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ON THE COHOMOLOGY GROUPS OF CERTAIN COVERING SPACES
LEBARF HFER i —A* (Kazuhisa Miyazawa)

0. Introduction

Deformation Theory of compact complex manifolds has been studied by many peo-
ple and they have obtained iinporta_nt results. Recently, T.Ohsawa has studied
the stability of a family of Riemann surfaces and proved the following by applying
results of Teichimiiller Theory(cf:[Oh2]): Let X be a connected complex manifold
of dimension 2 and U be the unit disk of C. Let 7 : X — U be a proper sur-
jective holomorphic map with maximal rank. Then every covering space of X is
holomorphically convex.

In this paper we consider a higher dimensional version of this Theorem as the
following: Let X be a complex manifold of dimension N = n+m and T be a complex
manifold of dimension m,where n and m are positive integers. Let 7 : X — T be
a proper surjective holomorphic map with maximal rank. Let o : X — X bea
covering map. X4 denotes (7 0 0)~1(A) for A ¢ T. H9(X,F) denotes the sheaf
cohomology group of X of degree q with coefficients F ,where F denotes a coherent
analytic sheaf over X. Then we have the following Theorem. -

Theorem. Suppose that each fiber of w o o is non compact. Then each point
of T has a neighborhood U satisfying H'(Xy,F) = 0 for n < i < N ,where F is

any coherent analytic sheaf over Xy.
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If each fiber of moo is non compact and connected, there is a strongly n—convex
exhaustion function on each fiber of 7o o(cf:[G-W 2]).Hence we have H™(X,, F,) =
0 at z € T for any coherent analytic sheaf F, over X, by Theorem of Andreotti—
Grauert(cf:[A-G]). Our Theorem claims that ‘Union problem’ is solved on a suffi-
ciently small neighborhood U of z € T with respect to Cohomology vanishings.

"To show our claim we examine Theorem of Kuranishi precisely(cf:[Ku]). On the
base of the results , we construct a Morse function with convexity properties. We
have our claim by making use of the function. Homology Theory has been studied
by handling real-analytic Morse functions (cf :[V4]). However, investigations of
cohomology groups by applying Morse functions do not have been done so much.

The organization of this paper is as the followings. In §1 we explain properties
of strongly g—complete manifolds and an abstract vanishing Theorem. In §2 we
introduce results of Kuranishi and show existences of good C*®°-maps on Xy. In
§3 we show existences of the particular Morse function on X,. Then we prove con-
vexity properties of some relatively compact domains of Xy. In §4 we construct an
exhaustive sequence of Runge pairs ,which is an alternative of Docquier-Grauert’s

argument (cf:[D-G]), and show our claim.

1. Preliminaries

Let X be a complex manifold of dimension n and let ¢ be an integer with
1 < g < n. TH°X denotes the holomorphic tangent space of X at z € X and T*0X
denotes the holomorphic tangent bundle of X. A real-valued C?-function ¢ on X
is said to be strongly g—convex at a point z € X if its Levi form of ¢ has at least
n — g+ 1 positive eigenvalues on T2 X at . The function ¢ is said to be strongly
g—convex on X if it is strongly g—convex at any point of X.

A real-valued function ¢ on X is said to be an exhaustion function if the
sublevel set X, := {p € X|p(p) < c} is relatively compact for any c € R.

A complex manifold X is said to be strongly g—convex if there exists a compact
subset K of X and an exhaustion function ¢ ,which is strongly ¢—convex on X \ K.

If we can choose K = ¢ , X is said to be strongly g—complete.
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Let Ll := {U; }ien be a countable Stein open covering of a complex manifold X
such that U/ is a base of open sets for the topology of X.If F is a coherent analytic
sheaf over X ,we denote by CP(U , F) the Fréchet space of Céch cochains , § = 4, :
C?(U,F) — CP*1(U,F) the coboundary operator, ZP(U, F) := ker 6, the Fréchet
space of cocycles. If D C X is an open set , we define U|p := {U; € U|U; C D}.

Theoreml.1(cf:[A—G]). Let X be a strongly g—complete manifold and F be any
coherent analytic sheaf over X and let U be as above. Then the followings hold.
(1) The restriction map Z*(U,F) — Z*(U|x.,F) has dense image for any c € R
ifi > q (2) H{(X,F) =0 holds if i > q.

Proof: See [A-G].

