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ROBIN FUNCTIONS FOR COMPLEX MANIFOLDS AND APPLICATIONS

Norman Levenberg and Hiroshi Yamaguchi

0. Introduction. In [Y] and later in [LY] the problem of the second variation of the Robin function for
a smooth variation of domains in C” for n > 2 was studied. Precisely, let D = Usep(t, D(t)) C B x C"
be a variation of domains D(t) in C" each containing a fixed point 2o and with dD(t) of class C* for
teB:={teC:|t|<p}. Welet g(t,z)fort€ Band z € D(t) be the R?"-Green function for the domam
D(t) with pole at zo; i.e., g(t, z) is harmonic in D(t)\ {20}, 9(2, 2) = 0 for z € D(t), and g(t,2) - "———nm

is harmonic near z5. We call )
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where ¥(t, z) is a defining function for D, is the so-called Levi-curvature of 6’D at (t z); the numerator is
the sum of the Levi-form of 3 applied to the n complex tangent vectors (— 52, 0,0, 3'{’-, 0,...). In particular,
if D is pseudoconvex (strictly pseudoconvex) at a point (¢,z) with z € (?D(t), it follows that ko(t,2) >
0 (k2(t,2) > 0) so that —A(t) is subharmonic in B. Given D a bounded domain in C", we let A(z) be
the Robin constant for (D, z). If we fix a point {; € D, for p > 0 sufficiently small and a € C", the disk
{¢ =¢Co+at, |t] < p} := (o + aB is contained in D. Under the biholomorphic mapping T'(¢, z) = (t z — at)
of B x D, we get the variation of domains D = T(B x D) where each domain D(t) := T(t,D) = D — at
contains (o. Letting A(t) = A({o + at) denote the Robin constant for (D(t),{o) and using (1) yields part of
the following result, which was proved in [Y] and [LY].

Theorem. Let D be a bounded pseudoconvex domain in C* with C? boundary. Then log( A(2)) and
—A(2) are real-analytic, strictly plurisubharmonic exhaustion functions for D.

In this note, we study a generalization of the second variation formula (1) to complex manifolds. We
use our new formula to develop a “rigidity lemma” which allows us to construct, in certain cases, strictly
plurisubharmonic exhaustion functions for Levi-pseudoconvex subdomains D of complex manifolds; i.e., we
use the Robin function to verify that D is Stein. We remark that when we use the term pseudoconvex in
describing certain complex manifolds or domains in complex manifolds, we always mean Levi-pseudoconvex.

1. The variation formula. Our general set-up is this: let M be an n—dimensional complex manifold
(compact or not) equipped with a Hermitian metric '

=, Z 9,39%2 ® dzp
a,b=1

and let w := i), ,_; 9,5d7a A dZy be the associated (real) (1,1)—form. As in the introduction, we take
n > 2. We write g"" (9,5)"* for the elements of the inverse matrix to (g,3). Given the standard operators
*,0,0,d =0+ 0,6 := — * 0%, we get the Laplacian operator

A=60+085+60+0858
which, in local coordinates acting on functions has the form
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where G := det(g,;). We remark that if ds? is Kahler, i.e., if dw = 0, then Au = —2 Za b=1 gt a::az.
Given a nonnegative C™ function ¢ = ¢(z) on M, we call a C* function u on an open set D C M
c—harmonicon D if Au+cu = 0 on D. In particular, if we fix a point pg € M and a coordinate neighborhood

U of po, we can find a c—harmonic function Qg in U \ {po} satisfying

lim —9o@
p—po d(p, po)?"~2

where d(p,po) is the geodesic distance (with respect to the metric ds?) between p and po. We call Qo a
fundamental solution for A and ¢ at pg. Fixing po in a smoothly bounded domain D CC M and fixing a
fundamental solution Qg, the c— Green function g for (D, py) is the c—harmonic function in D\ {po} satisfying
g = 0 on 8D (g is continuous up to 8D) and g(p) — Qo(p) is regular at py. We note that, provided ¢ # 0,
the c—Green function always exists (cf. [NS]) and is nonnegative on D. Then

= lim [9(p) ~ Qo(p)]

is called the c— Robin constant for (D, py).

