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Abstract

We review a general theory of a new type of representation of the canonical com-
mutation relations over a Hilbert space in connection with perturbation problem of
embedded eigenvalues in a class of quantum field models.

1991 AMS Mathematics Subject Classification: 81R10, 81T10

1 Introduction—physical background and motiva-
tion |

As is well known, a nonrelativistic quantum particle with mass m > 0 moving in the d-
dimensional Euclidean space R® under the influence of a scalar potential V' (a real-valued
Borel measurable function on R?) is described by the Schrédinger Hamiltonian

A
H =—-—+V 1.1
acting in the Hilbert space L?(R?), where A is the d-dimensional generalized Laplacian.
We assume that Hj, is essentially self-adjoint and denote its closure by H,. Suppose that
the particle can interact with a quantum field. Then one must replace the Hamiltonian
H, by another Hamiltonian H, taking into account the interaction between the particle
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and the quantum field. Indeed there are physical phenomena that can be explained only
if such a consideration is made, e.g., the Lamb shift and the spontaneous emission of light
in atoms (e.g., [17, Chapter 6]). )

A standard description of a quantum field can be made in terms of a Fock space. To
be concrete, let us consider a Bose quantum field whose one-particle states are described
by a complex Hilbert space K. The Hilbert space of state vectors of the quantum field
may be taken to be the symmetric (boson) Fock space over K

F(K) = é K, (1.2)

n=0

where @K denotes the n-fold symmetric tensor product Hilbert space of K with ®°K :=
C. Then the free Hamiltonian of the quantum field (the Hamiltonian in the case where
the quantum field has no interactions) is given by the second quantization operator

dT(h) = €D A, us3)

n=0

on F,(K), where h is a self-adjoint operator on K describing the one free boson and A"
is the closure of the operator

n J
YI®--Igh®I---®I

7=1

(h(® := 0; the symbol I denotes identity operator) (for more details, see, e.g., [23, §VIIL10,
Example 2], [16, §5.2]). A Hamiltonian H of the system of the above mentioned quantum
particle interacting with the quantum field is given by the following form:

H:=Hy+ H; (1.4)
acting in the tensor product Hilbert space L(R%) ® .7-'5(1(:‘), where
Hy:=H,®I+1®dlk(h) : | (1.5)

and H; is a symmetric operator describing an interaction between the quantum particle
and the quantum field. Then an important task is to investigate the spectrum of H. But,
here, we meet a difficult problem as explained below. ’

For a linear operator A on a Hilbert space, we denote its spectrum (resp. point
spectrum) by o(A) (resp. op(A)). For simplicity, suppose that the spectrum of H, is
given as follows:

‘UP(HP) = {E"}:.o=0? EU < El <o < E'n. < En+1 < v < -E‘, ‘
o(Hp) = op(Hp) U [Z, c0),

where X € R is a cons_tant.
As for h, we suppose that

o(h) = [M,00), ap(h) =0 18
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Figure 1: The spectrum of H,

with M >0 a constant. Then we have | » }
op(dlx(h)) = {0},  o(dTk(h)) = {0} U [M, o0). (1.7)
It follows that
op(Ho) = {Ex }n—o, o(Ho) = {En};Zo U [Eo + M, ). (1.8)

This shows that all the eigenvalues E, of Hy with E, > F; + M are embedded in its
continuous spectrum. In particular, if M = 0, then all the eignvalues of Hy are embedded
ones. Thus to analyze the spectrum of H includes a perturbation problem of embedded
eigenvalues, which are difficult to solve in general.