Let X be a complex manifold. Let {Gx C X}ren be a sequence of strongly
g—complete open subsets such that ¥y : G, — R is a strongly g—convex exhaus-
tion function on Gy for k € N. We say that {(Gi, ¥i)}ren is an exhaustion
sequence of ¢—Runge pairs on X if there is a sequence of set { My C Gi}ren
and a sequence of numbers {Cy, € R}ien satisfying followings: (i) Gx C L := {p €
Gr+11¥%+1(p) < Ci} holds and M, is a compact subset of Ly (ii) X = | M;.

» kEN
Then we have the following. It is intrinsic Proposition when we show our claim.

Proposition1.2(cf:[Si]). Let X be a complex manifold and F be any coherent
analytic sheaf over X. Let {Gy C X}ren be a sequence of strongly g—complete
open subsets such that ¥y : G, — R is a strongly g—convex exhaustion function
on Gy for k € N. Suppose that {(Gk, Vk)}ren Is an exhaustion sequence of q—
Runge pairs on X. Then we have H(X,F) = 0 ifi > q.

Proof: We have Propositionl.2 from Theoreml.1 and the argument to show

Theorem B of Cartan.

2.Complex analytic families of complex structures of a compact manifold

From now on , let X be a complex manifold of dimension N = n + m and T

be a complex manifold of dimension m. Let m : X — T be a proper surjective
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holomorphic map with maximal rank. We put X4 := 71(A) for A C T. We
may assume that T' is a domain of C™ which contains 0 € C™. Let {h, : u, —
Vi X U} =1,k be a local coordinate system of Xy ,where {U/,, } are open subsets of
Xy and {V,} are open subsets of C™ and U is an open subset of T' which contains
0 € C™. Moreover we suppose that there is a point pu€Vyforany p=1,---,k
such that p, is hot contained in V, for any p # v. X denotes the underlying
C°°-manifold of X,. We remark that U will be replaced with sufficiently small one
,and {V,} is regarded as an open covering of Ay or X, ,whenever necessary. Then

followings holds. It is an exact observation for results of Kuranishi.

Theorem2.1(cf:[Ku]p.26,Theorem3.2). There are a neighborhood U of z € T
and a diffeomorphism S : Xy x U 3 (=, 2) — S(z,2) € X satistying the followings:
(i) S(Xo,2) = X, forany 2 € U (ii)) U 3 z v S(zx,2z) € X is a holomorphic
section over U for any z € Xy and Xy is the disjoint union of {S(z,U)|z € X,} (iii)
r: Xy 3 pw r(p) € Xo defined by S(r(p), m(p)) = p is a C®-retraction ,where we
identify Xy x {0} with X, (iv) there is a neighborhood W, CcCV, of p, such that
r is a holomorphic retraction from S(W,,U) to W, C X, forany p=1,--- k.

Proof: See [Ku] for the detail of Proof. Here we give an observation for (iv).
There is a diffeomorphism G : Xy — Xy x U. We can construct G by patching
maps in local coordinates. Further theré 1s a neighborhood W C X, x Xy of the
diagonal set {(z,z)|z € Xo}, a diffeomorphism F : W —s F(W) C T** X, x U such
that (A) F(W,) C T2 X x U (B) F(z, 2) = (0,7(2)) € T X, x U (C) Flw, is a
biholomorphic for fixed z € Xy, where we put W, := ({z} x Xy) N W. Existences
of F in local coordinates is trivial. Hence we can also construct F by patching
them.We can define S satisfying Theorem2.1 by the use of G and F. Especially we
construct S satisfying (iv) since S is defined by using G and F ,which consist of
patching maps in local coordinates.

Remark2.2 Theorem 2.1 claims the existence of ‘holomorphic motion’ for any
dimensional fibers and any dimensional base spaces on a sufficiently small neigh-

borhood of 2 € T. If n = m =1 and T is the unit disk in C,it has been shown that
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we can take U = T = {z € C||z| < 1} by using Teichimiiller theory.