Now let D = Useg(t, D(t)) C B X M be a variation of domains D(t) in M each containing a fixed point
po and with 8D(t) of class C™ for t € B. Let g(t, z) be the c—Green function for (D(t),po) and A(t) the
corresponding c—Robin constant.

We have
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where ||f Iﬁ)(t) = /| D(t) fAxf >0, do, is the area element on D(t) with respect to the Hermitian metric,
and

ko(t,2) :=
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¥(t, z) being a defining function for D.

Note that if D is pseudoconvex at a point (t,z) € D with z € dD(t), then ka(t,z) > 0. This follows
since we can always choose local coordinates near a point z € M so that g z(z) = 64s. A simple calculation
shows that 8 * w = 0 if ds? is a Kahler metric; hence we have the following result.

Corollary 1.1. Suppose that ds? is a Kahler metric on M. Then

) 9 a ,
o= [ bl 9 L a0, 1B R o + IV} (1)

a,b=1

In particular, if D is pseudoconvex in B x M, then —\(t) is subharmonic on B.

Remark 1. Formula (1’) is valid under the weaker assumption that the complez torsion of the metric g 3
vanishes. We do not discuss this notion here. Note that (1’) reduces to (1) if g,; = 855 and ¢ = 0.

We consider the same situation as in the corollary. From the variation formula (1') and continuity of
g(t,z) up to AD(t), we get the following result.
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Lemma 1.2 (rigidity). Assume D is pseudoconvex in B x M, ds? is a Kahler metric on M and that there

exists to € B such that g%;(to) = 0. If e(z) £ 0 on D(to), then

0 —_
—6%(1:0,2) =0 on D(to).

Remark 2. The same conclusion is valid if we assume that dD(2o) has one strictly pseudoconvex boundary
point (instead of (or in addition to) assuming ¢(z) # 0 on D(¢;)). However, the importance of the above
formulation of the rigidity lemma is that, as we will see below, the function ¢ gives us extra flexibility in
order to deduce strict pseudonvexity in certain cases.

2. Complex Lie groups. We apply the rigidity lemma to the study of complex Lie groups. Let M be
a complex Lie group of complex dimension n with identity e equipped with a Kahler metric ds? and let
¢ = ¢(z) be a nonnegative C* function on M. Let D C M be a domain in M with smooth boundary. For
z €D, let

D(z):={wz"'eD:weD}=D.z"!

be right-translation (multiplication) of D by z=!. Note that D(z) is a smoothly bounded domain in M which
contains e if z € D; if D and hence D(z) is unbounded, the c—Green function for (D(z), e) can be defined as a
limit of c—Green functions for (Di(z),e) where {Dy(z)} are bounded domains with Dy (z) CC Di41(2) and
UDg(z) = D(z). Let A(z) denote the c—Robin constant for (D(z),e) (we assume, apriori, that a fundamental
solution Qg for A and c at e is fixed). Our first main result is the following.

Theorem 2.1. Suppose D CC M is pseudoconvex. Then
1. —A(2) is a plurisubharmonic exhaustion function for D;
2. if ¢ > 0, then —A(z) is a strictly plurisubharmonic exhaustion function for D if and only if D is Stein;

indeed, if the complex Hessian matrix [%—%\S(C)] has a zero eigenvalue with (geometric) multiplicity k > 1

at some point ( € D, than the complex Hessian matrix of any plurisubharmonic exhaustion function s(z)
for D has a zero eigenvalue with (geometric) multiplicity at least k at each point z € D.

We will sketch the proof of Theorem 2.1. First we remark that there exist n linearly independent left-
invariant holomorphic vector fields Xj,..., X, such that ExptX;, j = 1,...,n form local coordinates in a
neighborhood V of the identity e € M; then (ExptX;, j = 1,...,n form local coordinates in a neighborhood
¢V of ( € M. If we fix a direction vector o and consider the complex disk ¢ — ¢ + ot for small |t], we
can assume that (ExptX; = ( + at; for simplicity, we write X := X;. This suggests, as in the variation
of domains case described in the introduction, how to set up a variation of domains in the setting of the
complex Lie group M. We note, for future use, that ¢ — 2ExptX is the unique integral curve to X taking
the value z € M for t = 0.

