Order preserving operator function via the inequality

" $A \ge B \ge 0$ ensures $(A^{\frac{r}{2}}A^pA^{\frac{r}{2}})^{\frac{1+r}{p+r}} \ge (A^{\frac{r}{2}}B^pA^{\frac{r}{2}})^{\frac{1+r}{p+r}}$ for $p \ge 1$ and $r \ge 0$ "

東京理科大学 柳田 昌宏 (Masahiro Yanagida) 山崎 丈明 (Takeaki Yamazaki) 古田 孝之 (Takayuki Furuta)

1 Introduction

In what follows, a capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \ge 0$) if $(Tx, x) \ge 0$ for all $x \in H$ and also an operator T is strictly positive (denoted by T > 0) if T is positive and invertible. The following Theorem F is an extension of the celebrated Löwner-Heinz theorem [12][10].

Theorem F (Furuta inequality) [4].

If $A \ge B \ge 0$, then for each $r \ge 0$

(i)
$$(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1}{q}} \ge (B^{\frac{r}{2}}B^pB^{\frac{r}{2}})^{\frac{1}{q}}$$

and

(ii)
$$(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}})^{\frac{1}{q}} \ge (A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$$

hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

Figure

We remark that Theorem F is essentially the same as the inequality made in its title and Theorem F yields the Löwner-Heinz theorem when we put r=0 in (i) or (ii) stated above: $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in [0,1]$. Alternative proofs of Theorem F are given in [2] [5] and [11] and also elementary one page proof in [6]. It was shown in [13] that the domain surrounded by p, q and r in the Figure is the best possible one for Theorem F. In [8] we established the following Theorem G as extensions of Theorem F.

Theorem G (Generalized Furuta inequality) [8]. If $A \ge B \ge 0$ with A > 0, then for each $t \in [0,1]$ and $p \ge 1$,

$$F_{p,t}(A,B,r,s) = A^{\frac{-r}{2}} \{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \}^{\frac{1-t+r}{(p-t)s+r}} A^{\frac{-r}{2}}$$

is decreasing for $r \ge t$ and $s \ge 1$ and $F_{p,t}(A, A, r, s) \ge F_{p,t}(A, B, r, s)$, that is, for each $t \in [0, 1]$ and $p \ge 1$,

$$A^{1-t+r} \ge \left\{ A^{\frac{r}{2}} \left(A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}} \right)^s A^{\frac{r}{2}} \right\}^{\frac{1-t+r}{(p-t)s+r}}$$

holds for any $s \ge 1$ and $r \ge t$.

Recently a nice mean theoretic proof of Theorem G is shown in [3]. Ando-Hiai [1] established excellent log majorization results and proved the useful inequality equivalent to the main log majorization theorem as follows; If $A \ge B \ge 0$ with A > 0, then

$$A^{r} \ge \{A^{\frac{r}{2}}(A^{\frac{-1}{2}}B^{p}A^{\frac{-1}{2}})^{r}A^{\frac{r}{2}}\}^{\frac{1}{p}}$$

holds for any $p \ge 1$ and $r \ge 1$. Theorem G interpolates the inequality stated above by Ando-Hiai and Theorem F itself and also extends results of [7].

Since now, many applications of Theorem F and Theorem G have been developed in the following branches by many authors.

APPLICATIONS OF THEOREM F

(A) OPERATOR INEQUALITIES

- (1) Characterizations of operators satisfying $\log A \ge \log B$
- (2) Generalizations of Ando's theorem
- (3) Other order preserving operator inequalities
- (4) Applications to the relative operator entropy
- (5) Applications to Ando-Hiai log majorization
- (6) Generalized Aluthge transformation

(B) NORM INEQUALITIES

- (1) Several generalizations of Heinz-Kato theorem
- (2) Generalizations of some theorems on norms
- (3) An extension of Kosaki trace inequality and parallel results

(C) OPERATOR EQUATIONS

(1) Generalizations of Pedersen-Takesaki theorem and related results

Very recently the following result is obtained as an extension of Theorem G.