Let m: X — T be as above. Let o : X — X be any covering map. )?A
denotes (7 0 0)~!(A) for A C T. We fix a local coordinate system {V,},=1,..x of
Xo such that V,, and each connected component of 67*(V,) are biholomorphic to
the unit disk of C™. We suppose that there is a point p, € V, for any p=1,---,k
such that p, is not contained in V,, for any p # v. We set U := {2z € C™||z| < 1}.
We may suppose that there are C®°-maps S : Ay X U — Xy and r : Xy — X,
satisfying Theorem?.l for the local coordinate system {V}},=1,...x by altering the
coordinate of T' if necessary. We fix such C*°-maps S and r. W, denotes the
~ open subset of V, satisfying Theorem2.1 (iv). {Vu,alu =1,---,k,a € A} denotes
the connected components of 0=1(V,). Then {V, o} is a locally open covering of
Xo. Let {j = j(p, @) € N} be the set of another indices which corresponds to the
set of pairs of indices {(u,a)|p = 1,---,k,a € A}. We denote by {17]} the open
covering {Vn,a} , where j = j(p,a) for p = 1,---,k and o € A. Each lift of S
and r to X is well-defined since S satisfies Theorem2.1(ii). We denote the lift of
Sto)?by'ngoxU%)?U and the lift ofrto)?by?:)zu — Xo. Wj
denotes the connected component of 0~ (W,) contained in 17, ,where j = j(u,a)
for p =1,---,k and o € A. X, denotes the underlying C®°-manifold of X,. We
regard {17]} as an open covering of X, or Xo whenever necessary. Then the following

holds from Theorem?2.1.

Theorem2.3. S : Xy x U > (y,2) — §(y, z) € X is a diffeomorphism satisfying
the followings: (i) g(fo,z) = X, holds for any z € U (1'1') U3z §(y, z) € X
is a holomorphic section over U for any y € Xo and Xy is'the disjoint union of
{S(y,U)|y € Xo} (iii) 7: Xy 5 p — 7(p) € X, satisfies S(7(p),=(p)) = p and 7 is
a C*®-retraction (iv) ¥ is a holomorphic retraction from S(W;,U) to W; C Xo for

any j.
3.Convexity of some relatively compact domains of )?

At the beginning, we introduce the followings in accordance with Demailly
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(cf:[De], [G-W2],[Oh1] ) : Let M be an n-dimensional complex manifold with a

hermitian metric g = (g;7)1<:,j<n-For a C?~function v, we consider the trace of the

Levi form with respect to g defined by

—_ ‘ - 621)
Agv(p) = Tracegv/—180v(p) := Z vV-1g"(p) (p)
— 621'6-2.7
1<4,j<n
,where (¢*) is the inverse matrix of (9;)- Then Ag4v is a continuous function
on M. We will say that v is strongly g—subharmonic if Ajv(p) > 0 for any
P € M. v is strongly n—convex if v is strongly g—subharmonic. If v; and v, is
strongly g—subharmonic, v; + vy is strongly g—subharmonic. Let N be a com-

plex submanifold of M and v : N — R be a C*—function. We set Ayv|yx(p) :=

> 9| n(p) - af:a”z_jl ~(p) for any p € N ,where (g7| y(p)) denotes the inverse ma-
trix of (g;z(p)) which is restricted on the cotangent space of N at p € N and

( azza"z_j| ~n(p)) denotes the restriction of ( azzgz—j) on the tangent space of N at p. We

will say that v is strongly g—subharmonic on N if Ayv|n(p) > 0 for any p € N.

Theorem3.1(cf:[De],Theorem9). Every n—dimensional connected non compact

complex manifold has a strongly subharmonic exhaustion function with respect to

any hermitian metric g.

Proof: See [De].

On the other hand, we can approximate g—convex functions by real-analytic

g—convex Morse functions as the following.

Theorem3.2(cf:[Va],Corollary5). Let M be a g—complete manifold and ¢ :
M — R a g-convex exhaustion function . Then for any continuous function
€: M — (0,00) there is ¥ : M — R such that (i)t is réal—analytic and g—convex
(ii )¢ is a Morse function. Hence v has distinct critical values and the set of critical

points is discrete in M (iii)|y) — ¢| < €.

Proof: See [V3].
Now let us return to the original situation which we have observed in the

previous section. Let 7 : X — T be as above. Let 0 : X — X be a covering map
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such that each fiber of 7o o is non compact. Let g be a hermitian metric on X. We

may assume that each fiber of 7 0 ¢ is connected.

Proposition3.3(cf:[Oh2]). Let G CC X be any relatively compact open subset
. Then there is a C*°—function ¢ on G such that ¢ is strongly g—subharmonic on

each n—dimensional complex submanifold G N X, for any z € (o o)(G).

Proof: Let {U; C T};=1,...; be a finite open'coverinAg of (7 0 0)(G) satisfying
that there are a finite open covering {V; C X’}izl,...,l of G with V; D Gn X’Ui
and bounded C*° functions %; on V; for any ¢ = 1,---,1 such that z,b,-IV‘_ N is
strongly g-subharmonic on V; N X, for any z € U;. Let {p;} be a partition of unity
subordinate to {U;}.We set &(p) := > pi((w 0 0)(p))s(p) for any p € G . Then

@l gnx. 1s strongly g-subharmonic on G'N X, for any z € (70 0)(G).