Figure 2: The spectrum of H,

In the case where the quantum particle is a harmonic oscillator, i.e., V is of the form
V(z) = puz? (z € R% p > 0 is a constant), mathematically rigorous studies on this
problem have been made in a series of papers [2]-[9]. Recently more general cases and
other types of models including the spin-boson model have been discussed [22], [18], [19],
[20], [21], [13], [14] ( see also [11], [12], [27]). -

In this paper we present a brief review of the paper [10] which gives a unified approach,
from a representation-theoretic point of view, to perturbation problem of embedded eigen-
values in a class of models considered in [2]-[9]. This approach is based on a new type
of representation of the canonical commutaiton relations (CCR) over a Hilbert space and
non-perturbative, making it possible to analyze exactly the spectrum of the Hamiltonian
under consideration. Typical examples to which our method can be applied are as follows
(th symbol ® for operator tensor product is omitted):

(1) The Schwabl-Thirring model 2, 3] .

H——2—A+mwo 2+/ k)dk+/\2$1¢91

=1
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acting in L*(R?) ® Fi(L%(R?)), where a(f) = fga a(k)f(k)*dk, f € L*(RY), are the
annihilation operators on F,(L*(R?)) (e.g., [24, §X.7], [16, §5.2]), ¢(g;) := (a(g;) +
a(g;)*)/V2, g9; € L*(RY), w(k) is a nonnegative function denoting a dispersion
relation of one boson with momentum k& € R%, wy > 0 is a constant, A € R is a
coupling constant and z = (24, -, z4) € R% The symbol [gsa(k)*a(k)w(k)dk is a
formal expression of dI'z2(ra)(w)- :

A standard example of w is: (i) (relativistic case) w(k) = Vk2+ M?, k € R¢
(M > 0is a constant) ; (ii) (nonrelativistic case) w(k) = k*/2M.

(2) The RWA model [5] .
H= Zw,A*A + [, ak) (ko (k dk+A2AagJ )+ Aja(g;)']

acting in Fy(C") ® Fo(L*(R?)), where each w; > 0 is a constant and A(z) :=
zg-\;l A;zf, z = (z1,---,2y) € CV, are the annihilation operators on Fi(CM):
[Aj, Al = bj, [Aj, Al = 0.

(3) A generalized Schwabl-Thirring model .

d d
H=— S(=iD; = oz} + [, alk)a(k)u(k)dk + 13 20(s;)

2m i =1

acting in L?(R?) ® F,(L?(R?)), where D; is the generahzed partla,l differential op-
erator in z; and o € R is a constant.

(4) The Pauli-Fierz model in th dipole approzimation [1, 4, 9] (see also [27])

d

H= —LZ(—iDj —qu(g))zv —2z% 4 Z/ a.(k)"a,(k)w(k)dk,

2m j=1 r=1

acting in L*(R?%) @ F.(®221 L*(R?)), where g € R is a constant denoting the electric
charge of the particle and A(g) = (Ai(p), - -, Ad(0)) is the quantized radiation field
on F,(®%1L*R?)) smeared out by a function ¢ with suitable regularity.

For other models, see [6] and references therein.
A basic observation for our method is in the fact that we have a natural identification

L*(R?) = F,(C7),

so that

LZ(Rd) ® Fi(K) = F(CH @ Fi(K) = F(C* @ K)
Thus the quantum system consisting of a particle and a quantum field may be described
in terms of one (extended) quantum field whose one-particle Hilbert space is C¢ @ K.

With this observation, we consider in an abstract form a quantum field theory on the
Fock space F,(M @ K) as a representaion theory of CCR (M is a Hilbert space).
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2 A new type of representation of the CCR over a
Hilbert space

For a linear operator A on a Hilbert space, we denote its domain by D(A).

Let H be a complex Hilbert space with inner product (-, - )3 (complex linear in the
second variable) and norm || - ||#. We denote by CCR(H) the abstract *-algebra (with
unit elemerit I) generated by elements a(f),a(f)* (f € H) satisfying the CCR over H

[a(f),a(9)"] = (/,9)n], [a(f),alg)l =0=1[a(f)"al9)"], frge™, (2.1)

with the property that the mapping a ’: f = a(f) from H to CCR(H) is anti-linear, where
[A, B] := AB — BA. ' ‘ , _

Definition 2.1 A triple {F,D,{a(f)|f € H}} consiting of a complex Hilbert space F,

a dense subspace D of F and an anti-linear mapping a : f — a(f) from H to the set of

closed linear operators on JF is called a representation of CCR(H) if the following (i) and

(ii) hold: (i) D C NgenD(a(f)) N D(a(f)*), a(f)D C D, a(f)*D C D for all f € H; (ii) |
{a(f)|f € H} fulfil the CCR (2.1) on D.

