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Abstract

An expression of the ground state energy Egsp of the spin-boson Hamiltonian
Hsp is considered. The expression in the cases of both massive and massless
bosons is given by a nonperturbative method. -

The spin-boson model, which describes a two-level system coupled to a quantized Bose
field, has been investigated as a simplified model for atomic systems interacting with a
quantized radiation or phonon field ( [LCDFGW, Am, Arl, D, FaNV, Gér, HiiSp1, HiiSp2,
Spl, ArHil, JP3] and references therein). Several properties of the ground states of the
mode] are of interest. Especially, we are interested in expressions of the ground state energy
of the model, because for each Hamiltonian we can actually observe its energies only at every
state, neither the Hamiltonian nor the state according to the standard quantum theory. For
the spin-boson Hamiltonian Hgp, recently attention has been paid to the ground states
as the eigenvectors of Hsp with eigenvalue equal to the infimum of its spectrum to develop
nonperturbative method ( [Sp3, (ii) on p.5], [ArHil, ArHi2]) and analyze spectral properties
and the process of radiative decay ( [HiSpl, HiSp2]). Talking of the ground states of this
type model, we here note that in [T1, T2, T3, T4] Tomonaga argued the ground state
of the model which has relation to the spin-boson model in order to get rid of physical
difficulties caused by applying the perturbation theory to the model. Moreover, recently
Bach, Frohlich and Sigal argued the ground state, spectrum and resonance for a model
of nonrelativistic quantum electrodynamics ( [BaFrSigl, BaFrSig2, BaFrSig3, BaFrSig4)).
Especially they established the method of renormalization group to investigate resonances
in quantum electrodynamics, which is of great value for many who deal with problems on
the resonances in the case of massless bosons. For the generalized spin-boson model, Arai
and the author showed that, under certain conditions, there exists a ground state of the
generalized model in [ArHi2] by a nonperturbative method, and we gave a formula for
the asymptotic behavior of the ground state energy of the generalized model in the strong
coupling region ( [ArHi2, Proposition 1.4]). In this paper we focus our attention on the
expression of the ground state energy of the (standard) spin-boson Hamiltonian Hgspg in the
cases of both massive and massless bosons. Especially, it is important that we clarify the
expression in the case of massless bosons, because we cannot apply the regular perturbation
theory to Hsp in the case. Thus we try nonperturbative approach to our problem in this
paper.

For physical reality, we consider the situation where bosons move in the 3-dimensional
Euclidean space R3. We take a Hilbert space of bosons to be

F=F(L*(R?)) = é) [@rL? (RY)], (1)

n=
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the symmetric Fock space over L(R3) (27K denotes the n-fold symmetric tensor product

of a Hilbert space K, :3°K = C). Let Qy be the Fock vacuum in F.
In:this paper, we set both of i and ¢ one, i.e., i = ¢ = 1, where h is the Planck constant
divided by 27, and ¢ the velocity of the light. A function w, is given by

wo(k) = /|k|* + m?, m >0, k € R,

which is the energy of the relativistic bosons with mass m and momentum k.
We denote by dT'(w,) the second quantization of the multiplication operator w, on L*(R?)
and:set

H, = dl(w,) = /Ra dk w, (k)a*+ (k)a(k),

where a(k) and a* (k) are the operator-valued distribution kernels of the smeared annihilation
and creation operators respectively: ’

of) = [, dka(ki(h), )
a*(f) = [, dkat(B)F (b) | 3)

for every f € L*(R®) on F;.
Remark 1. In [ArHil, ArHi2], we used the definition,

o(f)= [ dkaR)f(k)', e L),

as the annihilation operator a(f) according to the custom for mathematics, where f(k)*
denotes the complex conjugate of f(k) (k € R?®), but we here employ (2) as the definition
of a{f) according to the way of physics.

The Segal field operator ¢,(f) (f € L*(R?)) is given by

6,() 1= 5 (a (N +a (). (4)

Let ) be a real-valued continuous function on R? satisfying the following' conditions:

(A) k) = M(=k) (k € R®), and X, Mw, € L*(R®).

Remark 2. Since A, A/w, € L2(R?), we have )/ /@, € L*(R?).
The Hamiltonian of the spin-boson model is defined by

Hsp:="Loy@ 1419 Hy+ V200, 0 6,(\)

acting in the Hilbert space
F=CQFf=Fa&F, : (5)

where 0,, 03 are the standard Pauli matrices,

(01 1 0
"‘=(1 o)’ "3=(o —1)'



97

In (5), we identified C?* i3 F, with Fy =5 F,. So. Hsp has the following representation on
Fi &8 Fp and we employ it in this paper:

L ,
Ho+%  Viag,(\)
Hsp = = U .
Viag,(\)  Hy- 4
For a linear operator T on a Hilbert space, we denote its domain by D(T). It is well-known
that Hsp is self-adjoint with D(Hsp) = D(I @ H,) and
2

< Hgp,
Lﬂ

A

W,

where || - || ;2 denotes the norm of L%(R?).
For a self-adjoint operator T bounded from below, we denote by E(T') the infimum of the
spectrum o(T) of T

E(T) = infa(T).