Let S: X x U — XU, 7 Xy — )?0, {177} , {WJ} be the same as these in

the previous section. Then we have the following.

Proposition3.4. There is a Morse exhaustion function h on X, satisfying that (i)

—~

h has.distinct critical values (ii) the set of critical points of h is contained in ‘UN W;
(iii) h is strongly n—convex on |J Wj. B
JEN

Proof: By Theorem3.1 and Theorem3.2 there is a strongly n—convex Morse
exhaustion function ho on Xo. Let {y*}ien be the set of critical points of hg. Then
we construct a map j : N 3 ¢ + j(i) € N such that y} € f}j(i), The map is not
determined uniquely. Hence we fix such a map j. Then #{y*ly} € Vi,k = j(i)}
is finite for any k € N since {y;} is the discrete set. By Theorem2.1 (iv) there is

an open subset Wj(i) C %(i) such that F]g( is the holomorphic retraction for

Wiy, U
1 €N. Let N} € X, be an open neighborhoojc(l )of )y:‘ which is contained in Vj(i). Let
N; C Wj(i) be an open subset which is biholomorphic to N;. Further we suppose
that the sequence {NN;};cn does not have intersections each other.

Let {fr}ren be a sequence of diffeomorphisms from )?0 to oneself satisfying

that fr is a biholomorphic map from N to N; for any j(i) < k, and f = fr_:
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on (U V1)°. Such a sequence {f;} exists since #{y*lyr € Vi, k = j(i)} is finite for
I>k

k € N and Wkﬂwl are empty for k # I. Weset f := 'klim fr- fis a diffeomorphism
from X, to oneself such that f is biholomorphic from N} to N; for : € N. We put
h := hoo f~! and y; := f(y?). Then h is a Morse exhaustion function on X, and the

set of critical points {y;}:cn is contained in |J Wj. Further & is strongly n—convex
JEN
on |J W; since ¢ is biholomorphic on |J W;. Thus we have Proposition3.4.
25 iEN

We fix the Morse exhaustion function h satisfying Proposition3.4. We may
assume that h()?o) = [O, 00), by replacing h with A o h for an unbounded strictly
increasing convex function A : [inf h,sup ) — [0, 00) , if necessary. We put D(t) :=
{y € Xo|h(y) <t} , U(t) := {z € C™| —log(1 — |2]?) < t} for ¢ € [0, 00). We put

5(4,B):= | S(y,z)for AC Xoand BCU.
yEA,z€B

h o 7 is strongly n—convex on each n—dimensional manifold S (Wj, u)n X, for
J € N at z € U by Proposition3.4. We fix a hermitian metric g on Xy such that ho?
is strongly g-subharmonic on S(W;,U)NX, forj e Nat z € U (cf:[De],Lemma6).

Let M, N be hermitian forms on a vector space L. We say that M is positive
(resp. non negative) definite if each eigenvalue of M is positive (resp.non negative).
M > 0 (resp.M > 0) means that M is positive (resp. non negative) definite.
M > N(resp.M > N) means that M — N is positive (resp.non negative) definite. We
use same notations for hermitian matrices. We denote by |M| the determinant of
the hermitian matrix M. |

Then we have the following Proposition with respect to the C*-map S and

the Morse function h ,which have been fixed in our argument.
Proposition3.5. S(D(t),U(t)) is strongly n-complete for any t € (0, 00).

Proof: We set G(t) := S(D(t), U(t)). We put D(s,t) := {p € Xo|s < h(p) < t},
G(s,1) := B(D(s,6),U(®)). We put K(p) = (h o 7)(p), u(p) := —log(t — i(p)) for
p € S(D(t),U), v(p) := — log(L+ exp(~1) — [(w 0 P)P?) for p € 5(Xo, U(1)).

We put Z(p) := {S(y,2)|y € X, satisfying that S(y, (r0 o)(p)) =p, z € U}
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for p e. Xy. Z(p) is an m-dimensional complex submanifold of Xy ,which is
biholomorphic to U from Theorem2.5(ii). On the other hand , Y (2) := G(t) N X,
is an n—dimensional complex submanifold of G(t) for z € U(t). We fix a constant
t* € (t,00). Let » be a bounded C-function on G(t*) such that & is strongly
g-subharmonic on G(t*) N )’ZZ at z € U(t*) in Proposition3.3. We put ¥(p) :=
p(p) + v(p) + A|(7 0 o)(p)|* + B&(p) for p € G(t) ,where A and B are positive
constants. "

Case 1: Let ¢t € (0,00) be a regular value of h. Then Agpuly((roo)(p)) 18
bounded from below on G(t). Indeed, let {p; € Y(2)} be a sequence of points such
that {p;} converges to a point pg € S(@D(t) z) for z € U(t). Then we have

gﬂlY(z)(Pz) = Tracegv—1 ahA’f’)’: + == 36: (p;) — oo as i — o0, since
Y(2)

8k # 0 holds on S(8D(t),U). Hence ¥ is strongly g-subharmonic on each Y (2) for
z € U(t) if B is sufficiently large. We fix such a positive constant B.

