) € Bx H,(wE),

satisfies the condition (p5), and hence 75(t) is the skew product flow of w.
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Lemma 1 The skew product flow ng(t) is B-strongly asymptotically smooth whenever
B is a uniform- fading memory space.

Proof. Let B be any bounded closed set in B x H,(wg). Then there is an H > 0 such
that B C By x Ho(wg), where By = {¢p € B |p|s < H}. Let L := L(H) be a constant
n (H2), and set '

Q1 ={ /O "T(r)h(r)dr: he BC(0,11;X) with hlsogo < L},

By the same reason as the one for the set O in the proof of Proposition 1, we see that
the set @1 is relativly compact in X. Then there exists a compact set Op in X satisfying

T(1)Xaw + Q1 C Op, (5)

where N is the constant in (A1), and Xp/y = {z € X : |z|x < H/N}. Denote by Jp
the set of all elements ¢ in BC with the property that ¢(6) € Op for § € R~ and

|p(t) — #(s)|x < sup{|T'(t — s)z — z|x : 2 € O} + CiL|t — |

for all s,t satisfying s—1<t—-1<s< 0, where C1 = supg<,<; ||T(s)||. From (A2) and
Ascoli-Arzéela’s theorem, we see that Jp is a compact set in B.

Now, let {t.} C R and {(¢",w§")} C B be sequences with the property that
iMooty = 00 and mg(t) (4", wg™) = (ue(0, 9", Gn),wgﬁ’) € Bforalltel0t,)] We
shall show that {ms(t,)(¢", wg")} has a subsequence which approaches to the com-
pact set Jp X H,(w). We may assume that ¢, > 2forn =1,2,---. Set z"(t) =
u(t,0,¢",Grn),n =1,2,---. Since |z}}|g < H for t € |0, t,], we get

) = TQ)z"(t—1) +/ T(t — $)Gn(s, 2%)ds
= (1)33 (t—1) +/ 7)™ (1)dT

for any ¢ € [1,t,], where h™* (1) = GL(t — 7,z}_,). Note that A™" € BC(|0, 1]; X) with
|h™Bc(o,1),x) < L and that |z™(t — 1)|x < (1/N)|z} ]z < H/N. Tt follows from (5)
that the set {z"(t) : 1 <t <t,, n=1,2,---} C Op. Moreover, if 1 < s <¢-<t, and
|t —s| <1, then

O - @)lx < [T 9)a™(s) ~a(s)lx +1 [ T~ m)Calr, ) x
< sup{|T(t —s)z—z|x : z € O} + C,L|t — s|.

Therefore, if we consider a function y* defined by y™(t) = z"(t) if 1 < t < t,, and
y™(t) =2™(1) if t < 1, then y € Jp. Observe that

utn(07 ¢n; Gn) = yZn + S()(tn - 1)[:6111‘ - l‘n(l)f],
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where £(6) = 1for 6 < 0. Since |27 —z"(1){|s < H+LH/N by (1), we get |us, (0, ¢", G,,)—
yi 18 < ||So(tn — 1||(1+£/N)H — 0 as n — oo, because B is a uniform fading memory
space. Thus {ng(t,)(¢™, wg")} approaches to the compact set Jg x H,(wg).

Suppose the following condition:
(H4) Equation (2) has a bounded solution %(t) defined on R* such that @, € BC.

By virtue of [8, Lemma 2] and the proof of Proposition 1, we see that the set {@; : t € R}
is relatively compact in B and that #; € B is uniformly continuous in ¢t € R*. Therefore,
for any sequence {7,} C R one can choose a subsequence {r,} C {r.}, ¥ € C(R; X)
‘and G € H(F) such that lim, e, F™ = G in C(R* x B; X) and limp—.e0 [Ger, — Vsl = 0
uniformly on any compact interval in R*. In this case, we write as

(TL%", F™) — (9,G) compactly,

for simplicity. Denote by H(%, F') the set of all (7,G) € C(R; X) x H(F) such that
(@™, F™) — (0, G) compactly for some sequence {7,} C R*. In particular, we denote
by Q(a, F') the set of all elements (7, G) in H(@, F') for which one can choose a sequence
{m} € RT so that lim,—co 7 = 00 and (@™, F™) — (4, G) compactly. We can easily
see that 7 is a solution of (3) whenever (7,G) € H(u, F).