In this paper, an eigenvector of T with eigenvalue E(T) is called a ground state of T' (if it

exists). We say that T has a (resp. unique) ground state if dimker (T — E (T)) > 1 (resp.

dimker (T'— E(T)) = 1). We call E(T) the ground state energy of T if T is a Hamiltonian.
For Hgp we set '

ESB(/I,, a) = E(HSB)

By the variational principle ( [Arl, Theorem 2.4] and [D, p.161]), we have

2

A
Under certain assumptions, we know that Hgp has a ground state ( [HiiSpl, ArHil, Sp3]
and see Remark 4(1) in this paper).

Esp(p,a) < ._%6—2@211)\/««4&2 —

(6)

L2

DEFINITION 1. We say a vector ¥ € F = F, & F; overlaps with a ground state Qgsp(p, @)
if and only if there exists the ground state Qsp(u, ) of Hsp such that

(U, Qsp(p, ) #0,

| where { , ) is the standard inner product of F = F, & F.

From now on, according to the custom for the physicists, all the inner products of the
‘Hilbert spaces appearing in this paper have the linearity on the right hand side.
If a ground state Qsg(u, @) of Hsp exists, for Qsp(p, a) we set

8 o
ss(na) = (. ) e F= R A,

It is well known that, if f € L?(R?), we can define a self-adjoint operator P(f) by

P(f) =i{a* (f) = a(f)}.



thus, if A/w, € L*(R?), we have two unitary operators Uy defined by
Uy := exp[tiaP(Aw,)].
We define two unit vectors Q. € F = F, o Fp by

1 < T Qo F U—Qd)

=5 \va £ U0

We have the following proposition on an upper bound of the ground state energy:
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PROPOSITION 2. Assume (A). Then,

— Ze: e_(PQP—l;ﬂzp)wr(k)
p=1
+ i (e—ﬂquaw(k). — e"ﬂzpwr(k)) (eﬂg,,_lu,-(k) _ e/}._,qw,(k))

p.q=1p<gq

0,

Gﬁl :"'.1323(k)

IN

e
Fj, ----/3»e+1(k) = ePrtrrwr(k) Z (e“"ﬂ2p—LWr(k) - e—ﬂzpwr(lc)) <0.
p=1

Esp(p, @)
) (k)2
< —a? k
< -at dkw,(k)
Iﬂl 2 ’\(k)2
- 5 ek} -2 d
}glgo 3 ln{l + 7 5 eXp [—2a /Ra dkw, Bk
s T 28 o3 B Bag—y
= d dsBs - -- /
+;(2) s [ sy [T dpa
A(k)?
exp [-—2a2 /R3 dkw, ) (2Gg, ..., (k) + 2(3)]
20+1
Ba
(‘ |) / dBl/ dgs - - A zd,321+1
. A(k) ,
exp[-—ZO,2 ‘w,.(k)2_(2G3“"’ﬂu(k) |
+2Fl31,"',l32¢+1 (k) + (2£ + 1))] }a
where

(8)

(9)

Remark 3. The upper bound (6) of Esp(y, a) by the variational principle ( [Arl, Theorem
2.4], [D, p.161]) is given by estimating Gg, .5, (k) and Fj, ... 3,,,, (k) at 0 from above in our

Proposition, which is the most rough estimation in ours.

The statement of our main theorem is made as follows:
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THEOREM 3. Assume (A).
(1) Suppose that a ground state Qsp(p,«) of Hsp exists.

(i)+ If Q4 overlaps with the ground state Qsp(u, o), then Esp(p, a) is given by

E.S'B'(ll‘e @)
. (k)2
— a2 :
= —a« ./Rﬁdkw,(k)
A (k)

- IHLLO/—In{I + 3—exp[ I/RS dkwr (k)2]

=1

A(k)? )
exp [ R3 ,u, (k) 5 (2G 3.3, (k) + J)]
¢ »
; ;_; (&Y™ [as [ agyeo [ dre
GXP[ /\((I;c) (2G51 ﬁﬂz( )

F2F, o oy, (k) + (20 4+ U)] }’ |

where G, ...3,, and F3, .. 5,,. are given in (8) and (9) respectively.