Let b € (0, 00) be a number such that h does not have critical points on D(b, ).
Let p be any point of G(b,t). Let I(p) C T,°Y ((moo)(p)) be the 1-dimensional com-
plex subspace containing (1, 0)-part of the normal vector of the level surface {h(p) =
s} in Xy for s € [b,t). We put an (m + 1)-dimensional complex subspace H(p) :=
T;°Z(p)®l(p) C TZ}.’OG(t). Then we have /—190¥ > /—100u++/—100(A Y |(7o
0)|?) + vV—=188(B) on T}*G(t). Let 7(p) = (11(p), - - -, Tm+1(p)) be a normal ba-
sis of H(p) with respect to g satisfying that span(ri(p),:--,7m(p))c = Tp"°Z(p)
,8pan{Tmy1(p))c = I(p) for p € G(b,t) and 7; are continuous sections in T**G(b, 1)

fori=1,---,m+ 1. Then we have

0 ... 0 b
(t—h)
v-100p=:1 ¢ g by
(t—h)
3]~ -b-lg bo bm-l-l

(t—=h) " (t—h) (t=h)> = (t—h)
as the matrix representation with respect to 7, where by is a continuous function
such that there is a constant ag > 0 satisfying that bo(p) > ao for aﬂy p € G(b,t) and
b; are bounded functions on G(b,t) fori =1,-- .,m+1. We put V—180(AY |(mo
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0)|?) =: A(cij)1<ij<m+1 With respect to 7, where c;; are bounded functions on
G(b,t). We put C; := (ij)1<i,j<m- Then there is a constant a; > 0 satisfying that
C1 > a1l on G(b,t) ,where I, (p) denotes the identity matrix, since (7o0)(Z(p)) =
U holds for p € )?U. We set +/—100B% =: (dij)1<i,j<m+1 With respect to T, where
d;; are bounded functions on G(b,t). We put C, := (dij)1<i,j<m- Each element of
Cy and C; is bounded on G(b,t). So we have ACi(p) + Cy(p) > 0 for p € G(b,t)
if A is sufficiently large. M denotes the matrix representation of the hermitian
form /—~100u + +/=188(AY" |(7 0 0)|?) + /—100BF with respect to 7. Then we
have [M] = e {B0A™IChl + @t (4)) + 22 Qun(4) + Qg (4) where Qi(4)
denotes the i—degree polynomial with respect to A whose coefficients are bounded
functions on G(b,t). Let {g¢; € G(t)} be a sequence such that {g;} converges to
a point go € S(8D(t),U(¢)). Then we have |M(g;)] — +o0 as i — +oo if A is
sufficiently large. Hence thereis a constant c € (b,t) and a sufficiently large constant
A satisfying that |M(p)| > 0 for any p € G(c,t). Then we have /—180¥(p) > 0 on
H(p) for any p € G(c,t) if A is sufficiently large. We fix such a constant A =: A;.

Let d € (c,t) be a number. ¥ is strongly g-subharmonic on each Y (2)
for any z € U(t) on G(t). Hence there is an 1-dimensional complex subspace
i(p) Ty Y ((7 o o)(p)) satisfying that 65W|Z(p) > 0 for p € G(t). Let p be
any point of G(t) \ G(c,t). Let {(21,* ) Zm, Wnt1," *, Wnym), Up} be a local co-
ordinate around p € G such that (z:(g), -, zm(q)) € C™ is a coordinate of
(roo)(q) € T for ¢ € T. We put an (m + 1)-dimensional complex subspace
H(p) := span(g‘Z—l(p), . 6zm (p))e @ i(p) C T;°G(d). Then we have 85%(p) > 0
on H(p) for p € G(d) if A is sufficiently large. Indeed followings holds. Let
#p) = (1(p), -+, "m+1(p)) be a normal basis of H (p) with respect to g satisfying
that span(#1(p), -, Tm(p))c = span{z2-(p), - -, 532=(P))c ,span(Fm41(p))c = i(p)
and 7; are continuous sections in T1:°G(d) for i = 1,---,m 4+ 1. Then we have
v—100u =: (Bij)ISi,jSm-{-l with respect to 7, where 3,- are bounded functions on

