ROBIN FUNCTIONS FOR COMPLEX MANIFOLDS AND APPLICATIONS

Norman Levenberg and Hiroshi Yamaguchi

0. Introduction. In [Y] and later in [LY] the problem of the second variation of the Robin function for a smooth variation of domains in \mathbb{C}^n for $n \geq 2$ was studied. Precisely, let $\mathcal{D} = \bigcup_{t \in B} (t, D(t)) \subset B \times \mathbb{C}^n$ be a variation of domains D(t) in \mathbb{C}^n each containing a fixed point z_0 and with $\partial D(t)$ of class C^{∞} for $t \in B := \{t \in \mathbb{C} : |t| < \rho\}$. We let g(t, z) for $t \in B$ and $z \in \overline{D(t)}$ be the \mathbb{R}^{2n} -Green function for the domain D(t) with pole at z_0 ; i.e., g(t, z) is harmonic in $D(t) \setminus \{z_0\}$, g(t, z) = 0 for $z \in \partial D(t)$, and $g(t, z) - \frac{1}{||z-z_0||^{2n-2}}$ is harmonic near z_0 . We call

$$\lambda(t) := \lim_{z \to z_0} \left[g(t, z) - \frac{1}{||z - z_0||^{2n - 2}} \right]$$

the Robin constant for $(D(t), z_0)$. Then

$$\frac{\partial^2 \lambda}{\partial t \partial \overline{t}}(t) = -c_n \int_{\partial D(t)} k_2(t, z) ||\nabla_z g||^2 d\sigma_z - 4c_n \int \int_{D(t)} \sum_{a=1}^n |\frac{\partial^2 g}{\partial t \partial \overline{z}_a}|^2 dV_z. \tag{1}$$

Here, c_n is a positive dimensional constant and

$$k_2(t,z) := ||
abla_z \psi||^{-3} ig[rac{\partial^2 \psi}{\partial t \partial \overline{t}} ||
abla_z \psi||^2 - 2 \Re ig\{ rac{\partial \psi}{\partial t} \sum_{a=1}^n rac{\partial \psi}{\partial \overline{z}_a} rac{\partial^2 \psi}{\partial \overline{t} \partial z_a} ig\} + |rac{\partial \psi}{\partial t}|^2 \Delta_z \psi ig],$$

where $\psi(t,z)$ is a defining function for \mathcal{D} , is the so-called Levi-curvature of $\partial \mathcal{D}$ at (t,z); the numerator is the sum of the Levi-form of ψ applied to the n complex tangent vectors $(-\frac{\partial \psi}{\partial z_j}, 0, ..., \frac{\partial \psi}{\partial t}, 0, ...)$. In particular, if \mathcal{D} is pseudoconvex (strictly pseudoconvex) at a point (t,z) with $z \in \partial D(t)$, it follows that $k_2(t,z) \geq 0$ ($k_2(t,z) > 0$) so that $-\lambda(t)$ is subharmonic in B. Given D a bounded domain in \mathbb{C}^n , we let $\Lambda(z)$ be the Robin constant for (D,z). If we fix a point $\zeta_0 \in D$, for $\rho > 0$ sufficiently small and $a \in \mathbb{C}^n$, the disk $\{\zeta = \zeta_0 + at, |t| < \rho\} := \zeta_0 + aB$ is contained in D. Under the biholomorphic mapping T(t,z) = (t,z-at) of $B \times D$, we get the variation of domains $\mathcal{D} = T(B \times D)$ where each domain D(t) := T(t,D) = D - at contains ζ_0 . Letting $\lambda(t) = \Lambda(\zeta_0 + at)$ denote the Robin constant for $(D(t), \zeta_0)$ and using (1) yields part of the following result, which was proved in [Y] and [LY].

Theorem. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with C^2 boundary. Then $\log(-\Lambda(z))$ and $-\Lambda(z)$ are real-analytic, strictly plurisubharmonic exhaustion functions for D.

