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Introduction

In order to construct an idealistic logical gate, Fredkin and Toffoli [1] proposed a
logical conservative gate. Based on this logical gate, Milburn constructed a quantum
logical gate [2] using a Mach - Zender interferometer with a Kerr medium. We call
this gate a Fredkin - Toffoli - Milburn (FTM) gate in this paper.

The concept of channel is a fundamental tool to discuss the state change in several
different fields [4, 5, 7]. The concept of quantum mutual entropy was formulated by
Ohya [5, 6] measuring the amount of quantum information transmitted from an input
system to an output system through a quantum channel.

In this paper, we construct a quantum channel for the FTM gate and discuss the

- information conservation by computing the quantum mutual entropy.

In section 1, we briefly explain quantum channel and the quantum mutual entropy.
In section 2, we reformulate the FTM gate by means of a quantum channel. In
section 3, we rigorously study information conservation through the FTM gate by the
quantum mutual entropy.

1. Quantum channels and quantum mutual entropy

Let (B(H1), 6(H1))and (B(Hz), 6(H;)) be input and output systems, respectively,
where B(Hj) is the set of all bounded linear operators on a separable Hilbert space
Hi and G(Hx) is the set of all density operators on H; (k = 1,2). Quantum channel
A* is a mapping from &(H;) to G(Hz). '

(1) A* is linear if A*(Apy + (1 — A)py) = A" (py) + (1 — A)A* (p,) holds for any
P1, P2 € 6(H,) and any A € [0,1]. o
(2) A* is completely positive (C.P.) if A* is linear and-its dual A : B(H2) — B(H;)
satisfies . A
L) AIAAAA >0
ij=1
for any n € N, any {4;} C B(H2) and any {4;} C B(H1), where the dual map
A of A* is defined by -

trA*(p)B = trpA(B), Vp € 6(H1), VB € B(H,). (1.1)

Almost all physical transformations are described by this mapping [4, 5, 7].We here
explain how to mathematically construct a quantum channel describing quantum
communication processes.

Let X1 and K2 be two Hilbert spaces expressing noise and loss systems, respec-
tively. Quantum communication process including the influence of noise and loss is



denoted by t;,he following scheme [5]: Let p be an input state in G(H1), £ be a noise
state in & (Ky).

teGK)

SH.eK) —» &(H, k)

The above maps I'*, a* are given as

I"(p) = p®E peG(HY), (1.2)

a* (o) = tri,o, o€ 6(H20K2), (1.3)

The ina.p II* is a certain channel from G (H; ®K;)to G (H2®K2) determined by physi-

cal properties of the device transmitting information. Hence the channel for the above
process is given in [5] as

A* (p) = tric, II" (p®§) = (a* o II" o %) (p) (14)

for any p € G(H,). Based on this scheme, the attenuation channel and the noisy
quantum channel are constructed as follows: '

(1) Attenuation channel Aj was formulated in[5] such as

M) = trTeek)
= tT;c,Vo(p@IO)(ODVB‘, (1‘5)
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(2)

where &, = [0)(0] is the vacuum state in &(K;), Vp is a mapping from H; ® Ky
to Hz2 ® K2 given by

ni

Vo(lm) ®10) = > Cli)y®|m1 —3), (1.6)

o = \/—qn—n—i—)-,n (1= myms (17

where |n;) is the n; photon number state vector in ’H1 and 7 is a transmission
rate of the channel. For the coherent state l@) (8] ®10)(0], the II3(|0) (6] ®]0)(0})
is obtained by

I5(19) (61 @ 10)(0]) = v/9) (/78] @ |—\/—1 =n8) (~y/T=n8].