G(d). We put /—190(AY |[(moo)|?) =: A (001

is a constant ap > 0 satisfying that C; > ayl,, since span(f(p),---,%m(p))c =

8) with respect to 7. Then there
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span{z2-(p), -, 52— (p))c holds. We set v=180B% =: (dij)1<ij<m+1 With re-
spect to 7, where ti,-j are bounded functions on G(d). We put Co = (Bij)lgi,jSm
and C := (dij)1<ij<m. Then we have AC; (p) + Co(p) + C2(p) > 0 for p € G(d) if
A is sufficiently large. M denotes the matrix representation of the hermitian form
V=180p + v/=188(A Y. |(7 0 0)|?) + /=189 B with respect to #. Then we have
IM| = (bmt1 + dmy1ms1)|AC1| + Qm_1(A) ,where Q,,_1(A) denotes the (m — 1)-
degree polynomial with respect to A whose coefficients are bounded functions on
G(d). There is a constant a3 > 0 satisfying that 5m+1'(p) + tim+1m+1 (p) > a3 for
p € G(d) since \/—_18-5\Ifli(p)‘> 0 holds for p € G(t). Hence we have | M (p)| > 0 if A
is sufficiently large. Then we have 4/—180¥(p) > 0 on H(p) for p € G(d) if A is sui-
ficiently large.We fix such a constant A =: A;. We put A := max{4;,A2}. In view
of minimum-maximum principle(cf :[C-H]), ¥ is a strongly n—-convex exhaustion

function on G = §(D(t), U(t)) for constants A, B.

Case 2: Let t € (0,00) be a critical value of h. Let y € X, be a critical value
of h such that h(y) = t. Then there is a neighborhood Wj C X of y satisfying
followings: (i) ?|§(ﬁ;j,u) is a holomorphic retraction (ii) R is strongly n—convex on
S(W;,U)Nn X, for z € U. We put R(y) := S(W;,U)NG(¢).

Let {p; € Y(z)} be a sequence of points such that {p;} converges to py € 5(y, 2)

as ¢ — oo for z € U(t). Then we have

Dgitly (z)(pi)> Tmceg,r:l(m>

(p;) — o0 as ¢ — oo by the defi-
c—h~ Y(z)

nition of the hermitian metric ¢ on Xy. Hence Dgply ((roo)(p)) is bounded from
below on G(t). So ¥ is strongly g-subharmonic on each Y(z) for z € U(t) if B is

sufficiently large. We fix such a positive constant B.

Let p be any point of R(y). Then there is an 1-dimensional complex subspace
*(p) € Tp°Y((m o 0)(p)) satisfying that 90F|;-,) > 0. We put an (m + 1)-
dimensional complex subspace H*(p) := T,°Z(p) @ I*(p) C TE°G(t). Let 7*(p) =

(17 (p), -+, Toy1(p)) be a normal basis of H*(p) with respect to g satisfying that
span(r(p), -+, T ())c = THZ(p) ,spon(mh 1 (p))c = I*(p) for p € R(y) and 7}

are continuous sections in T°R(y) for ¢ = 1,---,m + 1. Then we have



133

0 0 0
V=180p =: 0 A 6 6
0 ... 0 —to_ 4 bmy

(=R " (t—R)

with respect to 7%, where bj is a positive continuous function and b,y is a con-
tinuous functions such that there is a constant a4 > 0 satisfying that b}, ., (p) > a4
for p € R(y). Indeed 7 is a holomorphic retraction from S (Wj,U ) to W,-. We
put /=109(A Y |(7 0 0)|?) =: A(c};)1<ij<mt1 sWhere cf; are bounded functions
on R(y). we put C} := (c};)1<ij,<m- Then there is a constant a5 > 0 satisfying
that C} > asI,, on G(b,t). We set /—180B =: (d};)1<i,j<m+1 With respect to 7,
where d}; are bounded functions on R(y). We put C; := (d};)1<i,j<m. Then we have
ACT+C3 > 0 for p € R(y) if Ais sufficiently large. M* denotes the matrix represen-
tation of the hermitian form \/:_1-3—8-#+ V-1 65(A > |(wo0)|?)++/—108 B with re-
spect to 7*. Then we have |[M*| = {(t T —I——'t— (A™|CH|+Qf_1(A)) + Q%41 (4)
;where Q*(A) denotes the i—degree polynomlal w1th respect to A whose coefficients