In this note, we study a generalization of the second variation formula (1) to complex manifolds. We use our new formula to develop a "rigidity lemma" which allows us to construct, in certain cases, strictly plurisubharmonic exhaustion functions for Levi-pseudoconvex subdomains D of complex manifolds; i.e., we use the Robin function to verify that D is Stein. We remark that when we use the term pseudoconvex in describing certain complex manifolds or domains in complex manifolds, we always mean Levi-pseudoconvex.

1. The variation formula. Our general set-up is this: let M be an n-dimensional complex manifold (compact or not) equipped with a Hermitian metric

$$ds^2 = \sum_{a,b=1}^n g_{a\overline{b}} dz_a \otimes d\overline{z}_b$$

and let $\omega := i \sum_{a,b=1}^{n} g_{a\overline{b}} dz_a \wedge d\overline{z}_b$ be the associated (real) (1,1)-form. As in the introduction, we take $n \geq 2$. We write $g^{\overline{a}b} := (g_{a\overline{b}})^{-1}$ for the elements of the inverse matrix to $(g_{a\overline{b}})$. Given the standard operators $*, \partial, \overline{\partial}, d = \partial + \overline{\partial}, \delta := - * \partial *$, we get the Laplacian operator

$$\Delta = \delta \overline{\partial} + \overline{\partial} \delta + \overline{\delta} \partial + \partial \overline{\delta}$$

which, in local coordinates acting on functions has the form

$$\Delta u = -2\left\{\sum_{a,b=1}^{n} g^{\overline{b}a} \frac{\partial^{2} u}{\partial \overline{z}_{b} \partial z_{a}} + \frac{1}{2} \sum_{a,b=1}^{n} \left(\frac{1}{G} \frac{\partial (Gg^{\overline{b}a})}{\partial z_{a}} \frac{\partial u}{\partial \overline{z}_{b}} + \frac{1}{G} \frac{\partial (Gg^{\overline{a}b})}{\partial \overline{z}_{a}} \frac{\partial u}{\partial z_{b}}\right)\right\}$$

where $G := \det(g_{a\overline{b}})$. We remark that if ds^2 is Kähler, i.e., if $d\omega = 0$, then $\Delta u = -2\sum_{a,b=1}^n g^{\overline{b}a} \frac{\partial^2 u}{\partial \overline{z}_b \partial z_a}$.

Given a nonnegative C^{∞} function c = c(z) on M, we call a C^{∞} function u on an open set $D \subset M$ c-harmonic on D if $\Delta u + cu = 0$ on D. In particular, if we fix a point $p_0 \in M$ and a coordinate neighborhood U of p_0 , we can find a c-harmonic function Q_0 in $U \setminus \{p_0\}$ satisfying

$$\lim_{p \to p_0} \frac{Q_0(p)}{d(p, p_0)^{2n-2}} = 1$$

where $d(p, p_0)$ is the geodesic distance (with respect to the metric ds^2) between p and p_0 . We call Q_0 a fundamental solution for Δ and c at p_0 . Fixing p_0 in a smoothly bounded domain $D \subset M$ and fixing a fundamental solution Q_0 , the c-Green function g for (D, p_0) is the c-harmonic function in $D \setminus \{p_0\}$ satisfying g = 0 on ∂D (g is continuous up to ∂D) and $g(p) - Q_0(p)$ is regular at p_0 . We note that, provided $c \not\equiv 0$, the c-Green function always exists (cf. [NS]) and is nonnegative on D. Then

$$\lambda := \lim_{p \to p_0} [g(p) - Q_0(p)]$$

is called the c-Robin constant for (D, p_0) .

Now let $\mathcal{D} = \bigcup_{t \in B} (t, D(t)) \subset B \times M$ be a variation of domains D(t) in M each containing a fixed point p_0 and with $\partial D(t)$ of class C^{∞} for $t \in B$. Let g(t, z) be the c-Green function for $(D(t), p_0)$ and $\lambda(t)$ the corresponding c-Robin constant.