For any function £ : R +— X such that & € B and £ is continuous on R*, we define
a continuous function u& : Rt +— B by

ps(t) =&, teR'

It is clear that p2 is an integral of the process wh on R*. Also, we get H,(u%, wh) =
{(ug,w§) : (5,G) € H(u, F)} and (1, wE) = {(43, w§) : (3,G) € a, F)}.

The B-stabilities for the solution @(t) of (2) is defined via those of the integral u% of
the process wg in Definition with X = ¥ = B. For example, the solution a(t) of (2) is .
B-uniformly stable in Q(F)(B-US in Q(F)), if for any € > 0 there exists a 6(¢) > 0 such
that |u:(s, ¢, G) — T|g < € for t > s > 0 whenever (7,G) € Q(@, F') and |¢ — 7| < 8(¢).
The other B-stabilities for @(t) are given in a similar way; we omit the details.

Combining the above observation with Theorem 1 and Lemma 1, we get the following
result on B-stabilities (cf. [4, 6, 11]). We emphasize that the additional condition that
B is a uniform fading memory space cannot be removed because a fading memory space
B must be a uniform fading memory space whenever there is a functional differential
equation on B which has a B-UAS solution ([7, Theorem 7.2.6]).



41

Theorem 2 Let B be a uniform fading memory space which is separable, and suppose
that the conditions (H1)—(H4) are satisfied. Then the following statements are equivalent:
(i) The solution u(t) of (2) is B-UAS. :
(i) The solution u(t) of (2) is B-US and B-attractive in Q(F).
(i) The solution u(t) of (2) is B-UAS in Q(F).
(iv) The solution u(t) of (2) is B-WUAS in Q(F).

Next we shall construct a quasi-process with X = BC,, associated with (3); here and
hereafter, BC, denotes the space BC which is equipped with the metric p defined by

' 1 |¢—dlse(-nox)
) =) — = , , ¥ € BC,.
o5 ¥) nZ=:O 2" 1+ |¢ — YlBo((=n,0):x) ¢ ¥ ’

It is well known that the topology induced by the metric p is equivalent to the compact

open topology in BC. ' -
- We first provide an example which shows that a process on BC, cannot be always
constructed for functional differential equations with infinite delay.

Example. Consider a scalar delay equation

(e ¢]

(t) = 21(1/77,3):5(1: —-n), (6)

which is a special case of (2) with B = C)(R) (g(s) = s+ 1), A =0and F(t,¢) =

© (1/n3)¢(—n). It is clear that the conditions (H1)—(H3) are satisfied for this equa-

tion. Consider a sequence {¢*} C BC defined by ¢*(6) = 0 if —k<0<0 k*if

6 < —k — 1 and linear if —k — 1 < § < —k. Clearly ¢* — 0 in BC,. Let denote by
z(t, s, ¢) the solution of (6) through (s, ¢). Then

01,06 = [ 2(1/n3)¢’“(s —m)ds

> 1/(k+2)3/01¢’“(s—k—‘2)ds
> k/(k+2)7°>1

for k > 10. Note that z(t,0,0) = 0 and z1 (0, ¢*) # z1(0,0) in BC,. Hence the associated
mapping w : Rt x Rt x BC, — BC, defined by w(t,s,¢) = Zs1s(s,9), (t,s,0) €
R* x Rt x BC,, is not continuous on R* x R* x BC,.

From the above example, we see that the concept of processes does not fit in with the
study of the p-stabilities in functional differential equations. In what follows, we shall
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consider a subset Y of BC, and construct a Y-quasi-process on BC, associated with (3)
to overcome the above difficulty.

Let U be a closed and bounded subset of X whose interior contains the closure of
the set {@(t) : ¢ € R}, where @ is the one in (H4). Set

BCY ={¢ €BC,: ¢(8) € U for all § € R™}.