[oXol
1oxel > [ e)e|
\4

== |
Noisy quantum channel A* with a noise state ¢ is defined in [12] as

A(p) = tr,IT"(p® &)
. = t”'lsz(p®£) v, - (1.8)
Here V is a mapping from H; ® K; to H; ® K2 given by

ny+mp
Vim@lm) = 3 ™) @im+m—j) (1.9)
J

ny,mi
Cj

K - .
: - Vvnitmylg!(ng + my — j)!
2 O™ e G i =3 + 7

X /=TI (] — pymiti=2r, (1.10)

where K = min{n,,j}, L = max{m; — j,0}. For the coherent state |) (/| ®
|0)(0], the II*(|6) (8] ® |0)(0}) is obtained by
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A state in quantum systems is described by a density operator on a Hilbert space
H. The entropy of a state p was introduced by von Neumann [3] as

S(p) E‘-trplogp (1.11)

If p = >, Ak Ex is the Schatten decomposition [10] (i.e., Xk is the eigenvalue of p and
E). is the one-dimensional projection associated with Ak, this decomposition is not
unique unless every eigenvalue is non-degenerated), then

S(p) = _Z'\k log A, (1.12)
%

because {\x} is a probability distribution. Therefore the von Neumann entropy con-
tains the Shannon entropy [13] as a special case.

In order to define the quantum mutual entropy, we need a compound state [5, 6]
corresponding to the joint distribution in classical systems. That is, the compound
state of an input state and a channel A*. is defined by

OE = ZA"E" ® A*Ey, » . (1.13)
k

which expresses the correlation between the initia] state p and the final state A*p.

The mutual entropy I(p; A*) with respect to an input state p and a quantum
channel A* should satisfy the following conditions [5, 7): (1) If a channel is trivial,
i.e., A* = id (identical map), then I(p;A*) = S(p). (2) When system is classical,
the quantum mutual entropy reduced to classical one. (3) Shannon’s fundamental
‘inequality I(p; A*) < S(p) is satisfied. This mutual entropy for a state p € G(H;)
and a channel A* was given in [5] as follows: . .



I(p;A*) = sup{S(cE,o00); E = {Ex}} o (1.14)

éup {Z AS(A*Ex, A*p); E = {E'k}} , (1.15)
k

where the supremum is taken over all Schatten decompositions of p and S(A*Ej, A*p)
is the relative entropy [14] defined by

S(A*Ex,A*p) =trA*Ei (log A*E, — log A”p) . © (1.16)

This quantum mutual entropy contains other definitions of the mutual entropy for
other channels like classical input and quantum output [8].

2. Quantum channel for Fredkin-Toffoli-Milburn gate

Fredkin and Toffoli [1] proposed a conservative gate, by which any logical gate is
realized and it is shown to be a reversible gate in the sense that there is no loss of
information. This gate was developed by Milburn [2] as a quantum gate with quantum
input and output. We call this gate Fredkin-Toffoli-Milburn (FTM) gate here. In this
section, we first formulate the FTM gate [2] by means of quantum channels and discuss
the information conservation using the quantum mutual entropy in the next section.
The FTM gate is' composed of two input gates I; Iz and one control gate C.
Two inputs come to the first beam splitter and one spliting input passes through the
~ control gate made from an optical Kerr device, then two spliting inputs come in the
second beam splitter and appear as two outputs (Fig.2.1). We construct quantum
channels to express the beam splitters and the optical Kerr medium and discuss the
works of the above gate, in particular, conservation of information.

L . Optical Kerr Device
V‘ Cl ’ : | CZ‘ M
4 \ kl
BS(n=0.5)
- BS(n= 05) } '
' 0.
M\k N0
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(1) Beam splitters: (a) Let ¥} be a mapping from H; ® Hz to H1 ® Ha with
transmission rate 7, given by

ni+ngz
Vi(ln) ®[n2)) = D C;j*™|5) ® |ma +n2 — ) (2.1)
j=0

for any photon number state vectors.|n;) ® |ng) € Hi ® Hz. The quantum channel
I35, expressing the first beam splitter (beam splitter 1) is defined by

Ops1 (1 ®p) =Vi(p1 ®p) VY (2.2)

for any states p; ® p; € G(H; ® Hz). In particular, for an input state in two gates
I; and I, given by the tensor product of two coherent states p; ®p; = |61)(61]®]62) (62|,
I (py ® ps) is written as .