We have

$$\frac{\partial^2 \lambda}{\partial t \partial \overline{t}}(t) = -c_n \int_{\partial D(t)} k_2(t,z) \sum_{a,b=1}^n (g^{\overline{a}b} \frac{\partial g}{\partial \overline{z}_a} \frac{\partial g}{\partial z_b}) d\sigma_z$$

$$-4c_{n}\big\{||\overline{\partial}\frac{\partial g}{\partial t}||_{D(t)}^{2}+\frac{1}{2}||\sqrt{c}\frac{\partial g}{\partial t}||_{D(t)}^{2}+\int\int_{D(t)}[\Re\{\frac{1}{i}\frac{\partial g}{\partial \overline{t}}\overline{\partial}\frac{\partial g}{\partial t}\wedge\partial\ast\omega\}+\frac{1}{2i}|\frac{\partial g}{\partial t}|^{2}\overline{\partial}\partial\ast\omega]\big\}$$

where $||f||_{D(t)}^2 = \int_{D(t)} f \wedge *\overline{f} \geq 0$, $d\sigma_z$ is the area element on $\partial D(t)$ with respect to the Hermitian metric, and

$$k_2(t,z) :=$$

$$\left[\sum_{a,b=1}^{n} g^{\overline{a}b} \frac{\partial \psi}{\partial \overline{z}_{a}} \frac{\partial \psi}{\partial z_{b}}\right]^{-3/2} \left[\frac{\partial^{2} \psi}{\partial t \partial \overline{t}} \left(\sum_{a,b=1}^{n} g^{\overline{a}b} \frac{\partial \psi}{\partial \overline{z}_{a}} \frac{\partial \psi}{\partial z_{b}}\right) - 2\Re \left\{\frac{\partial \psi}{\partial t} \left(\sum_{a,b=1}^{n} g^{\overline{a}b} \frac{\partial \psi}{\partial \overline{z}_{a}} \frac{\partial^{2} \psi}{\partial z_{b}}\right)\right\} + \left|\frac{\partial \psi}{\partial t}\right|^{2} \left(\sum_{a,b=1}^{n} g^{\overline{a}b} \frac{\partial^{2} \psi}{\partial \overline{z}_{a} \partial z_{b}}\right)\right],$$

 $\psi(t,z)$ being a defining function for \mathcal{D} .

Note that if \mathcal{D} is pseudoconvex at a point $(t,z) \in \partial \mathcal{D}$ with $z \in \partial D(t)$, then $k_2(t,z) \geq 0$. This follows since we can always choose local coordinates near a point $z \in M$ so that $g_{a\overline{b}}(z) = \delta_{ab}$. A simple calculation shows that $\partial *\omega = 0$ if ds^2 is a Kähler metric; hence we have the following result.

Corollary 1.1. Suppose that ds^2 is a Kähler metric on M. Then

$$\frac{\partial^2 \lambda}{\partial t \partial \overline{t}}(t) = -c_n \int_{\partial D(t)} k_2(t, z) \sum_{a, b=1}^n \left(g^{\overline{a}b} \frac{\partial g}{\partial \overline{z}_a} \frac{\partial g}{\partial z_b} \right) d\sigma_z - 4c_n \{ || \overline{\partial} \frac{\partial g}{\partial t} ||_{D(t)}^2 + \frac{1}{2} || \sqrt{c} \frac{\partial g}{\partial t} ||_{D(t)}^2 \}. \tag{1'}$$

In particular, if \mathcal{D} is pseudoconvex in $B \times M$, then $-\lambda(t)$ is subharmonic on B.

Remark 1. Formula (1') is valid under the weaker assumption that the *complex torsion* of the metric $g_{a\bar{b}}$ vanishes. We do not discuss this notion here. Note that (1') reduces to (1) if $g_{a\bar{b}} = \delta_{ab}$ and $c \equiv 0$.

We consider the same situation as in the corollary. From the variation formula (1') and continuity of g(t,z) up to $\partial D(t)$, we get the following result.

Lemma 1.2 (rigidity). Assume \mathcal{D} is pseudoconvex in $B \times M$, ds^2 is a Kähler metric on M and that there exists $t_0 \in B$ such that $\frac{\partial^2 \lambda}{\partial t \partial \bar{t}}(t_0) = 0$. If $c(z) \not\equiv 0$ on $D(t_0)$, then

$$\frac{\partial g}{\partial t}(t_0,z)\equiv 0$$
 on $\overline{D(t_0)}$.

