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Abstract: This paper shows that if the constant r in the
FitzHugh-Nagumo equation tends to zero, then the winding number
for one of ducks tends to infinity and the number for the other
duck remains infinitesimal. As a result we are 1led to the
conclusion that there exists a duck which is not S

1.Introduction.

The space~clamped FltzHugh Nagumo (FHN) equation (1.1) is
described as follows:

dv/dt=-p) (v)-w+ I, (1.1)
dw/dt=b(v-rw), p(v)=v(v-1)(v-a),
where 0<a<l/2, b and r are positive constants. Each variable has
any physical meaning as follows:

v(t): the potential difference at the time t across the
membrane of the axon,

w(t): a recovery current which is often taken to be the sum of
all ion flows, and '

I: an independent variable as a bifurcation parameter which
varies very slowly The constant r is restricted so that

1/r>(a.-a+1)/3. _ (1.2)
The constant b is very small constant. Thus, we assume that

b=ct ' (1.3a)
and

I=I +tt. (1.3b)

In the asymptotic expansion for the solution of (1.1),
Baer et al. [1] analyzed the delay phenomena when &= 0(b*?) and
I=I_+tt. When t—O(b), there is a dlfflculty that the uniformity
of the solution is destroyed in the expansion. In other words,
there exists the singularity in +this dynamical bifurcation
problem. We have already provided an answer for this problem:
there exist S' ducks in the FHN equation [3].

In this paper, the following theoreml and theorem2 are
provided. As a result, we can obtain theorem3: there exists
another type of ducks in the equation.

Theoreml.

Let [t,<lt,<0 hold. If the constant r tends to zero, then the
winding number Ny . (y,) for a duck y i, tends to infinity.
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Theorem2. S
If ¢,;(i=1,2) does not contain the parts of the solutions
which jump from the repulsive region to the attractive one, then

in the local model of the FHN equation with the condition (1.2)y,
the lower bound of IN}' iy, is 1 and |N}: u2(Y ;)| is infinitesimal.

Theorem3.

If the constant r is sufficiently small under the condition
(1.2), then there exists a duck which is not §'.

2.Notations and Definitions.

The definitions of the ducks, the pseudo singular point and
its saddle, node point follow as [3]. Especially important
notations and definitions using in this paper are denoted as
follows:

Definition2.1. ,
We call a point P is a O-micro-galaxy of ECR® , if the

distance from P to E is less than exp(-n/0) where n is some
positive integer.

‘This definition is based on the fact: if 0 is fixed
arbitrarily, then the distance from a duck f(t) to Y y(t) is

within exp(-n/0) in some neighbourhood . of the pseudo singular
point. ‘
Definition2.2.

A duck is called 1long if Y (t) exists an infinitesimally
small neighbourhood of the constrained surface S when t tends to
infinity. ,

Definition2.3.
A solution ¥ (t) is called S' at U if there exists a real
number fi such that
(P (x)=Y (y))/ (x-y)= p (2.1)
for any x, y (x*t, y=U). A duck is called an S' duck if it is

8! in some neighbaurhood of the pseudo singular point.
Definition2.4.

The winding number Ny () of ¥ is defined as follows:
NY!,(w)=(1/2n)ﬁﬂ0 (2.2)

where Y is one of the ducks which is contained partially in the
0 -micro-galaxy of Fu -
Definition2.5.

A solution ¥ (t) has a jump if the shadow of ¥ (t) contains
a vertical segment.

We assume that ¢ is not 1long. Then Y is away from the

repulsive part of the surface S at a limited +t when t tends to
& and away from the attractive one of S when t tends to
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It can be proved that
(1) if ¥ is not long, the standard part of the number
Ny (Y ) is an integer, ,
(2) if ¥ has k jumps, then 2<ks4. See [2].