A standard example of representation of CCR(H) is given as follows. Let JFi(H) be
the symmetric Fock space over H. We denote by Qy := {1,0,0,---} the Fock vacuum in
F.(H) and by an(f), f € H, the annihilation operators on F4(H) (anti-linear in f) (e.g.,
[24, §X.7], [16, §5.2]). Let |

Fen(H) = L{On, an(f1)" - an(f) QuIn 21, fj € H, 5 =1,--+,n},  (2:2)

where £{--.} denotes the subspace algebraically spanned by the vectors in the set {---}.
Then Fg,(H) is dense and {Fi(H), Fan(H), {an(f)|f € H}} is a representation of
CCR(H). This representation is called the Fock representation of CCR(H).

As is explained in the Introduction, we are concerned with the case where H is given

by the direct sum of two Hilbert spaces M and K with M # {0} and K # {0} :
- H=MoK ={(v,u)lv € M,u €K} (23)
Then we ha&e the natural identification

AH) = (M) @ A(K). (2.4)

Remark 2.2 In applications to models of a quantum particle coupled to a quantum field,
the Hilbert spaces M and K are taken as M = CV, K = @™ L*(RY) with d, m, N € N.
Then we have '

F(H) = F(C") ® Fi(@™L*(RY)) = L*(RY) ® Fy (@™ L*(RY))
Let Jyp and Jx be conjugations on M and K respectively and define

Iy = Jm & Ik, : v : (2.5)
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which is a conjugation on H. For a linear operator A on H and f € H, we set

A, = Ay, f[:=Jnf. ’ (26)

For two Hilbert spaces H;, H,, we denote by B(H1,H;) the space of bounded linear
operators from H; to Mz and set B(H,) := B(H1, Ha).
Let S and T be elements in B(X, H) which satisfy

§*S —T*T = Ic, S*T.—T"S.=0, (2.7)

where Ix denotes the identity voperator on K. :
We denote by N, the number operator on Fy(H) ([24, §X.7], (16, §5.2]). It is well

)
known [16, §5.2] that, for all f € M, D(N/*) C D(a(f)*) and
la(F)*E] < [Fllmll(No + DY2T], ¥ € D(?), (2.8)

where a(f)* denotes either a(f) or a(f)*. For each u € K, we define an operator b(u)
acting in Fy(H) by
b(u) := an(Su) + an(Tu)". (2.9)

with D(b(w)) = D(NM?). It follows that D(Ny/*) C D(b(u)") for all u € K. Hence b(u)
is closable. We denote its closure by the same symbol b(u), so that D(N?) ¢ D(b(uw)).

We have .
b(u)* = an(Su)* + an(T.4) : (2.10)

on D(N;/ ) The following fact can be easily proved.
Proposition 2.3 The triple |
my := {Fo(H), Faa(H), {b(u) v € K}} (2.11)
is a representation of CCR(K).
The representation 7, is a basic object playing an important role in our theory.
Remark 2.4 Under the identification (2.4), we can identify ax( ¥, f=(v,u) € H,as
an(f)* = am(v)* ® Ir ) + Inm ® ax(w)® (2.12)

on Fan(M) ®ag Fin(K), where ®ag denotes algebraic tensor product. Then there exist
operators W,V € B(K) and P,Q € B(K, M) such that

Su = (Qu,Wu), Tu=(Pu,Vu), u€Kk. (2.13)

The operators W and Q (resp. V and P) are uniquely determined by S (resp. T'). Hence
we have

bu) = am(Qu)® Ir,x) + Ir(m) ® ax(Wu)
+am(Pa)* ® Ir,x) + Ir,(m) ® ax(Vet)” (2.14)

on fﬁn(M) ®alg Fan(KC). This is the original form of operators of the type b(u) [8].
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Remark 2.5 The triple {F(H), Fan(H),{an(0,u)lu € K}} is a representation of
CCR(K). But this representation is not equivalent in general to the representation =,
(see Theorem 4.4 in §4 below).