Ips1(p1 ®Pz) = I\/ﬁ_{ﬁ + 1~ 77192> <\/'f_);9.1 + /1 - n102|
| ®|-vI=mbs + vb2) (—V/I =i + Ve (23)
(b) Let V2 be a mapping from H; ® Hz to H; ® Hz with transmission rate 7, given
by : *
ni+n2

Va(m)@lna)) = 3. CP™im+nz—)@l) - (24)
=0 :
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for a.ny‘ photon number state vectors |n;) ® |n2) € Hy ® Ha. The quantum channel

I}, expressing the second beam splitter (beam splitter 2) is defined by

Opga (0 ® Pz) = V2 (P; ® p2) Vo (2.5)

for any states p, ® p, € G(H1 ® Hz). In particular, for coherent input states p; ® p; =
161)(01| ® 102){2|, 155, (01 ® py) is written as

Opsa(m ® P25 = lﬁ;al -y1- ﬂ292> <\/17_201 — 1= 71292!
®]\/1 =201+ /g8 ) (VI + \/ﬁgez‘l . (26)

(2) Optical Kerr medium: The interaction Hamiltonian in the optical Kerr medium
is given in [2] by the number operators Ny and N, for the input system 1 and the
Kerr medium, respectively, such as < L

Hins =hx (M ®@ L Q@ N), (2.7)

where A is the Plank constant divided by 2w, x is a constant proportional to the

susceptibility of the medium and I; is the identity operator on Hz. Let T be the -

passing time of a beam through the Kerr medium and put VF = hxT, a parameter



exhibiting the power of the Kerr effect. Then the unitary operator Uy describing the
“evolution for time T in the Kerr medium is given by

Ux = exp (—z’ﬁ(N1®Ig®Nc)).., | @9

We assume that an initial (input) state of the control gate is a number state { = |n) (n],
a quantum channel A} representing the optical Kerr effect is given by

Ak(p1®p ®E) =Uk(py ®pa ®EUg (2.9)
for any state p; ® p, ® £ € & (H1 ® H2®K) . In particular, for an initial state p; ®
p2 ® € = 161) (61] ® |62) (02| ® In) (nl, Ak (py ® pp ® §) is denoted by

Ak(p1®py ®8)
= I exP (—z Fn) 01> < exp (——z Fn) Bll ® |02) (62] ® |n) (n], (2.10)
Using the above channels, the quantum channel for the whole FTM gaté is constructed
as follows: Let both one input and output gates be described by H;, another input
and output gates be described by H, and the control gate be done by X, all of which
are Fock spaces. For a total state p; ® p, ® £ of two input states and a control state,

the quantum channels A%, Ahg, from G(H; ® Hz ® K) to G(H1 ® Hz ® K) are
written by

Therefore, the whole quantum channel Afpy of the FTM gate is defined by
Aprm =ABsa oAk 0 Aps- (2.12)

In particular, for an initial state p, ® p, ®€ = |01) (61| ®[62) (02| ® [n) (n|, Apr M(pl ®
pa ® £) is obtained by

Arrm(pL ® p2 ®E)
= |pby + v2) (461 + vla| ® [v81 + pba) (Vb1 + #92| ®[n)(n|  (2.13)
where
y = %{ p(~ivFn) +1}, | (2.14)
v = % { (—z Fn) 1}. (2.15)

3. Infbrmat_ibn change in optical Fredkin-Toffoli-Milburn gate

In this section, we examine information conservation in the FTM gate by computing
the mutual entropy.

Alsn(py ® p2 ®€) = Ipsi(o1 ®p2) ®F (E=1,2) @11
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Although the control gate, hence the Hilbert space K, is necessary to make the
truth table, the original information is carried by the input states, so it is interesting
to study conservation of the information from the input to the output. For this
purpose, we need the quantum channel A* describing the change of states from the
input gate to the output gate, which is defined as

A*(py ® pa) = tricApr mlpo1L ® P ® €) (3.1)

for any input states p; ® p,.