Remark 2. The same conclusion is valid if we assume that $\partial D(t_0)$ has one strictly pseudoconvex boundary point (instead of (or in addition to) assuming $c(z) \not\equiv 0$ on $D(t_0)$). However, the importance of the above formulation of the rigidity lemma is that, as we will see below, the function c gives us extra flexibility in order to deduce strict pseudonvexity in certain cases.

2. Complex Lie groups. We apply the rigidity lemma to the study of complex Lie groups. Let M be a complex Lie group of complex dimension n with identity e equipped with a Kähler metric ds^2 and let c = c(z) be a nonnegative C^{∞} function on M. Let $D \subset M$ be a domain in M with smooth boundary. For $z \in D$, let

$$D(z) := \{wz^{-1} \in D : w \in D\} = D \cdot z^{-1}$$

be right-translation (multiplication) of D by z^{-1} . Note that D(z) is a smoothly bounded domain in M which contains e if $z \in D$; if D and hence D(z) is unbounded, the c-Green function for (D(z), e) can be defined as a limit of c-Green functions for $(D_k(z), e)$ where $\{D_k(z)\}$ are bounded domains with $D_k(z) \subset D_{k+1}(z)$ and $\bigcup D_k(z) = D(z)$. Let $\Lambda(z)$ denote the c-Robin constant for (D(z), e) (we assume, apriori, that a fundamental solution Q_0 for Δ and c at e is fixed). Our first main result is the following.

Theorem 2.1. Suppose $D \subset\subset M$ is pseudoconvex. Then

- 1. $-\Lambda(z)$ is a plurisubharmonic exhaustion function for D;
- 2. if c > 0, then $-\Lambda(z)$ is a strictly plurisubharmonic exhaustion function for D if and only if D is Stein; indeed, if the complex Hessian matrix $\left[\frac{\partial^2(-\Lambda)}{\partial z_j\partial\overline{z}_k}(\zeta)\right]$ has a zero eigenvalue with (geometric) multiplicity $k \geq 1$ at some point $\zeta \in D$, than the complex Hessian matrix of any plurisubharmonic exhaustion function s(z) for D has a zero eigenvalue with (geometric) multiplicity at least k at each point $z \in D$.

We will sketch the proof of Theorem 2.1. First we remark that there exist n linearly independent left-invariant holomorphic vector fields $X_1, ..., X_n$ such that $\operatorname{Exp} t X_j$, j=1,...,n form local coordinates in a neighborhood V of the identity $e \in M$; then $\zeta \operatorname{Exp} t X_j$, j=1,...,n form local coordinates in a neighborhood ζV of $\zeta \in M$. If we fix a direction vector α and consider the complex disk $t \to \zeta + \alpha t$ for small |t|, we can assume that $\zeta \operatorname{Exp} t X_1 = \zeta + \alpha t$; for simplicity, we write $X := X_1$. This suggests, as in the variation of domains case described in the introduction, how to set up a variation of domains in the setting of the complex Lie group M. We note, for future use, that $t \to z \operatorname{Exp} t X$ is the unique integral curve to X taking the value $z \in M$ for t=0.

We now let ζ be a fixed point in D and choose $B = \{t \in \mathbb{C} : |t| < \rho\}$ with ρ sufficiently small so that

$$\eta := \zeta \operatorname{Exp} t X = \zeta + \alpha t \in D \text{ for all } t \in B.$$
 (2)