Theorem H [9]. If $A \ge B \ge 0$ with A > 0, then for each $t \in [0,1], q \ge 0$ and $p \ge \max\{q, t\}$,

$$G_{p,q,t}(A,B,r,s) = A^{\frac{-r}{2}} \{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \}^{\frac{q-t+r}{(p-t)s+r}} A^{\frac{-r}{2}} \}^{\frac{r}{2}}$$

is decreasing for $r \geq t$ and $s \geq 1$. Moreover for each $t \in [0,1], q \in [t,1]$ and $p \geq q$, $G_{p,q,t}(A,A,r,s) \geq G_{p,q,t}(A,B,r,s)$, that is,

$$A^{q-t+r} \ge \{A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}}\}^{\frac{q-t+r}{(p-t)s+r}}$$

holds for any $s \geq 1$ and $r \geq t$.

The proof in [8] of Theorem G is complicated and technical and also the proof in [3] is based on mean theoretic one. Here we show a simplified proof of Theorem H which is an extension form of Theorem G only using Theorem F and the following Lemma F.

Lemma F (Furuta lemma) [8]. Let A > 0 and B be an invertible operator. Then

$$(BAB^*)^{\lambda} = BA^{\frac{1}{2}}(A^{\frac{1}{2}}B^*BA^{\frac{1}{2}})^{\lambda-1}A^{\frac{1}{2}}B^*$$

holds for any real number λ .

Firstly we show a short proof of the inequality (1.2) of Theorem H. Secondly we show a proof of the monotonicity of the function $G_{p,q,t}(A,B,r,s)$ of Theorem H. Lastly we give three counterexamples and a conjecture related to Theorem G and Theorem H.

2 Results on inequalities

Theorem H-i [9]. If $A \ge B \ge 0$ with A > 0, then for each $1 \ge q \ge t \ge 0$ and $p \ge q$,

$$A^{q-t+r} \ge \left\{ A^{\frac{r}{2}} \left(A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}} \right)^s A^{\frac{r}{2}} \right\}^{\frac{q-t+r}{(p-t)s+r}}$$

holds for $s \ge 1$ and $r \ge t$.

Theorem H-i is proved as an immediate consequence of the following Theorem 1.

Theorem 1. Let S and T be positive invertible operators on a Hilbert space such that $S^{\beta_0} \geq (S^{\frac{\beta_0}{2}}T^{\alpha_0}S^{\frac{\beta_0}{2}})^{\frac{\beta_0}{\alpha_0+\beta_0}}$ holds for fixed $\alpha_0 > 0$ and $\beta_0 > 0$. Then

$$(2.1) S^{\frac{\beta}{2}} T^{\alpha_0} S^{\frac{\beta}{2}} \ge \left(S^{\frac{\beta}{2}} T^{\alpha} S^{\frac{\beta}{2}} \right)^{\frac{\alpha_0 + \beta}{\alpha + \beta}}$$

holds for any $\alpha \geq \alpha_0$ and $\beta > \beta_0$.

Proof of Theorem 1. Applying (ii) of Theorem F to the hypothesis $S^{\beta_0} \geq (S^{\frac{\beta_0}{2}}T^{\alpha_0}S^{\frac{\beta_0}{2}})^{\frac{\beta_0}{\alpha_0+\beta_0}}$ we have

$$(2.2) \quad S^{(1+r_1)\beta_0} \ge \{S^{\frac{\beta_0 r_1}{2}} (S^{\frac{\beta_0}{2}} T^{\alpha_0} S^{\frac{\beta_0}{2}})^{\frac{\beta_0 p_1}{\alpha_0 + \beta_0}} S^{\frac{\beta_0 r_1}{2}} \}^{\frac{1+r_1}{p_1 + r_1}} \quad \text{for any } p_1 \ge 1 \text{ and } r_1 \ge 0.$$

Putting $p_1 = \frac{\alpha_0 + \beta_0}{\beta_0} \ge 1$ in (2.2), we have

$$(2.3) S^{(1+r_1)\beta_0} \ge \left(S^{\frac{(1+r_1)\beta_0}{2}} T^{\alpha_0} S^{\frac{(1+r_1)\beta_0}{2}}\right)^{\frac{(1+r_1)\beta_0}{\alpha_0 + (1+r_1)\beta_0}}$$