We now let ¢ be a fixed point in D and choose B = {t € C : [t| < p} with p sufficiently small so that

n:=(ExptX =(+at €D forall te B. (2)

Let T: Bx M — B x M via T(t,2) = (t, F(t,2)) := (t,w) where w = F(t, z) := 2((ExptX)~!. Then D :=
T(B x D) defines a variation of domains D(t) := F(t, D) = {z(CExptX)~"! € M : 2 € D} = D - ((ExptX)~1.

Let g(t,w) be the c—Green function for (D(t),e) and let A(t) := A((ExptX) for t € B; this is the
c—Robin constant for (D(t),e) (note e € D(t) if t € B by (2)). Then

n 82(—[\) e 62(__A) _ 82(_/\)
j,§=:1 3njam-(6)agak = Bt (CExptX)|i=o = W(O) 3)

The plurisubharmonicity of —A(z) now follows from Corollary 1.1 and the fact that D := T(B x D) is the
biholomorphic image of the pseudoconvex set B x D; indeed, for each t € B, the function z = o(t,w) =
(#1(2,w), ..., $u(t, w)) := w¢ExptX = F~1(t,w) is the well-defined holomorphic inverse map of z — w =
F(t,z) for all w € M. Standard arguments show that A(z) — —oo as z — 2’ € D which proves 1. of the
theorem.
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- We will prove 2. in the case where k = 1; here, we use the assumption that ¢ > 0 and apply the rigidity
lemma. The key observation is the following.

Claim: Suppose that ataz(o)
a. z€ D (resp. 8D, D°) Jfand only if zExptX € D (resp. 3D, D°) for all t € C;
b. D-27' = D.(2ExptX)~! (resp. 8D, D°) for all t € C and for each z € M.

To prove the claim, we apply the rigidity lemma to show that the left-invariant holomorphic vector field
X is a non-vanishing holomorphic vector field on M satisfying the property that any integral curve 2(t) of
X with initial value X (20) for zo = z(0) € D remains in D for allt € C. This is one implication in part
a. of the claim for 4D.

Recall that z = ¢(t,w) = (#1(t, w), ..., ¢n(t, w)) := w(ExptX = F~1(t,w) for all w € M. Let t — §(t,¢)
be the (moving) image under ¢ of the identity element. Note that if ds?(z) denotes the pull-back of the
metric ds?(w) under F(t,z), then the Green functlon G(t,z) for D with pole at ¢(t,e¢) (w1th respect to
ds?(z)) equals g(t,w). The assumption that 22 (0) = 0 yields, by the rigidity lemma, 5{-(0 w) = 0 for
w € D(0); this becomes

Btat

8¢a

% 0. +Z 290,520, 70, + 220, %e(0, Pi0, 21 =

for z € D. But %(0 F(O z)) = O since ¢(¢,w) = (¢1(t, w), ..., #n(t, w)) is holomorphic in ¢; and 2< (0 2)=0
for z € 0D since G(t z)=0for z€ 0D and t € B. Thus

0G 0¢a

=laZ( 2)—5; (0.F(0,2)) = (4)

for z € 8D. Since ¢(t,w) is defined for all w € M, the vector field

Y(2) :-23¢°(o FO,2)5—

is a globally defined (on M) non-vanishing holomorphic vector field; using the fact that

(27G1(0’ Z), sy -g—g(o, z))

is a (complex) normal vector to 9D at z, it can be shown that (4) implies that any integral curve z(t) of
Y with initial value Y(zo) for zo = 2(0) € 8D remains in 8D for all t € C. Thus, to verify the italicised
statement, it suffices to show that Y = X.

Since X is left-invariant, if X(z) = 3 ,_; na%, then [%(zExth)a]h:o = n(z), a =1,...,n. But for
w= zc—ly

a¢a 8¢a

20, (0, 7)) = 292(0,u) = [0 (wCBxptX)allizo = 1a(w) = a(2),

which gives the 1'esu1t.