Let $T: B \times M \to B \times M$ via T(t, z) = (t, F(t, z)) := (t, w) where $w = F(t, z) := z(\zeta \operatorname{Exp} tX)^{-1}$. Then $\mathcal{D} := T(B \times D)$ defines a variation of domains $D(t) := F(t, D) = \{z(\zeta \operatorname{Exp} tX)^{-1} \in M : z \in D\} = D \cdot (\zeta \operatorname{Exp} tX)^{-1}$. Let g(t, w) be the c-Green function for (D(t), e) and let $\lambda(t) := \Lambda(\zeta \operatorname{Exp} tX)$ for $t \in B$; this is the c-Robin constant for (D(t), e) (note $e \in D(t)$ if $t \in B$ by (2)). Then

$$\sum_{j,k=1}^{n} \frac{\partial^{2}(-\Lambda)}{\partial \eta_{j} \partial \overline{\eta}_{k}} (\zeta) \alpha_{j} \overline{\alpha}_{k} = \frac{\partial^{2}(-\Lambda)}{\partial t \partial \overline{t}} (\zeta \operatorname{Exp} t X)|_{t=0} = \frac{\partial^{2}(-\lambda)}{\partial t \partial \overline{t}} (0).$$
 (3)

The plurisubharmonicity of $-\Lambda(z)$ now follows from Corollary 1.1 and the fact that $\mathcal{D}:=T(B\times D)$ is the biholomorphic image of the pseudoconvex set $B\times D$; indeed, for each $t\in B$, the function $z=\phi(t,w)=(\phi_1(t,w),...,\phi_n(t,w)):=w\zeta\operatorname{Exp} tX=F^{-1}(t,w)$ is the well-defined holomorphic inverse map of $z\to w=F(t,z)$ for all $w\in M$. Standard arguments show that $\Lambda(z)\to -\infty$ as $z\to z'\in \partial D$ which proves 1. of the theorem.

We will prove 2. in the case where k = 1; here, we use the assumption that c > 0 and apply the rigidity lemma. The key observation is the following.

Claim: Suppose that $\frac{\partial^2 \lambda}{\partial t \partial t}(0) = 0$. a. $z \in D$ (resp. ∂D , \overline{D}^c) if and only if $z \text{Expt} X \in D$ (resp. ∂D , \overline{D}^c) for all $t \in \mathbf{C}$; b. $D \cdot z^{-1} = D \cdot (z \text{Expt} X)^{-1}$ (resp. ∂D , \overline{D}^c) for all $t \in \mathbf{C}$ and for each $z \in M$.

To prove the claim, we apply the rigidity lemma to show that the left-invariant holomorphic vector field X is a non-vanishing holomorphic vector field on M satisfying the property that any integral curve z(t) of X with initial value $X(z_0)$ for $z_0 = z(0) \in \partial D$ remains in ∂D for all $t \in \mathbb{C}$. This is one implication in part a. of the claim for ∂D .

Recall that $z = \phi(t, w) = (\phi_1(t, w), ..., \phi_n(t, w)) := w\zeta \operatorname{Exp} tX = F^{-1}(t, w)$ for all $w \in M$. Let $t \to \phi(t, e)$ be the (moving) image under ϕ of the identity element. Note that if $ds_i^2(z)$ denotes the pull-back of the metric $ds^2(w)$ under F(t,z), then the Green function G(t,z) for D with pole at $\phi(t,e)$ (with respect to $ds_t^2(z)$) equals g(t,w). The assumption that $\frac{\partial^2 \lambda}{\partial t \partial \bar{t}}(0) = 0$ yields, by the rigidity lemma, $\frac{\partial g}{\partial t}(0,w) \equiv 0$ for $w \in \overline{D(0)}$; this becomes

$$\frac{\partial G}{\partial t}(0,z) + \sum_{a=1}^{n} \left[\frac{\partial G}{\partial z_{a}}(0,z) \frac{\partial \phi_{a}}{\partial t}(0,F(0,z)) + \frac{\partial G}{\partial \overline{z}_{a}}(0,z) \frac{\partial \overline{\phi}_{a}}{\partial t}(0,F(0,z)) \right] = 0$$

for $z \in \overline{D}$. But $\frac{\partial \overline{\phi}_a}{\partial t}(0, F(0, z)) = 0$ since $\phi(t, w) = (\phi_1(t, w), ..., \phi_n(t, w))$ is holomorphic in t; and $\frac{\partial G}{\partial t}(0, z) = 0$ for $z \in \partial D$ since G(t, z) = 0 for $z \in \partial D$ and $t \in B$. Thus