It is clear that BCg is a nonempty closed subset of BC,. With X = BC, and ) =
BCg, we shall construct the quasi-process associated with (3). Consider a function

w$ : R* x R* x BC, — BC, defined by
e _ + o pt
w, (ta S, ¢) - ut+8(37 ¢1 G)1 (tv S, ¢) €ER"XR" X BCm

which is the restriction of w§ to RT x Rt x BC,.

G

Lemma 2 w,

is a BC, -quasi-process on BC,,.

Proof. From (H3) we easily see that wS satisfies (pl) and (p2) with X = BC,. We
shall show that wf satisfies (p3) with X = BC, and ) = BCg. Suppose the condition
(p3) is not satisfied for wS. Then there exist a point (£,3,¢) € Rt x R* x BC, and
sequences {t,} C RY, {s,} C R and {¢"} C BCg such that (¢n, sn, ") — (£, 5, ¢) in
R*xR*xBC, asn — oo and that inf,, p(u, +s,(Sn, ", G), uz+s(5, ¢, G)) > 0. Then there
exists an integer [ > 0 such that inf, [us, +s,(Sn, 9", G) —uz15(5, ¢, G)|Bc(-10,x) > 0, and
hence there exists a sequence {7,} C [—,0] such that

i%f [u(tn + Sn + Tn, 80, 8", G) — u(t + 5+ 7, 3,6, G)|x > 0. (7)

Since u(t, 5, §, G) is continuous in ¢ € R, we get inf,, [u(ty + Sn + Tn, Sn, 3", G) — u(tn +
54 Tn, 5,0, G)|x > 0. Therefore it must hold that ¢, + 7, > 0 for all sufficiently large
n, because of p(¢", #) — 0 as n — oo. Thus we can assume that lim,_,o, 7, = = for
some 7 € [—I,0] with £ +7 > 0. Since limy, . |¢"™ — ¢|s = 0 by (A2), it follows from
Proposition 1 that limn—eo [Ut,+s,+m (Sny 9™ G) — Uz15417(3, @, G)|s = 0; which implies
that limp—,c0 [u(tn + Sp + Tn, Sn, 9", G) —u(f +5+7, 3,4, G)|x = 0 by (Al-iii). Therefore
limy, 00 |U(tn + Sn + Tay Sny 9™, G) — w(f + 5 + 7, 3,8, G)|x = 0, which is a contradiction
to (7).

The mapping wf constructed above is called the BCg-quasi—process on BC, generated
by (3).

Now we consider the BCg—quasi-process w! on BC, generated by (2). By the same
calculation as for wf, we see that o(m)w! = w!", H,(wf) = {w$ : G € H(F)} and
Qo (wh) = {wf : G € Q(F)}. Moreover, we see that H,(w?) is sequentially compact and
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the Bcg- quasi-process wg satisfies the condition (p4). For ¢ € R*, consider a mapping
mp(t) : BCp X Hy(w]) + BC, x Hy(wk) defined by

To(t)($,wy) = ((0,4,G),0()ws),  (4,wf) € BC, x Hp(w?).

Notice that limp e [¢" — @|p = 0 whenever {¢"} C BCg satisfies lim, 0 p(¢™, @) = 0.
Therefore, repeating almost the same argument as in the proof of Lemma 2, one can
see that m,(t) satisfies the condition (p5) with ) = BCPU, and hence 7,(¢) is the skew
product flow of w?.

Lemma 3 The skew product flow m,(t) is BCg—strongly asymptotically smooth.