are bounded functions on R(y). Let {g; € G(t)} be a sequence such that {g;}

converges to a point gy € g(y,-(—]-(T)) We have |M(g;)] — +o0 as i — +oo if
A is sufficiently largé. Hence there is a neighborhood WJ’-* C X, of y satisfying
that W;‘ C W; and |[M*(p)| > 0 for any p € g(ﬁ;,[]) N G(t). Then we find
V=100%(p) > v~1{00u(p) + 00(A 3 |(m 0 0)(p)[*) + 60BF(p)} > 0 on H(p) for
any p € S(W ( *,U) N G(t) if A is sufficiently large.We fix such a constant A =: A3.
Let p be any point of G(t)\ S (W]’-", U). Then we find that there is a sufficently
large constants A4 and an (m + 1)-dimensional complex subspace H(p) C Ta*G(t)
satisfying that +/—108¥(p) > 0 on H(p) by the same argument in Case 1. We put
A = max{As, As}. Then ¥(p) is a strongly n—convex exhaustion function on G(t)

for constants A, B.Thus we have Proposition3.5.

4. Construction of an exhaustion sequence of n—Runge pairs on Xy

Letm: X —T,0: X — X be as above. We have fixed C°°—maps S , 7 and
{Wj C Xo}jeN as in Theorem?2.3 with respect to m , 0 and U = {z € C||z| < 1}
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by altering the coorninate of T if necessary. Let h : Xo — [0,00) be a Morse
exhaustion function satisfying Proposition3.4. We set G(t) := S(D(t),U(t)) for
t € (0,00). {G(t)[t € (0,00)} is a proper increasing continuous family of Xy

satisfying that Xy = |J G(t). Hence we have our claim from Theorem of
. t€(0,00)
Docquier-Grauert and Proposition3.5 for n = 1 (cf:[D-G],[Oh2]). In this section

we will show that our claim holds even if n > 1.

(1) Runge pairs of the family of relatively compact domains

Let s € (1,00) be any constant. We consider the family {G(¢)} on the finite
interval I := {t € [1,s]}. Let & be a bounded function on G(s) such that { is
strongly g-subharmonic on each n~dimensional complex submanifold G(s) N X, at
z € U(s) in Proposition3.3.

We set 1.(p) := —log(t — (ho7)(p)), ve(p) := —log(1 + exp(—t) — |(w 0 0)(p)[2)
and W[t](p) := pe(p) + 1(p) + Al(r 0 )(B)? + BEp) for t € [1,5] and p € G(1),

where A and B are positive constants.Then we have the following.

Proposition4.1. There are large constants A, B such that ¥[t] is a strongly n—

convex exhasution function on G(t) for t € I,where A, B are independent of t € I.

Proof: { is bounded and {G(t)} is a continuous family. Hence we have such

constants A, B in the same way to Proposition3.5.

We may assume that inf {A |(7 o 0)(p)|? + B@(p)} = 0 for any ¢t € I by

PEG(?)
the construction of . We put a := sup {A|(7o0)(p)|> + B&(p)} and 8 :=
tel,peG(t)
inf , . Then the following holds.
verdp {#4(P), ve(p)}. Then the following holds

Lemma4.2. (1)Leta € [1,s) be a constant and § be a positive number. Then there
is a constant b € (a, s] and a positive number ¢ satisfying the following conditions:
(i) N := {p € G(O)|m(p) > —loge or vs(p) > —loge} D G(b) \ G(a) (ii) € <
iexp(B—a)-6% (2) Let @ € [1,5) , b € (a,5) , &€ >0, 6 > 0 be constants
satisfying conditions of (1). Then there is a constant C € R satisfying that G(a)
contains L := {p € G(b)|¥[b](p) < C} and L contains M* := {p € G(b)|us(p) <

—log §,m(p) < —log §}.
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Proof : (1)We put d(u) := inf{max{p.(p),v.(p)}|p € G(u) \ G(a)} for u €
(t,00).Then we have d(u) — +oco as u — t. Hence such constants b, ¢ exist.

(2) By the conditions of a,b,¢,§ we have the following.
6 *
U[b)(p) < —2log 5+ A on M (%)
On the other hand we have the following.
Ub)(p) > —loge+a on N (%%)

We put C := —2log £ + A and L := {p € G(b)|¥[b](p) < C}. Then we find that
L contains M* by (x). Moreover L and N do not have intersections by (x), (¥*)
and the condition (ii). Hence G(b) \ G(a) and L do not have intersections. So G(a)

contains L. Thus we have Lemma4.2.