$$\sum_{a=1}^{n} \frac{\partial G}{\partial z_a}(0, z) \frac{\partial \phi_a}{\partial t}(0, F(0, z)) = 0$$
(4)

for $z \in \partial D$. Since $\phi(t, w)$ is defined for all $w \in M$, the vector field

$$Y(z) := \sum_{a=1}^{n} \frac{\partial \phi_a}{\partial t} (0, F(0, z)) \frac{\partial}{\partial z_a}$$

is a globally defined (on M) non-vanishing holomorphic vector field; using the fact that

$$(\frac{\partial G}{\partial z_1}(0,z),...,\frac{\partial G}{\partial z_n}(0,z))$$

is a (complex) normal vector to ∂D at z, it can be shown that (4) implies that any integral curve z(t) of Y with initial value $Y(z_0)$ for $z_0 = z(0) \in \partial D$ remains in ∂D for all $t \in \mathbb{C}$. Thus, to verify the italicised statement, it suffices to show that Y = X.

Since X is left-invariant, if $X(z) = \sum_{a=1}^{n} \eta_a \frac{\partial}{\partial z_a}$, then $\left[\frac{\partial}{\partial t} (z \operatorname{Exp} t X)_a\right]_{t=0} = \eta_a(z), \ a = 1, ..., n$. But for $w=z\zeta^{-1}$

$$\frac{\partial \phi_a}{\partial t}(0,F(0,z)) = \frac{\partial \phi_a}{\partial t}(0,w) = \left[\frac{\partial}{\partial t}(w\zeta \text{Exp}tX)_a\right]|_{t=0} = \eta_a(w\zeta) = \eta_a(z),$$

which gives the result.

The proof of the claim is now immediate. For example, to establish a. for ∂D ; i.e., to show $z \in \partial D$ if and only if $z \text{Exp} t X \in \partial D$ for all $t \in \mathbb{C}$, the "only if" direction has already been proved. Suppose now that $z \operatorname{Exp} t X \in \partial D$ for all $t \in \mathbb{C}$. Since

$$z = z(\operatorname{Exp}tX)(\operatorname{Exp}(-tX)) := z'\operatorname{Exp}(-tX)$$

where $z' = z \operatorname{Exp} tX \in \partial D$, the previous argument shows that $z \in \partial D$. Since ∂D is a smooth, closed (2n-1)-dimensional real hypersurface in M, the analogous results for D and \overline{D}^c follow from uniqueness of the integral curve $t \to z \operatorname{Exp} tX$. Similarly we prove b. only for ∂D . Let $z_1 \in \partial D$ and $z \in M$. Since $z_1 \operatorname{Exp} tX \in \partial D$ for all $t \in \mathbb{C}$ from a. of the claim, the equation

$$z_1 z^{-1} = z_1 (\text{Exp}tX) (\text{Exp}(-tX)) z^{-1} = z_1 (\text{Exp}tX) (z \text{Exp}tX)^{-1}$$

yields b. of the claim.

We can now finish the proof of 2. of the theorem. For a point $\zeta \in D$, let $a_i(\zeta)$, i = 1, ..., n denote the eigenvalues of $\left[\frac{\partial^2(-\Lambda)}{\partial z_j \partial \overline{z}_k}(\zeta)\right]$ at ζ . To prove 2. in the case k = 1, we suppose there exists a point $\zeta \in D$ with $a_1(\zeta) = 0$; without loss of generality, we can assume that $\zeta \operatorname{Exp} t X_1 = \zeta + \alpha t$ gives the direction of the corresponding eigenvector; i.e.,

 $\frac{\partial^2(-\Lambda)}{\partial t \partial \bar{t}} (\zeta + \alpha t)|_{t=0} = 0.$ (5)

Taking $X = X_1$ in the previous claim, $D_1(t) := D \cdot (\zeta \operatorname{Exp} t X_1)^{-1}$ and $\lambda_1(t) := \Lambda(\zeta \operatorname{Exp} t X_1)$, (5) becomes $\frac{\partial^2(-\lambda_1)}{\partial t \partial \overline{t}}(0) = 0$. Then the integral curve $t \to z \operatorname{Exp} t X_1$, $t \in \mathbb{C}$, satisfies the conditions of the claim. In particular, if $z \in D$, then $D \cdot z^{-1} = D \cdot (z \operatorname{Exp} t X_1)^{-1}$ for all $t \in \mathbb{C}$ which implies that

$$\Lambda(z\operatorname{Exp} tX_1) = \Lambda(z)$$
 for all $t \in \mathbb{C}$.