The proof of the claim is now immediate. For example, to establish a. for dD; i.e., to show z € 8D if
and only if zExptX € 8D for all t € C, the “only if” direction has already been proved. Suppose now that
2ExptX € 8D for all t € C. Since

z = 2(Expt X )(Exp(—tX)) := 2'Exp(~tX)

where 2/ = zExptX € 0D, the previous argument shows that 2 € 8D. Since D is a smooth, closed
(2n — 1)-dimensional real hypersurface in M, the analogous results for D and D’ follow from uniqueness
of the integral curve ¢ — zExptX. Similarly we prove b. only for 8D. Let z; € 8D and z € M. Since
21ExptX € 9D for all t € C from a. of the claim, the equation

21271 = 2;(Expt X )(Exp(—t X))z~ = 2;(ExptX)(zExpt X )~!
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yields b. of the claim. iy
We can now finish the proof of 2. of the theorem. For a point {( € D, let ai(¢), i = 1,...,n denote

the eigenvalues of [%%%‘3(( )] at . To prove 2. in the case k = 1, we suppose there exists a point { € D

with a;(¢) = 0; without loss of generality, we can assume that (ExptX; = ¢ + ot gives the direction of the
corresponding eigenvector; i.e.,
TN (¢ 4 at)limo =0 (5)
, atot =o T
Taking X = X, in the previous claim, Dy(t) := D - ((ExptX1)~! and Ai(t) := A((ExptX,), (5) becomes
%(0) = 0. Then the integral curve t — 2ExptX;, t € C, satisfies the conditions of the claim. In
particular, if z € D, then D -2z~ = D - (zExptX;)~! for all t € C which implies that

A(zExptX;) = A(z) for all t € C.

But —A is an exhaustion function for D; hence the image C, of the integral curve t — zExptX;, t € C

is compactly contained in D and —A is constant on C,. In particular, —A is harmonic on C, for each
z € Djie., [%B—QB(Z)] has a zero eigenvalue a;(z) for each z € D. But then if s is any plurisubharmonic
exhaustion funétion for D, s is also subharmonic and entire on each complex curve C, and hence constant
(and harmonic) on this curve, which implies that [E%(z)] has a zero eigenvalue for each z € D. In

particular, D is not Stein.

Remark 3. Note that if M is a Stein manifold, then each pseudoconvex D CC M is Stein; this occurs, for
example, if M is a simply connected solvable Lie group or if M is connected and semi-simple (cf. [GR]).

3. Complex homogeneous spaces. In this section, we let M be a complex space with the property
that there exists a complex Lie group G CAutM of complex dimension n which acts transitively on M. As
prototypical examples, we can take M = PV = complex projective space, or, more generally, we can take
M =G(k,N) = complex Grassmann manifold (and G =AutM). Let D CC M be a domain with smooth
boundary. For z € M, we let
D(z) :={g € G : g(z) € D}

be a (possibly unbounded) domain in G. Note that if z € D, then the identity element e of G lies in D(z).
Thus if we let ds? be a Kahler metric on G and let ¢ be a nonnegative smooth function on G, we can form
the c—Robin constant A(z) for (D(z), €) (recall that the c—Green function is defined by the usual exhaustion
method for unbounded domains). Using the ideas and techniques from the previous section, we can prove
the following result.

Theorem 3.1. Suppose D is pseudoconvex in M. Then for z € D, D(z) is pseudoconvex in G and —A(2)
is a plurisubharmonic exhaustion function for D. Furthermore, if ¢ >0 in G and G is doubly transitive on
M, then —X\(z) is strictly plurisubharmonic; i.e., D is Stein.

Recall that G is doubly transitive on M if for pairs of points (a,b), (¢,d) € M, there exists g € G with
g(a) = ¢ and g(b) = d. This is equivalent to the three point property of (M, G): for each triple of points
a,b,c € M, there exists g € G with g(a) = a and g(b) = c. Details of the proof of Theorem 3.1 will be given
elsewhere.
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