Put $\beta = (1 + r_1)\beta_0 \ge \beta_0$ in (2.3). Then we have

(2.4)
$$S^{\beta} \ge (S^{\frac{\beta}{2}} T^{\alpha_0} S^{\frac{\beta}{2}})^{\frac{\beta}{\alpha_0 + \beta}} \quad \text{for } \beta \ge \beta_0.$$

(2.4) is equivalent to the following (2.5) by Lemma F

(2.5)
$$T^{\alpha_0} \le (T^{\frac{\alpha_0}{2}} S^{\beta} T^{\frac{\alpha_0}{2}})^{\frac{\alpha_0}{\alpha_0 + \beta}} \quad \text{for } \beta \ge \beta_0.$$

Again applying (i) of Theorem F to (2.5), we have

$$(2.6) T^{(1+r_2)\alpha_0} \le \{T^{\frac{\alpha_0 r_2}{2}} (T^{\frac{\alpha_0}{2}} S^{\beta} T^{\frac{\alpha_0}{2}})^{\frac{\alpha_0 p_2}{\alpha_0 + \beta}} T^{\frac{\alpha_0 r_2}{2}} \}^{\frac{1+r_2}{p_2 + r_2}} \text{for any } p_2 \ge 1 \text{ and } r_2 \ge 0.$$

Putting $p_2 = \frac{\alpha_0 + \beta}{\alpha_0} \ge 1$ in (2.6), we have

$$(2.7) T^{(1+r_2)\alpha_0} \le \left(T^{\frac{(1+r_2)\alpha_0}{2}} S^{\beta} T^{\frac{(1+r_2)\alpha_0}{2}}\right)^{\frac{(1+r_2)\alpha_0}{(1+r_2)\alpha_0+\beta}}$$

Put $\alpha = (1 + r_2)\alpha_0 \ge \alpha_0$ in (2.7). Then we have

(2.8)
$$T^{\alpha} \leq (T^{\frac{\alpha}{2}} S^{\beta} T^{\frac{\alpha}{2}})^{\frac{\alpha}{\alpha+\beta}} \quad \text{for } \alpha \geq \alpha_0 \text{ and } \beta \geq \beta_0.$$

Raise each side of (2.8) to the power $\frac{\alpha - \alpha_0}{\alpha} \in [0, 1]$ by Löwner-Heinz theorem, we have the first inequality of the following (2.9)

$$(2.9) T^{\alpha-\alpha_0} \leq (T^{\frac{\alpha}{2}}S^{\beta}T^{\frac{\alpha}{2}})^{\frac{\alpha-\alpha_0}{\alpha+\beta}} \\ = T^{\frac{\alpha}{2}}S^{\frac{\beta}{2}}(S^{\frac{\beta}{2}}T^{\alpha}S^{\frac{\beta}{2}})^{\frac{\alpha-\alpha_0}{\alpha+\beta}-1}S^{\frac{\beta}{2}}T^{\frac{\alpha}{2}} by Lemma F.$$

refining (2.9) and taking inverses of both sides, we obtain (2.1).

Proof of Theorem H-i. If $A \ge B \ge 0$, then the following (2.10) holds

(2.10)
$$A^{q+r} \ge (A^{\frac{r}{2}}B^p A^{\frac{r}{2}})^{\frac{q+r}{p+r}} \text{ for } p \ge q, q \in [0, 1] \text{ and } r \ge 0$$

by (ii) of Theorem F since $(1+r)\frac{p+r}{q+r} \ge p+r$ and $\frac{p+r}{q+r} \ge 1$ in this case.

In the case t = 0. (1.2) is valid by (2.10) in this case.

In the case $p=q=t\in[0,1]$. Let $C=A^{\frac{-t}{2}}B^tA^{\frac{-t}{2}}$. As $I\geq C\geq 0$ holds by Löwner-Heinz theorem, $A^r\geq A^{\frac{r}{2}}C^sA^{\frac{r}{2}}$ for $s\geq 1$, that is, (1.2) holds in this case.