Proof. It suffices to show that for the set BCU X Hq(wf ) there exists a compact set
JC BCg X H,(wE) with the property that {7rp( n)(¢", wS™)} has a subsequence which
approaches to J whenever sequences {t,} C R and {(cb”,.wf“)} C BCJ x H,(wF)
satisfy limy et = 00.and m,(t)(¢", wS") C BCg X Hy(w]) for all ¢t € [0,¢,]. This
can be done by the same arguments as in the proof of Lemma 1. Indeed, since the
set U is bounded in X, putting B = BCpU x Hy(w}) we can construct the set Jp as
in the proof of Lemma 1. Then the set J := (Jg N BCg) x Hy(w}) is a compact set
in BCg-X H,(w}). By virtue of (A2) and Ascoli-Arzéela’s theorem, J has the desired
property, because the function £™(t) in the proof of Lemma 1 satisfies 2"(t) € Op and
|z™(t) — 2™(s)|x < sup{|T(t — s)z — z|x : z € O} + C{L|t — s| for any s, t with
1<s<t<t,and|t—s| <1 '

For any function ¢ : R — X such that & € BCU and £ is contmuous on R*
define a continuous function u : R — BC, by

:u‘p(t) = £t> te R+'

It follows from (H4) that 4} is an integral of the quasi-process wy on R*. Let n > 0 be
chosen so that the interior of U contains the 7-neighborhood of the set {u(t) : t € R}.
Then we easily see that (p6) is satisfied with 6, :=npas Y = BC[p], w=w} and p = p?
because of the inequality |u(t + s,s,, F) — a(t + s)|x < p(w] (t, s, ¢), p&(t)). Also, we
get Ho (g, wy) = {(pp,wy) : (8,G) € H(g, F)} and Qo (pf, wh) = {(u,w§) : (5,G) €

The Bcg-stabilities of the integral u of the quasi-process wf yield the p-stabilities

, We

with respect to U for the solution %(t) of (2). For example, the solution @(t) of (2) is
p-uniformly stable with respect to U in Q(F)(p-US with respect to U in Q(F)), if for
any € > 0 there exists a 6(g) > 0 such that p(@:(s, ¢, G), ;) < € for t > s > 0 whenever
(9,G) € Qu, F), p(¢,7s) < 6(¢) and ¢(s) € U for all s € R™. The other p-stabilities
with respect to U for @(t) are given in a similar way; we omit the details.

The following result is a direct consequence of Theorem 1 and Lemmas 2 and 3.
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Theorem 3 Let B be a fading memory space which is separable and suppose that the
conditions (H1)—-(H4) are satisfied. Also, let U be a closed and bounded subset of X whose
interior contains the closure of the set {@(t) : t € R}. Then the following statements are
equivalent:

(i) The solution u(t) of (2) is p-UAS with respect to U.

(i) The solution u(t) of (2) is p-US with respect to U and p-attractive with respect
to U in Q(F).

(iii) The solution u(t) of (2) is p-UAS with respect to U in Q(F).

(iv)  The solution u(t) of (2) is p-WUAS with respect to. U in Q(F).

As an application of Theorem 3 (or Theorem 2), we will investigate stability proper-
ties for some solution of the following integrodifferential equation with diffusion

ou Oy 5
Rta) = Z%t0) -t

(8)
+/ k(t,s,z)u(s,z)ds + h(t,z), t>0, 0<z<m,
under the Neumann boundary condition
Ou, Oou
%(L 0) - %(ta 7T) - 07 t> 01 (9)

where the functions h(t, z) and k(t, s, z) are continuous functions satisfying 2 < h(¢, z) <
7and 0 < k(t, s,z) < K(t—s) for some continuous function K (1) with J;° K(7)dr < 1/4,
and moreover h(t, z) and k(¢,t+s, z) are almost periodic in ¢ uniformly for (s,z) € R~ x
[0, 7]. In [8], it has been shown that (8)—(9) is represented as the functional differential
equation (2) satisfying (H1)-(H2) with X = BC([0, ]; R), A = " for { € D(A) := {£ €
C?[0,7] : €'(0) = &(n) = 0} and F(t, ¢)(z) = h(t,z)—3(0, 2)+ [° k(t,t+s, x)¢(s, x)ds
for ¢ € C3(X) (with an appropriate function g such that IS K(1)g(—T)dr < 00), and
there exists an almost periodic (mild) solution %(t, z) of (8)—(9) such that 1 < @(t,z) < 2
on R x [0;7]. In the following, we shall see that the solution @(t, z) of (8)—(9) is p-UAS
with respect to the set U := {{ € BC([0,7]; R) : —b < &(z) < b on [0, 7]}, where b > 2.
Notice that the equations in the hull of (8) are of the form
2