But $-\Lambda$ is an exhaustion function for D; hence the image C_z of the integral curve $t \to z \operatorname{Exp} t X_1$, $t \in \mathbf{C}$ is compactly contained in D and $-\Lambda$ is constant on C_z . In particular, $-\Lambda$ is harmonic on C_z for each $z \in D$; i.e., $\left[\frac{\partial^2 (-\Lambda)}{\partial z_j \partial \overline{z}_k}(z)\right]$ has a zero eigenvalue $a_1(z)$ for each $z \in D$. But then if s is any plurisubharmonic exhaustion function for D, s is also subharmonic and entire on each complex curve C_z and hence constant (and harmonic) on this curve, which implies that $\left[\frac{\partial^2 s}{\partial z_j \partial \overline{z}_k}(z)\right]$ has a zero eigenvalue for each $z \in D$. In particular, D is not Stein.

Remark 3. Note that if M is a Stein manifold, then each pseudoconvex $D \subset\subset M$ is Stein; this occurs, for example, if M is a simply connected solvable Lie group or if M is connected and semi-simple (cf. [GR]).

3. Complex homogeneous spaces. In this section, we let M be a complex space with the property that there exists a complex Lie group $G \subset \operatorname{Aut} M$ of complex dimension n which acts transitively on M. As prototypical examples, we can take $M = \mathbf{P}^N = \operatorname{complex}$ projective space, or, more generally, we can take $M = G(k, N) = \operatorname{complex}$ Grassmann manifold (and $G = \operatorname{Aut} M$). Let $D \subset \subset M$ be a domain with smooth boundary. For $z \in M$, we let

$$D(z) := \{ g \in G : g(z) \in D \}$$

be a (possibly unbounded) domain in G. Note that if $z \in D$, then the identity element e of G lies in D(z). Thus if we let ds^2 be a Kähler metric on G and let c be a nonnegative smooth function on G, we can form the c-Robin constant $\lambda(z)$ for (D(z), e) (recall that the c-Green function is defined by the usual exhaustion method for unbounded domains). Using the ideas and techniques from the previous section, we can prove the following result.

Theorem 3.1. Suppose D is pseudoconvex in M. Then for $z \in D$, D(z) is pseudoconvex in G and $-\lambda(z)$ is a plurisubharmonic exhaustion function for D. Furthermore, if c > 0 in G and G is doubly transitive on M, then $-\lambda(z)$ is strictly plurisubharmonic; i.e., D is Stein.

Recall that G is doubly transitive on M if for pairs of points (a, b), $(c, d) \in M$, there exists $g \in G$ with g(a) = c and g(b) = d. This is equivalent to the three point property of (M, G): for each triple of points $a, b, c \in M$, there exists $g \in G$ with g(a) = a and g(b) = c. Details of the proof of Theorem 3.1 will be given elsewhere.

References

- [GR] H. Grauert and R. Remmert, Theory of Stein Spaces, Springer-Verlag, New York 1979.
- [LY] N. Levenberg and H. Yamaguchi, The metric induced by the Robin function, Memoirs of the A. M. S. vol. 92 #448 (1991), 1-156.
- [NS] M. Nakai and L. Sario, Classification Theory of Riemann Surfaces, Springer-Verlag, New York 1970.
- [Y] H. Yamaguchi, Variations of pseudoconvex domains over Cⁿ, Mich. Math. J. 36 (1989), 415-457.

Levenberg: Department of Mathematics, University of Auckland, Private Bag 92019 Auckland, NEW ZEALAND

Yamaguchi: Department of Mathematics, Shiga University, Otsu-City, Shiga 520, JAPAN