In the case p > t > 0. Put $X = (A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^{\frac{1}{p-t}}$. Then we have $A^{\frac{t}{2}}X^{p-t}A^{\frac{t}{2}} = B^p$ and $A \ge (A^{\frac{t}{2}}X^{p-t}A^{\frac{t}{2}})^{\frac{1}{p}}$ by the hypothesis $A \ge B \ge 0$. Put $\beta_0 = t \in (0,1]$ and $\alpha_0 = p-t > 0$. Then $A \ge (A^{\frac{\beta_0}{2}}X^{\alpha_0}A^{\frac{\beta_0}{2}})^{\frac{1}{\alpha_0+\beta_0}}$, and

$$A^{\beta_0} \ge (A^{\frac{\beta_0}{2}} X^{\alpha_0} A^{\frac{\beta_0}{2}})^{\frac{\beta_0}{\alpha_0 + \beta_0}}$$

holds by Löwnew-Heinz theorem. Put $\alpha = (p-t)s$ and $\beta = r$. Then $\alpha \ge \alpha_0$ and $\beta \ge \beta_0$ hold since $s \ge 1$ and $r \ge t$ hold, so that Theorem 1 ensures the following inequality

$$(A^{\frac{\beta}{2}}X^{\alpha}A^{\frac{\beta}{2}})^{\frac{\alpha_0+\beta}{\alpha+\beta}} \le A^{\frac{\beta}{2}}X^{\alpha_0}A^{\frac{\beta}{2}},$$

that is, we have

(2.11)
$$\{A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}})^{s} A^{\frac{r}{2}} \}^{\frac{p-t+r}{(p-t)s+r}}$$
$$< A^{\frac{r}{2}} A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}} A^{\frac{r}{2}}.$$

Raising each side of (2.11) to the power $\frac{q-t+r}{p-t+r} \in [0,1]$ by Löwner-Heinz theorem, we have the first inequality of the following (2.12)

$$\left\{ A^{\frac{r}{2}} \left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}} \right)^{s} A^{\frac{r}{2}} \right\}^{\frac{q-t+r}{(p-t)s+r}} \\
\leq \left(A^{\frac{r-t}{2}} B^{p} A^{\frac{r-t}{2}} \right)^{\frac{q+r-t}{p+r-t}} \\
\leq A^{q-t+r}$$

and the last inequality holds by replacing r by $r-t \ge 0$ in (2.10), so the proof of Theorem H-i is complete.

3 Results on functions

Theorem H-f [9]. Let $A \geq B \geq 0$ with A > 0. For each $t \in [0,1], q \geq 0$ and $p \geq \max\{q,t\}$,

$$G_{p,q,t}(A,B,r,s) = A^{\frac{-r}{2}} \{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \}^{\frac{q-t+r}{(p-t)s+r}} A^{\frac{-r}{2}}$$

is decreasing for $r \geq t$ and $s \geq 1$.

Theorem H-f is proved as an immediate consequence of the following Theorem 2.

Theorem 2. Let S and T be positive invertible operators on a Hilbert space such that $S^{\beta_0} \geq (S^{\frac{\beta_0}{2}}T^{\alpha_0}S^{\frac{\beta_0}{2}})^{\frac{\beta_0}{\alpha_0+\beta_0}}$ holds for fixed $\alpha_0 > 0$ and $\beta_0 > 0$. Then for fixed $\delta \geq -\beta_0$,

$$f(\alpha,\beta) = S^{\frac{-\beta}{2}} (S^{\frac{\beta}{2}} T^{\alpha} S^{\frac{\beta}{2}})^{\frac{\delta+\beta}{\alpha+\beta}} S^{\frac{-\beta}{2}}$$

is a decreasing function of both α and β for $\alpha \geq \max\{\delta, \alpha_0\}$ and $\beta \geq \beta_0$.

Proof of Theorem 2.

(a) Proof of the result that $f(\alpha, \beta)$ is a decreasing function of α for $\alpha \geq \max\{\delta, \alpha_0\}$.