%(t, z) = g}—’l;(t, z) — ud(t, z) ,
(10)
+/ k(t, s, x)u(s, z)ds + h(t, ), t>0,0<x<7r;

here limp o0 k(t+tn, t+tn+5) = k(t, t+s,2) and lim,_ o A(t+1n, ) = h(t, z) uniformly
for (¢,s,z2) € R x J x [0,n] for any compact set J in R~, where {¢,} is some sequence
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in R*. The functions k(¢, s,z) and h(,z) are of the same type as k.(t, s,z) and h(t, ).
Hence, by employing almost the same manner as in the proof of [8, Lemma 4], one can
see that the condition (H3) is satisfied for (8)—(9).

Proposition 2 Suppose that the conditions on h(t,z) and k(t,s,z) stated above are
satisfied. Then the solution u(t,z) of (8)—(9) is p-WUAS with respect to the set U in
Q(F). Consequently, u(t,x) is p-UAS with respect to U.

Proof. We first prove that (¢, ) is p-US with respect to U in Q(F). To do this, it is
sufficient to show that the solution v(t, ) of (10)—(9) on [o, 00) such that v(o + 0, z) =
#(0,z) on R~ x [0, 7] satisfies

wt, o) —o(t,2) <e,  t>0, z€0,7, | (11)

whenever |¢(6, z) —9(0 + 6, z)| < € for (0,z) € [~,0] x [0, 7]; here v(¢, z) is the solution
of (10)—(9) such that limp—,e %t +ta, ) = (%, x) for the same sequence {t,} as for k and
h, and [ is a natural number satisfying b [;° K(7)dr < €/4. Set w(t,z) = v(t, z) —0(¢, ).
Then w(t, z) is a (mild) solution of

ow 0w ‘ 2 L 5
-5t_(t’ 117) B .2 (t x) (t,LE)(’U (t, .’17) +U(ta iE)'U(t, :L') +0 (ta 112))

+/ k(t,s,z)w(s,z)ds, t>o0, 0<z<m,

ow ow
=0, t>o
20 1,0) = 2o (t,m) =0, t>0
Assume that (11) is not true. Then there exists a (t1,21) € (0,00) X [0, 7] such that
lw(t,z)| < € on [o,t1) x [0,7] and |w(t1,z1)] = &. Consider two functions p(t,x)

and ¢(t,z) in C([o,t1] x [0,7]) defined by p(t,z) = v*(t,2) + v(t, z)0(t, z) + v2(t, z)
and q(t,z) = [*., k(t, s,z)w(s, z)ds and choose sequences {pn(t,z)} and {gn(t,z)} in
CY([o,t1] x [0,7]) such that limp .o Pu(t, ) = p(t,z) and limp.o a(t,z) = q(t,z)
uniformly on [0, ;] % [0,7]. Moreover, we choose a sequence {é&.} C D(A) such that
limy o0 én(z) = w(o,z) uniformly on [0,7]. Then there exists a (classical) solution

wn(t, z) of the initial-boundary value problem

ou %u

Bt(t r) = % 2(t z) — pa(t, z)ult, ) + gu(t, T), 0<t§t1,‘0<x<7r,
ou ou
8.’1/'(t’0) 8.’E(t,7r) 07 o<t

u(o,z) = &l(z), 0<z<m.
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Clearly limp, .00 wn(t, ) = w(t, z) uniformly on [0, t1] %[0, 7]. Since p(¢,z) > (3/4)v%(t, =)
> 3/4and |q(t,z)| < f3 K(0)|w(t—0, z)|do+ [ K (0)|w(t—0,z)|dd < e/4+b [ K(0)do <
€/2 on [o,¢1] x [0, 7], one can select n € N, &' € (3¢/4,¢) and (t,z2) € (0,1) X [0, 7]
so that p.(t,x) > 2/3 and |gn(t,z)| < €/2 on [0, %] X [0,7] and that |w,(t,z)| < € on
[0,22) X [0, 7] and |wn(t2, z2)| = €', say wy(t2,22) = €. Then the function W (¢, z) :=
Wy (t, ) — € satisfies