Remark 2.6 The mapping ax(0, -) — b(-) may be regarded as a Bogoliubov transforma-
tion in the Fock space F,(H). But this is a different type of Bogoliubov transformations
from the usual ones as discussed in, e.g., [15], [25, 26].

Under additional conditions, one can express ax(-) in terms of 5(-) and b(-)*:

Proposition 2.7 Suppose that S and T satisfy, in addition to (2.7),

SS* ~T.T* = Iy, T.S*—ST"=0. O (219)
Then, for all f € H,
an(f) = b(S*f) = &(T"f)*, an(f)* =b(S*f)" - o(T"f). (2.16)
on D(NY?). |
Let
on(f) := \/—(an(f) +an(f)), f€EMH, o (2.17)

which are called the Segal field operators and essentially self-adjoint on Fg,(H)[24, The-
orem X.41]. We denote the closure of ¢(f) by én(f).
An analogue of the Segal field operator is defined in the representation m:

B(u) = %(b(u) +bw)), ueKk. (2.18)

It can be proved [10] that ®(u) is essentially self-adjoint on Fg,(H) and
O(u) = pn(Su+T.u), ueK. (2.19)
We set , |
C®(Ny) := N, D(NF). (2.20)

Then, for all f € H, ax(f)* leaves C*°(V,) invariant and so does b(u)# for all u € K.
We denote by (K, H) the space of Hilbert-Schmidt operators from K to H.

Definition 2.8 Let S, T € B(IC, H). We say that the pair (S, T) is in the set S(K, M) if
S and T satisfy (2.7), (2.15) and T € I,(K, H).

The fundamental properties of the representation 7, are summarized in the following
theorem.

Theorem 2.9 [10, Theorem 2.5]. Let (S, T) € S(K,’H). Then there exist a unit vector
Uy € Fo(H) and a unitary transformation U : F(H) — Fi(K) such that the following
(a)—(d) hold: -
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(a) Uo € C®(Ny) and, for all u € K, b(u)¥, = 0.
(b) The subspace L{Wq,b(u1)* -+ b(uy)*¥o|n > 1,u; € K,j = 1,---,n} is dense in

Fo(H). . |
(c) U¥e = Q,c and Ub(ul) v b(un)* ¥ = ax(ur)*---ax(un)*Qx for alln > 1,u; €
K,7=1,-

(d) For allu e K, L
Ud(u)U™" = ¢rc(u), Ub(u)*U™" = ac(u).

Moreover, Uq is the only one (up to scalar multiples) of vectors ¥ such that ¥ € D(Ngﬂ)
and b(u)¥ =0 for allu € K.

3 Construction of a Hamiltonian

By using the representation 7, given by (2.11), we can construct a self-adjoint Hamiltonian
acting in J,(H) whose spectrum can be exactly identified. In application to perturbation -
problem of embedded eigenvalues in quantum systems of quantum particles interacting
with quantum fields, this class of Hamiltonians gives a class of exactly solvable models
[7, 8].

For every K € 1’2(7‘[) = I,(H,H), there exist (not necessarily complete) orthonormal
sets {1,/),,}n_1 and {an ?,in H (M may be finite or infinite) and positive real numbers