3. The proof of the theorems.

By changing the coordinates w=X, I=Y and v=2%, the system
(1.1) becomes as follows:
dX/dI=c(z-rX), ‘
dy/d1=1, - , (3.1)
£dzZ/dI=(~[) (2)-X+Y). :
Furthermore, applying several transformations and putting I=t,
the following system (3.2) is obtained as a "local model" (conf.
(31).
dx/dt=py+gqz +£ (X,¥,2),
dy/dt=1 +1)(X,Y,2), _ (3.2)
0dz/dt=-(2*+X)+{ (X,Y,2),
where p=(-1)‘cr(a’*-a+1)? (i=1,2),
g=c, 0=t/u?2,
Here £ (X,Y,2), 1)(X,Y¥,2) and ((X,Y,Z) are infinitesimal when X,
Y and Z are limited and ( 1is any small constant. Choosing
p=cr(a’-a+1)"? and c>8r(a’-a+1)'? so that the system (3.2) has a
pseudo singular node point, the explicit duck solution I wi(t)
is obtained as follows: - b
Vpa(B)=(-p2e%-0p,, £, p,t) (i=1,2). (3.3)
Here [l,(i=1,2) are the solutions of the following characteristic

equation with respect to the linearized equation on the surface
-(2%+X)=0 in (3.2): ,
2l *+c ll+cr(a*-a+l)?=0. (3.4)

The Hermite equations associated with Y ui(i=1,2) in (3.3) are
the following: '
0d’2/d1%-1dz/dT+K, 2=0 (i=1,2), (3.5)
T=Uut, , v
where K=1+[,/ll,, K=1+lL,/|L,. See[2]. Let ¢, for y y,(i=1,2) be
one of the ducks. In the case which ¢, is not long and f<pi,<0,
Benoit gives the following results:
(1) If the duck ¥, has 2 jumps, then
. Nl Hl("l"l)z-[Kx/Z]l
(2) if the duck ¥, has 2 jumps, then
Ny po(9,)=0.

In the case 3 and 4 jumps, they are treated in the same
manner.
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Proof of theoreml.
The value of the index K, is as follows:
K=[1+U /u ]

—[1+(c+(c 8cr(a a+12“’2)”2)/(c (c?*-8cr(a*-a+1)'*)V?*))

=[ (c+(c*-8cr(a’*-a+1)"*)"4)/4r(a*-a+1)"?] . (3.6)
For any fixed a and c which satisfy the conditions, the value of
K, is monotone decreasing with respect to r. As r restricted
(1.2) tends to 0, K, tends to infinity. Therefore Ny @ (Y1)
~tends to infinity.

Proof of theorem2.
From the condition (1.2), 0<r<3/(a’-a+l). On the other hand,
K, 1s continuous function of r. Furthermore, note that
A—(a a+1)“223‘“/2 When r=3/A?,
K,=(2¢? A-24c+2c(c’A*- 24cA)”2/24c (3.7)
holds. Then, considering the above inequality, we get
’ K,2 (3Y%c? 24c+20(3c’/4 12c3Y*)?3/24c
—31’2$c+(c -16°3'%c)¥?/24-1, (3.8)
As c216°3'?, we conclude that
K,22, therefore the lower bound of |N “1(¢,)| is 1. From

theoreml, it is obvious that lNy w2(Y,)| is infinitesimal.
) )

Theorem2 ensures the feasibility of evaluating the winding
numbers under the condition (1.2), when r tends to zero and to
3/A%,

Proof of theorem3.

From theorem2, even if r tends to 0, each winding number
does not coincide. It can be proved that if J=[(AB] is a
connected segment in R’ and any solution starting at J is not
long, it has the same winding number. Theoreml relates this
results. If each duck (Y RTINS P9 starting at A(or B) and
passing the pseudo 51ngular node’ point satisfies S', then the
solutions starting at J belongs to one of the famllles of the
two ducks. Therefore, the above connected segment J could not be
constructed. In fact, there is a proper subset [CD]CJ such that
the solution starting at [CD] is not long and the two solutions

passes C and D are ducks, that is, there exists a duck which
does not be S!.
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