S (6:2) — 5 (62) ~ pab W (12) = Epult,) (1,0

> 26'/3-¢€/2>0

on (o,t1) X (0,m). Then we get a contradiction by the strong maximum principle (cf.
e.g. [15, Theorems 3.6 and 3.7]). Indeed, if z; € (0, ), then W (¢, z) = 0 or wy(t,z) = ¢’
on [o,t] X [0, 7] by the strong maximum principle, which is a contradiction because of
|wa(0,2)| < € on [0,7]. We thus obtain W(t,z) < 0 on [o,t] X (0,7), and 25 = 0.0r
T2 = m; say 3 = m. Then we get (0W/0z)(t2, 7) > 0 by the strong maximum principle
again. This is also a contradiction, because of (OW/0z)(ts, 7) = (0w, /dz)(ts, ) = O.
Therefore, (11) must hold true. :

Next we shall establish the p-attractivity with respect to U of the solution %(, z) in
Q(F). To do this, it is sufficient to show that lim;_,c maxg<z<x |v(¢, 7) — ¥(t, )| = 0 for
any solution v(t, z) of (10)—(9) such that |v(t,z) — 9(¢,z)| < bon R X [0,n]. Consider a
continuous function V : R — R* defined by

/ lu(t, z) — 5(t, 7)|*dz, € R.
It v and @ are smooth solutions of (10)~(9), then
@av(e) = 2 [ {@/o(t,2) - (0/00)0(t, 2)}(v(t, ) (1, 2))da
e [ 1@ 05)(0(t,2) - 0t,2)) - (P(t,2) - P(1,2)) -
+ / E(t,5,)(0(s, 2) — 9(5,2))dsHo(t,2) - 9(t,2)}do
< —3/2 /0 " |o(t, z) — (t, 7)[Pdz
+2 /_t K(t-9) [ ols,2) ~ (5, 2)lIu(t,2) — 50, ) |dads

< —ERVE+2/VE) [ K- s)V(s)ds

for t > 0. When v or 7 is not smooth, approximating v and ¥ by smooth solutions of
(10)—(9) we see that the Dini-derivative D'V (t) = limsup,_ o[V (7) — V(t)]/(T — t)
exists and it satisfies '

D+V() —(3/2)V(t) +2/V( / K(t—s)\/V(s)ds, teR".



47

For any 1 > 0, there exists an m > 0 such that 2\/7(15—) 5K (- s)mds < n/2 for
t € R*. Observe that D'V (t) < —(1/2)V (t) + n/2 whenever 2V (¢) > SUD;_m<s<t V(8).
Then, by the standard argument of Razumikhin type (cf., e.g. [16, Theorem 2] or
[12, Theorem 2]) we get limsup, ,,, V(t) < 7. Since 7 is given arbitrarily, we get
lim¢ oo V() = 0; that is, v(t,-) — 9(t,-) — 0 in L?[0,7] as ¢ — oco. Notice that v
and © are bounded on R* x [0, 7]. Then orbits of v(¢,-) and 9(¢, ) are relative compact
in BC([0, 7]; R); see e.g. [14, p.184]. From these facts, we have that v(¢,-) —%(¢,-) — 0 in
BC([0, 7]; R) as t — oo, as required. Thus the solution (¢, z) of (8)—(9) is p-WUAS with
respect to U in Q(F') and it is p-UAS with respect to U by Theorem 3. This completes
the proof of Proposition 2. ' '

Under the additional assumption that [5° K'(s)e”ds < oo for some constant v > 0,
(8)-(9) can be formulated as an functional differential equation on a uniform fading
memory space Cy(X) with g(d) = e™. Repeating almost the same argument as in the
above, we can check that the solution (¢, z) of (8)-(9) is Co(X)-WUAS in Q(F), and
hence 4(t, z) is CJ(X)-UAS by Theorem 2; the details are omitted.
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