The hypothesis in Theorem 2 ensures (3.1) in the same way as the proof of Theorem 1

$$(3.1) (T^{\frac{\alpha}{2}}S^{\beta}T^{\frac{\alpha}{2}})^{\frac{\alpha}{\alpha+\beta}} \ge T^{\alpha} \text{for all } \alpha \ge \alpha_0 \text{ and } \beta \ge \beta_0.$$

- (3.1) yields the following (3.2) by Löwner-Heinz theorem
- (3.2) $(T^{\frac{\alpha}{2}}S^{\beta}T^{\frac{\alpha}{2}})^{\frac{u}{\alpha+\beta}} \geq T^u$ for all $\alpha \geq \alpha_0, \beta \geq \beta_0$ and any u such that $\alpha \geq u \geq 0$.

Then we have

$$\begin{split} g(\alpha) = & (S^{\frac{\beta}{2}}T^{\alpha}S^{\frac{\beta}{2}})^{\frac{\delta+\beta}{\alpha+\beta}} \\ = & \{ (S^{\frac{\beta}{2}}T^{\alpha}S^{\frac{\beta}{2}})^{\frac{\alpha+u+\beta}{\alpha+\beta}} \}^{\frac{\delta+\beta}{\alpha+u+\beta}} \\ = & \{ S^{\frac{\beta}{2}}T^{\frac{\alpha}{2}}(T^{\frac{\alpha}{2}}S^{\beta}T^{\frac{\alpha}{2}})^{\frac{u}{\alpha+\beta}}T^{\frac{\alpha}{2}}S^{\frac{\beta}{2}} \}^{\frac{\delta+\beta}{\alpha+u+\beta}} \quad \text{by Lemma F} \\ \geq & \{ S^{\frac{\beta}{2}}T^{\frac{\alpha}{2}}T^{u}T^{\frac{\alpha}{2}}S^{\frac{\beta}{2}} \}^{\frac{\delta+\beta}{\alpha+u+\beta}} \\ = & (S^{\frac{\beta}{2}}T^{\alpha+u}S^{\frac{\beta}{2}})^{\frac{\delta+\beta}{\alpha+u+\beta}} = g(\alpha+u) \end{split}$$

and the last inequality holds by (3.2) and Löwner-Heinz theorem since $\frac{\delta+\beta}{\alpha+u+\beta} \in [0,1]$ holds by the hypothesis on α,β and δ . Hence $f(\alpha,\beta) = S^{\frac{-\beta}{2}}g(\alpha)S^{\frac{-\beta}{2}}$ is a decreasing function of α for $\alpha \geq \max\{\delta,\alpha_0\}$.

(b) Proof of the result that $f(\alpha, \beta)$ is a decreasing function of β for $\beta \geq \beta_0$.

By Lemma F,

$$f(\alpha, \beta) = S^{\frac{-\beta}{2}} (S^{\frac{\beta}{2}} T^{\alpha} S^{\frac{\beta}{2}})^{\frac{\delta+\beta}{\alpha+\beta}} S^{\frac{-\beta}{2}}$$
$$= T^{\frac{\alpha}{2}} (T^{\frac{\alpha}{2}} S^{\beta} T^{\frac{\alpha}{2}})^{\frac{\delta-\alpha}{\alpha+\beta}} T^{\frac{\alpha}{2}}$$

and (3.1) is equivalent to the following (3.3) by Lemma F

(3.3)
$$S^{\beta} \geq (S^{\frac{\beta}{2}} T^{\alpha} S^{\frac{\beta}{2}})^{\frac{\beta}{\alpha+\beta}} \quad \text{for all } \alpha \geq \alpha_0 \text{ and } \beta \geq \beta_0.$$

(3.3) yields the following (3.4) by Löwner-Heinz theorem

$$(3.4) S^v \ge (S^{\frac{\beta}{2}} T^{\alpha} S^{\frac{\beta}{2}})^{\frac{v}{\alpha+\beta}} for all \ \alpha \ge \alpha_0, \beta \ge \beta_0 \text{ and any } v \text{ such that } \beta \ge v \ge 0.$$