The total channel Afp is obviously unitarily implemented from the construction
discussed in the previous section, but the channel A* is not so as seen below:

When A* is unitarily implemented, that is A* (p) = UpU*, p € 6 (H1 ® Hz) with
a certain unitary operator U, the dual A is written as A(A) = U*AU for any A €
B(H1 ® Hz) . Therefore for the CONS (complete orthonormal system) consisting of
number vector states, namely, {|n1)} in Hi, {|n2)} in Ha, an equality

tri(jn) (k1| ® |n2) (k2|) = 6n,k,6n2k,

should be satisfied. However the direct computation according to the deﬁmtxon of A*
implies the equality

trA(|na) (k1] ® [n2) (k2|)
= D) trA*(Ima)(ma] ® [ma)(mal)n1) (k1| ® In2) @ (k2|

my m3
' m1+mgm1+mg
=>> > X O T exp(—iv/Fin(j — 1))
m; mgz j=0 ‘_1'=
. mp+mg my+mg — : .
x Y optmadiCpntTaTIT S g —iBka,imy 4 ma =ity 8 o
1=0 =0

where 3 ... |m;){(mj| = I; , identity operator on H; (j = 1,2). The above equality is
not zero if and only 1f ' '
ny +ng = k1 + ks.

Thus A* is not unitarily implemented.

The next question is whether the information carried by two input states is pre-
served after passing through the whole gate, that is, whether the following equality
is held or not for a certain class of input states p = p, ® p,,

S(p) = S(py) + S(p2) = I (5; A%)

This equality- means that all information carried by p = p; ® p, is completely trans-
mitted to the output gates. If the channel A* is unitarily implemented as A}y, then
the above equality is satisfied [10]. However, our A* is not, so it is important to check
the above equality.
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Let us consider any state p; given by
Py = Ml0)(0] + (1 - A)I6:)(6i] , (i = 1,2) (32)

with A; € [0,1]. Such a state is often used to send information expressed by two
_symbols 0 and 1. In order to compute quantum entropy and mutual entropy, we need
* the Schatten decomposition of p = p; ® p,, which is uniquely given in [11] such that

pi =l Eg + (1 - lpil)EY, (i = 1,2) . (3.3)

where||p;|| is one of the eigenvalues of p; and Ej} is its associated one dimensional
projection;

14 /1 —4X(1 = X)(1 — exp(—(|6:]? :
P EEea AR CED CT L 10) .40)
The Schatten decomposition of p = p; ® p, is written by

1 1

p= }E:}E: #254695%»

3=0k=0

where pf = ||p;]l and pi = 1 — ||p;|| (¢ =1,2). Then von Neumann entropy of p

becomes . 1
Sp) == ulogus.
1=1 j=0

" We assume ¢ = |n) (n| (n#0) and VFn = @m+1)7 (m=0,1,2,---) . For the
input state p = p; ® p,, the output state A*p is given by

Np=028®0,,

where o; = );]0) (OI +(1-X\ )| —0;)(—0;| , ( = 1,2). Then von Neumann entropy of
A*pis

S(A*p) = 8 (02) + 5 (1) = 5(p). (3.5)

Since A* (E} ® E}) is pure state; .S (A* (E} ® EZ)) = 0 for each j,k. Thus the
quantum mutual entropy is ' '

I(pAY) = S(A"p)— {ZZ# 28 ( A* (B} ® E3))) (36)

3=0 k=0
= S(A*p)=S(p).

This equalities means that there does not exist the loss of information for the quantum
channel of the FTM gate. Therefore the information is preserved for A* through the
FTM gate. From this result, the FTM gate is considered to be an idealistic logical
gate for quantum computer. Along the line of our study for quantum computation,
the notion of quantum complexity will be useful [9].
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