{\}M, such that Zn_l A < oo,

K= 3 Ml )b BCRY

n=1

where, in the case M = oo, the sum in (3.1) converges in operator norm (e.g., [23, Theorem
VI.17, Theorem VI.22]). We define for a finite positive integer N

min{M,N}
(aklKnlaz) = 3 Anan(n)” aH(¢n) (3.2)
n=1
and
. min{M,N} _
(an|Knlan) = D Aar(¥n)an(ds)- (3.3)
i i n=1
Then we can show that, for all ¥ € Fgn(H), the strong limits
(ah|K|a3) ¥ :=s- lim (a},|Kn|a3,) ¥ (3.4)
and | |
(ay|K|an)V :=s- I&EEO(GH‘KNWH)‘I’ (3.5)

exist. Moreover, the operator {(a¥;|K |af;) defined on Fg,(*H) is closable and

(a3 |Klay)" = (an|K”|az) (3.6)
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on Fgn(H). We denote the closure of (af;| K|aZ;) by the same symbol.
‘ For a densely defined closed linear operator A on H, we denote by dT'3(A) the second
quantization operator on F(H) [23, p.302, Example 2], which is the closed linear operator

on F(H) such. that dl'»(A)Qx = 0 and

dly(A)an(f1)" - an(fa) Q@ = Y an(f1)* - an(ASf;)" - an(fo) e,
o 1=1
for all f;,---, f, € D(A) and n > 1.
Let (S, T) € S(K,H) and h be a nonnegative self-adjoint operator on K such that
h = h. and the following properties (h.1)-(h.3) hold:

(h.1) The subspace Ho := {f € H|S"f,T; f € D(h)} is dense in H.

(h.2) ThS* and Th'/? respectively define a Hilbert-Schmidt operator on H and from K
to H.

(h.3) The subspace Ds(h) := {u € D(h)|S*Su € D(h)} is a core of .

It follows that ShS™ + T.hT is densely defined, hence a symmetric operator on H and -
D(ShT*) is dense and defines a Hilbert-Schmidt operator on H.

We define
H := dT'y(ShS* + T,hT?) + (ay|ThS*|ay) + (ax|ThS*|an)*, (3.7)
and set | :
E := ~||Th"?|lfs, - (3-8)
where || - |lgs denotes Hilbert-Schmidt norm. The operator H gives an abstract form

unifying Hamiltonians of models of a quantum harmonic oscillator coupled to a quantized
field [2]-[9] (see the Introduction).
Let

fﬁn(HO) = L{Ox, an(fi)" - an(fa)" Quln 2 1, f; € Ho, j = 1,---,n} (3.9)

Obviously Fan(Ho) C D(H). Hence H is a symmetric operator. We can prove the
following fact.

Theorem 3.1 [10, Theorem 3.1]. The operator H is essentially self-adjoint on Fin(Ho)
and its closure H is unitarily equivalent to dU'xc(h) + E under the unitary transformation
U given in Theorem 2.9: UHU ™ = dT'c(h) + E. ‘

As a corollary to Theorem 3.1, we can identify the spectrum of H:

Corollary 3.2

o(H) = o(dTx(h)+ E), 0al(H) = 0.(dTx (k) + E),

o) = o(dTx(h)+E), op(f) = op(dTx(h) + E),
where o, and 0, denote singular continuous spectrum and absolutely continuous spectrum
respectively. The multiplicity of each eigenvalue of H is the same as that of the corre-

sponding one of dUx(h) + E. In particular, H has a unique ground state given by the
vector Wy (up to constant multiples) with the ground state energy E.
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In concrete models, the unperturbed Hamiltonian Hj is of the form
Hy = dPH(f@ h) = dFM(Z) ® I}-s(;c) + IFS(M) ® dr;c(h), (3.10)

where £ is a self-adjoint operator on M bounded from below (see the examples given in

the Introduction). We write
H=H,+ H; (3.11)

with
Hi = dTn(ShS* + T.hT?) — dT (£ ® k) + (an|ThS*|an) + (an|ThS*|ay)*.  (3.12)

For this form of H, Corollary 3.2 implies the following. For simplicity, consider the case
where o(h) is purely continuous as is given by (1.6) and o(£) is purely discrete so that

o(dlm(8)) = op(dTm(0) = {En}trzo

-with By < Ey < E3 < -+ (E, is determined by o(¢)). Then we have (1.7) and hence (1.8).
- Thus each E, is an eigenvalue of Hp and the eigenvalues E, > Ey + M are embedded in
‘the continuous spectrum of Hy. On the other hand, Corollary 3.2 implies that

o(H)={E}U[E+ M,0), o,(H)={E}.