Then we have

$$\begin{split} h(\beta) = & (T^{\frac{\alpha}{2}}S^{\beta}T^{\frac{\alpha}{2}})^{\frac{\delta-\alpha}{\alpha+\beta}} \\ = & \{ (T^{\frac{\alpha}{2}}S^{\beta}T^{\frac{\alpha}{2}})^{\frac{\delta-\alpha}{\alpha+\beta}} \}^{\frac{\delta-\alpha}{\alpha+\beta+v}} \\ = & \{ T^{\frac{\alpha}{2}}S^{\frac{\beta}{2}}(S^{\frac{\beta}{2}}T^{\alpha}S^{\frac{\beta}{2}})^{\frac{v}{\alpha+\beta}}S^{\frac{\beta}{2}}T^{\frac{\alpha}{2}} \}^{\frac{\delta-\alpha}{\alpha+\beta+v}} \\ \geq & \{ T^{\frac{\alpha}{2}}S^{\frac{\beta}{2}}S^{v}S^{\frac{\beta}{2}}T^{\frac{\alpha}{2}} \}^{\frac{\delta-\alpha}{\alpha+\beta+v}} \\ = & (T^{\frac{\alpha}{2}}S^{\beta+v}T^{\frac{\alpha}{2}})^{\frac{\delta-\alpha}{\alpha+\beta+v}} = h(\beta+v) \end{split}$$
 by Lemma F

and the last inequality holds by (3.4) and Löwner-Heinz theorem since $\frac{\delta-\alpha}{\alpha+\beta+v} \in [-1,0]$ and taking inverses. Hence $f(\alpha,\beta) = T^{\frac{\alpha}{2}}h(\beta)T^{\frac{\alpha}{2}}$ is a decreasing function of β for $\beta \geq \beta_0$.

Consequently we have finished a proof of Theorem 2 by (a) and (b).

Proof of Theorem H-f. We consider the case p > t > 0. Put $X = (A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^{\frac{1}{p-t}}$. Then we have $A^{\frac{t}{2}}X^{p-t}A^{\frac{t}{2}} = B^p$ and $A \ge (A^{\frac{t}{2}}X^{p-t}A^{\frac{t}{2}})^{\frac{1}{p}}$ by the hypothesis $A \ge B \ge 0$. Put $\beta_0 = t \in (0,1]$ and $\alpha_0 = p-t > 0$. Then $A \ge (A^{\frac{\beta_0}{2}}X^{\alpha_0}A^{\frac{\beta_0}{2}})^{\frac{1}{\alpha_0+\beta_0}}$, so that

$$A^{\beta_0} \ge \left(A^{\frac{\beta_0}{2}} X^{\alpha_0} A^{\frac{\beta_0}{2}}\right)^{\frac{\beta_0}{\alpha_0 + \beta_0}}$$

holds by Löwnew-Heinz theorem. Put $\alpha = (p-t)s, \beta = r$ and $\delta = q-t$. The hypothesis $t \in (0,1], q \geq 0$ and $p \geq \max\{q,t\}$ in Theorem H-f satisfy the conditions required on α, β and δ in Theorem 2, that is, $\delta \geq -\beta_0$, $\alpha \geq \max\{\alpha_0, \delta\}$ and $\beta \geq \beta_0$. Applying Theorem 2,

$$f(\alpha, \beta) = A^{\frac{-\beta}{2}} (A^{\frac{\beta}{2}} X^{\alpha} A^{\frac{\beta}{2}})^{\frac{\delta+\beta}{\alpha+\beta}} A^{\frac{-\beta}{2}}$$

$$= A^{\frac{-r}{2}} \{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}})^{s} A^{\frac{r}{2}} \}^{\frac{q-t+r}{(p-t)s+r}} A^{\frac{-r}{2}}$$

$$= G_{p,q,t}(A, B, r, s)$$

is decreasing for $r \ge t$ and $s \ge 1$, so the proof in the case p > t > 0 is complete.

In the case t = 0, Theorem H-f easily follows by [7, Theorem 3].