By using the argument of Lemma4.2 we can interpolate between G(u) and G(v)

for u,v € (1, s) by a part of an exhaustion sequence of n—Runge pairs as following.

Proposition 4.3. Let § be a positive number. Let u,v € (1,s) be constants with
u < v. Then there is a number J € N ,a sequence of numbers {t(0) < t(1) < --- <
t(J)[t(0) = u,t(J) = v}, a positive constant C satisfying that G(t(j)) contains
L() = {p € G(t( + V)ITEG + D)(p) < C} and L(§) contains M*(j) = {p €

G(t(5 + 1) |ei+1)(p) < —log %th(j+1)(P) < —log —3-} for0<j<J.

Proof: For t € [1,s), we put

e*(t) := sup{O < p < 3exp(f — )8?| there is u € (2, 00) such that N(u,p) D
- G(u) \ G(t)} , where we put N(u,p) := {p € G(u)|pu(p) > —logp or v,(p) >
—log p} for u € (t,00) and p € (0,00). Then we have £*(t) > 0 for t € [1,s) by
Lemma4.2(1). €*(¢) is continuous on [1, s) since {G(t)} is a continuous family. We
put € := tg[lifi;]{e*(t)}' Then there is a sequence {t(0) < ¢(1) < --- < t(J)[t(0) =
u,t(J) = v} such that ¢ < exp(a — A) - 6% holds and N; := {p € G(t(j +
1))| e 41)(p) > —loge or vyji1)(p) > —loge} contains G(t(j + 1)) \ G(t(j)) for
0 < j < J by the construction of &. We set C := —2log$ + A, a := t(j) and
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b:=1t(j+1)for 0 <j < J. Then we apply Lemma,4.2(2_). We set L(j) := L and
M*(j) := M for a = t(j),b = t(j+1) in Lemma4.2(2). Then we have Proposition4.3.
(2) Proof of Theorem

Let {s; € (1,00)|¢ € N} be an increasing sequence of numbers which diverges
to +o0co. We put so = 1. By Proposition3.3,there is a bounded function @; on G(s;)
for i € N such that @; is strongly g—subharmonic on each n-dimensional complex

submanifold G(s;) N X, for z € U(s;).

Let p1:(p),v¢(p) be as above for t € (0,00). We put ¥;[t](p) := pe(p) + v4(p) +
A;|(m o a)(p)|? + B;piy1(p) ;where A;, B; are positive constants. .\Ili[t] is a strongly
n—conirex exhaustion function on G (t) for any t € [1, s;41] by Proposition4.1 if A;, B;
are sufficiently large. We may assume  inf ){A,-|(7r 00)(p)|? + B:pit1(p)} = 0.

PEG(sit1
Let {6; > 0};ecn be a decreasing sequence of positive numbers.

We put v = s;,_1,v = s;,6 = §; and apply Proposition4.3.Then we have J; :=
J €N, Ci:=C e R, {i(3,5)} == {t(y) € [si-1,si][t(7) <t(7+1),4(0) = s8;1,t(J) =
s:}, L(3,§) := L(§), M*(i,§) = M*(j) C Xy satisfying that (i) G(¢(i, 7)) D L(i, ):=
{p € G(¢(5, 5 + 1)t 5 + DI(p) < Ci} (i) L(3,5) > M*(3,5) := {p € G(t(i,j +
)i i+1)(p) < —log %i,ut(i,j+1)(p) < —log %—} fori e N,0<j < J;.

We put k = k(i,7) = l§Ja+j+1fori€ N,O0 §j>< J;. We set Gy =
G, 7)), Uy := Wift(i, )] and Ly = L(t(i, ), M* := M(t(i, §)). Then {(Ge, ¥2)}
is an exhaustion sequence of n—-Runge pairs on Xy. Indeed followings hold. Ly is the
sublevel set of Gxy1 and Gy D My D Ly holds for any k € N. Let {M} C M} }ren
be an increasing sequence of subsets of Xy satisfying that M} is a compact subset
of Ly such that M; contains M;_, for any k € N , where we put My = ¢. Then
we have Xy = U My since {§; > 0} is a decreasing sequence. M} is a compact
subset of L anéc ELI\:, is the sublevel set of G4 which is contained in Gy, for k € N.
Hence we have H(Xy, F ) = 0 if 7 > n for any coherent analytic sheaf F over Xy
from Proposition 1.2.
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