Hence all the embedded eigenvalues E, > Eo + M turn out to disappear under the
perturbation Hj, i.e., they are unstable under the perturbation H; (we may regard E, <
Eo + M as eigenvalues changing to E or E + M under the perturbation Hj). Thus H
gives, in an abstract from, a class of self-adjoint operators acting in the Fock space F;(H),
which describe the instability phenomenon of embedded eigenvalues.

4 Structure of the representation

We write each vector f € H as

fz(fM’flC)7 fM EM,f}CEK
For A € B(K,H), we define A € B(H) by

Af = Afc, feM. . (4.1)
Then we have _ -
A f=(0,A"f), feH. (4.2)
It is easy to show that, for all A, B € B(K,H),
AB*=AB*, BAf=(0,B*Afx),feH. - (43)

Let (S,T) € S(K,H) and Pk be the orthognal projection from H onto K. Then we
have ' .
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- Let L € B(H) be such that
. ['L=Pe, LL"=I (4.6)

Then L is a partial isometry on H with initial space K and final space H.
We define X,Y € B(H) by

x:=8§1*, Y:=TL"
Then one can prove the following fact. |
Lemma 4.1 [10, Lemma 4.1]. The following relations hold:

X*X-Y'Y=Iy XVY.-YX =0, (4.7)
XX* =YY =L, Y.X -—XY" =0 (4.8)

More(;ver, Y € ,(H).
For each f € H, we define an opeartor c¢(f) by
o(f) = an(X f) + an(Yef)* (4.9)
with D(c(f)) = D(N, NY %) Then c(f) is closable. We denote its closure by the same symbol.

Theorem 4.2 [10, Theorem 4.2]. The mappz'ng {an, a3} = {c,c*} is a proper Bogoliubov
(canonical) transformation on Fy(H), i.e., there exists a unitary operator Uy on Fs(H)
such that, for all f € H,

o(f) = Unan(f)Us",  c(f)" = Unan(f)Us’'
As a corollary to Theorem 4.2, we have the following.
Corollary 4.3 For allu € K,
b(u) = Unan(L(0,w))Uz",  b(u)* = Unan(L(0,u))*Uxz'. (4.10)

‘We next consider expressing ax(L(0, -)) as a transformation of ax/(0, -).
Let H; and H; be Hilbert spaces and C' € B(H;,H;) be a contraction operator, i.e.,
IC|| < 1. Then we can define a contraction operator I'z, 31, (C) : Fs(H1) = Fs(Hz) by

1,3, (C) == @7%0(®"C) | (4.11)

with ®°C := 1, where ®"C denotes the n-fold tensor product of C.
- In the case where C is a contraction operator on a single Hilbert space H;, we set

T3, (C) = Ty 1, (C). - (412)

We have
Pn(L)In(L)" = Ir.0), I(L) Tr(L) = Tn(FPx)- (4.13)



30

It is easy to see that ['y(Py) is the orthogonal projection onto the closed subspace F({0}®
K) = C ® F,(K). Hence I'y(L) is a partial isometry on Fs(H). Let

VH = UHF'H(L) . . (414)

Then
ViV = Ir,, ViV = T'u(FPx), (4.15)

which imply that V4 is a partial isometry on Fs(H) with initial space C®F.(K) and final
space F(H). We can prove the following fact.. ' :

Theorem 4.4 [10, Corollary 4.5]. For allu € K,
b(u) = VHGH(O, u)V-,.’;, b(u)* = VHGH(O,U)*V‘;. (416)

This theorem shows that the representation 7 is a transformation of the representation
{ax(0,u)|u € K} by the partial isometry V3;, which is a composition of the partial isometry
I'4(L) and the proper Bogoliubov transformation Uy.
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