In the case $p=t\geq q\geq 0$. Let $C=A^{\frac{-t}{2}}B^tA^{\frac{-t}{2}}$. Then $I\geq C\geq 0$ by Löwner-Heinz theorem, so that $A^r\geq A^{\frac{r}{2}}C^sA^{\frac{r}{2}}$ holds since $I\geq C\geq 0$ and $s\geq 1$, and again by Löwner-Heinz theorem

(3.5)
$$A^{u} \ge (A^{\frac{r}{2}}C^{s}A^{\frac{r}{2}})^{\frac{u}{r}} \quad \text{for } r \ge u \ge 0.$$

Then we obtain

$$G_{t,q,t}(A,B,r,s) = A^{\frac{-r}{2}} (A^{\frac{r}{2}}C^s A^{\frac{r}{2}})^{\frac{q-t+r}{r}} A^{\frac{-r}{2}}$$

$$= C^{\frac{s}{2}} (C^{\frac{s}{2}}A^r C^{\frac{s}{2}})^{\frac{q-t}{r}} C^{\frac{s}{2}} \quad \text{by Lemma F}$$

$$= C^{\frac{s}{2}} \{ (C^{\frac{s}{2}}A^r C^{\frac{s}{2}})^{\frac{r+u}{r}} \}^{\frac{q-t}{r+u}} C^{\frac{s}{2}}$$

$$= C^{\frac{s}{2}} \{ (C^{\frac{s}{2}}A^r C^{\frac{s}{2}})^{\frac{r+u}{r}} \}^{\frac{q-t}{r+u}} C^{\frac{s}{2}} \}^{\frac{q-t}{r+u}} C^{\frac{s}{2}} \quad \text{by Lemma F}$$

$$\geq C^{\frac{s}{2}} \{ C^{\frac{s}{2}}A^{\frac{r}{2}} A^u A^{\frac{r}{2}} C^{\frac{s}{2}} \}^{\frac{q-t}{r+u}} C^{\frac{s}{2}} \}$$

$$= C^{\frac{s}{2}} (C^{\frac{s}{2}}A^{r+u} C^{\frac{s}{2}})^{\frac{q-t}{r+u}} C^{\frac{s}{2}}$$

$$= A^{\frac{-(r+u)}{2}} (A^{\frac{r+u}{2}}C^s A^{\frac{r+u}{2}})^{\frac{q-t+r+u}{r+u}} A^{\frac{-(r+u)}{2}} = G_{t,q,t}(A,B,r+u,s)$$

and the last inequality holds by (3.5) and Löwner-Heinz theorem since $\frac{q-t}{r+u} \in [-1,0]$ and taking inverses. Consequently $G_{t,q,t}(A,B,r,s)$ is a decreasing function of both $r \geq t$ and $s \geq 1$ because $G_{t,q,t}(A,B,r,s)$ is decreasing of $s \geq 1$ by (3.6) since $I \geq C \geq 0$.

Whence the proof of Theorem H-f is complete.

4 Best possibility and counterexamples

We discuss best possibility of (1.1) in Theorem G and also we cite counterexamples related to Theorem G.

Counterexample 1. There exists a counterexample to (1.1) of Theorem G if we replace $A \ge B$ in Theorem G by $\log A \ge \log B$. Let p = 2, t = 1, r = 2 and s = 2. Then p, t, r and s satisfy the condition in Theorem G. Take A and B as

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}^2, \qquad B = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}^2.$$

Then it turns out that $\log A \ge \log B$ holds since $\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \ge \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ and $\log t$ is operator monotone, but $A \not\ge B$ holds and

$$A^{1-t+r} - \left\{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \right\}^{\frac{1-t+r}{(p-t)s+r}} = \begin{pmatrix} 50.1594 \cdots & 61.8403 \cdots \\ 61.8403 \cdots & 74.8485 \cdots \end{pmatrix},$$

so that the eigenvalues of $A^{1-t+r} - \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^sA^{\frac{r}{2}}\}^{\frac{1-t+r}{(p-t)s+r}}$ are $-0.5563\cdots$ and $125.5643\cdots$, therefore $A^{1-t+r} \not\geq \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^sA^{\frac{r}{2}}\}^{\frac{1-t+r}{(p-t)s+r}}$.

Hence we can't replace $A \ge B$ in Theorem G by $\log A \ge \log B$, which is weaker than $A \ge B \ge 0$.