(i)- If Q- overlaps with the ground state Qsp(p;, ), then Esp(u, ) s given by

Esp(p, @)
2 [ AR
2
“ /p.a A )
.1 0 . / X (k)?
- ly -3 -9 2
Blgrgoﬂln{l /32exp[ o [ dkw,. )

+Z(“)”/ ap, [ gy [T dsu

A(k)?

—2a? dk
C R (k)

o) 20+1 3 81 Bae
= (g) /o d,[ﬁ[) dB, - - /0 211
. v 2
GXP{__za“2 dk——"— ,\(k) ( Gﬂx ﬂze(k) :

R3  we(k)?
+2F 5, ey (K) + (20 + 1))] }

( Gﬂ1 ﬁzz( )+2€)]
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where G, ... 3, and F3, .4, are given in (8) and (9) respectively.

(ii) (for massive bosons) Let m > 0. Then there exists a ground state Qsp(p, ) of
Hsg. Moreover, if '

_|#| ( o207 N wrll] ) <m,

then either Q. or Q_ overlaps with the ground state Qsp(p, @) at least.
(iii) (for massive or massless bosons) Let m > 0, and |a|l|/\/.u, |2: < 1. Then there
exists a ground state Qsp(p, @) of Hsp. Moreover, if /\/.o € L*(R3) with

pel| 2 < &

then either Q. or Q_ overlaps with the ground state Qsp(p, @) at least.

Remark 4. (1) Spohn showed a necessary and sufficient condition for existence of a ground
state of Hgp (condition (A) implies the condition) whose statement appears in [Sp3, Com-
ment (ii) after Theorem 1], and its proof in his unpublished note (1991) was clarified in
(Sp4].

(2) In the case of massive bosons, by applying regular perturbation theory (e.g. [RSi3,
Theorem XI1.8 and Theorem XIL.9]), we can easily obtain an expression of the ground state
energy of the spin-boson model as the perturbation series. For instance, Davies ha.d the

expression in the case of massive bosons by regarding I @ H, + V2a0; @ ¢ (A) and £ 5039 I

as the free part and perturba.tlon term respectlvely ([D, Theorem 10]): Let p < 0 and a>0.

By inserting |u|/2, o®||A//@r |3 Wr||72 A into €, A, and f in [D, Theorem 10], we

know that Fy, F, N, and the Hamlltonlan Hi 1n [D, Theorem 10] is given by w, > 0, Hp,
a?||A /w32, and

Hgp =——01®I+I Hb+faa3®d> (\)

respectively. We note here that Hsp and Hgp are unitary equlvalent (séé Lemma 2(i) in
this paper). So, by [D, Theorem 10}, for sufficiently small |u|,

’ 2 2
Esp(p,a) = —a? /R,ﬂ dk% - Ig—lexp [—20:2 ,/Rﬁ dkj((l?)z] +0 (,u2) .

For arbitrary fixed m > 0 and p # 0 (resp. a # 0), sufficiently small |a| (resp. |u|) satisfies
the inequality in (ii). Thus Theorem 3(i); with (ii) may be regarded as a result which im-
proves the one obtained by regular perturbation theory. Note that (10) is a nonperturbative
estimate in a, since the left hand side of (10) is non-polynomial in a.

(3) To author’s best knowledge, Theorem 3(i)+ with (iii) is the first which establishes a
concrete expression of the ground state energy of the spin-boson model Hsp in the case of
massless bosons.
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COROLLARY. Assume (A) Fiza€eR.

(i) Suppose that, for p.p/ >0, Qsp(p, ) and Q5B(;L ) exist, and 2y overlaps with both
of them. Then

Esp(p',a) < Esp(p, ) if p< .

(i1) Suppose that, for p, )’ <0, Qsp(u, ) and Qsp(y, @) exist, and Q_ overlaps with both
of them. Then v

Esp(p',a) > Esp(p,a) if p < p'.

The basic idea to prove our main theorem is as follows: If there exist a ground state
Qsp(p, a) of Hsp and a vector ¥ € F = F, & F; such that ¥ ovella,ps with Qgsp(p, a), then
by Bloch’s formula ( [Blo, (12)] and see Lemma 2.4 in this paper), we have

1 )
Esp(p, o) = —,31-1-{20 Eln(\Il, e"’gHSB\II)}-.

So, our problem is reduced to that of how to find such ¥ that we now try to calculate
(¥, e=Hs80) _ in the concrete. In the following section, we shall use several unitary trans-
formations and the Du Hammel formula so that we can apply the Feynman-Kac-Nelson
formula for the free field, and we shall find that either Q, or Q_ is one of the answers for
the problem above. Here, it is important that we employ the Feynman-Kac-Nelson formula
for the free field because we can calculate actually and concretely the ground state energy
of the spin-boson model.
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