Counterexample 2. There exists a counterexample to (1.1) of Theorem G if r and t don't satisfy the condition $r \ge t$. Let $p = 2, s = 2, t = 1 \in [0, 1]$ and $r = \frac{1}{2}$. Then $r \ge t$. Take A and B as

$$A = \begin{pmatrix} 28 & 44 \\ 44 & 73 \end{pmatrix}, \qquad B = \begin{pmatrix} 20 & 36 \\ 36 & 65 \end{pmatrix}$$
:

Then $A \geq B \geq 0$ and

$$A^{1-t+r} - \left\{A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t)s+r}} = \begin{pmatrix} 1.9229 \cdots & 0.6555 \cdots \\ 0.6555 \cdots & -0.0547 \cdots \end{pmatrix},$$

so that the eigenvalues of $A^{1-t+r} - \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^sA^{\frac{r}{2}}\}^{\frac{1-t+r}{(p-t)s+r}}$ are $-0.2523\cdots$ and $2.1205\cdots$, therefore $A^{1-t+r} \not\geq \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^sA^{\frac{r}{2}}\}^{\frac{1-t+r}{(p-t)s+r}}$.

Counterexample 3. There exists a counterexample to (1.1) of Theorem G if t don't satisfy the condition $t \in [0,1]$. Let $t = 1.2 \notin [0,1], p = 2, r = 2, s = 2$. Then $r \ge t$. Take A and B as

$$A = \begin{pmatrix} 125 & 90 \\ 90 & 69 \end{pmatrix}, \qquad B = \begin{pmatrix} 125 & 90 \\ 90 & 65 \end{pmatrix}.$$

Then $A \geq B \geq 0$ and

$$A^{1-t+r} - \left\{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \right\}^{\frac{1-t+r}{(p-t)s+r}} = \begin{pmatrix} 33.3128 \cdots & 43.4624 \cdots \\ 43.4624 \cdots & 55.3433 \cdots \end{pmatrix}$$

so that the eigenvalues of $A^{1-t+r} - \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^sA^{\frac{r}{2}}\}^{\frac{1-t+r}{(p-t)s+r}}$ are $-0.5084\cdots$ and $89.1646\cdots$, therefore $A^{1-t+r} \not\geq \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^sA^{\frac{r}{2}}\}^{\frac{1-t+r}{(p-t)s+r}}$.

Remark. We remark the following result. By using his skillful and excellent technique as almost same as one in [13], K. Tanahashi [14] asserts that $\frac{1-t+r}{(p-t)s+r}$ of the right hand side of (1.1) of Theorem G is best possible in the sense of the following: $A^{(1-t+r)\alpha} \geq \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^pA^{\frac{-t}{2}})^sA^{\frac{r}{2}}\}^{\frac{(1-t+r)\alpha}{(p-t)s+r}}$ does not hold for any $\alpha > 1$ in Theorem G.

At the end of this section, we cite the following conjecture related to Theorem H and Theorem G.

Conjecture. There exists a counterexample to Theorem G in general for any r < t.

If t = 0 and r < 0 in Theorem G, we have already obtained a counterexample.

参考文献

- [1] T.Ando and F.Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197, 198 (1994), 113–131.
- [2] M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23 (1990), 67–72.
- [3] M.Fujii and E.Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 2751–2756.
- [4] T.Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. **101** (1987), 85–88.
- [5] T.Furuta, A proof via operator means of an order preserving inequality, Linear Algebra Appl. 113 (1989), 129–130.
- [6] T.Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad.65 (1989), 126.
- [7] T.Furuta, Two Operator functions with monotone property, Proc. Amer. Math. Soc. 111 (1991), 511–516.
- [8] T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl. 19 (1995), 139–155.
- [9] T.Furuta and D.Wang, A decreasing operator function associated with the Furuta inequality, preprint.
- [10] E.Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415–438.
- [11] E.Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883–886.
- [12] K.Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177–216.
- [13] K.Tanahashi, Best possibility of the Furuta inquality, Proc. Amer. Math. Soc. 124 (1996), 141–146.
- [14] K.Tanahashi, Grand 古田不等式の best possibility について, RIMS 980 (1997), 1-14.