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A Note on Two-dimensional Probabilistic Turing Machines
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Summary

This paper introduces two-dimensional probabilistic Turing machines (2-ptm’s), and investigates several prop-
erties of them. We first investigate a relationship between two-dimensional alternating finite automata (2-
afa’s) and 2-ptm’s with error probability less than 1 5 and with sublogarithmic space,-and show that there
is a set of square tapes accepted by 2-afa, but not recognized by any o(logn) space-bounded 2-ptm with
error probability less than % This partially solves an open problem in [17). We next investigate a space
hierarchy of 2-ptm’s with error probability less than 1 and with sublogarithmic space, and show that if L(n)
is space-constructible by a two-dimensional Turing machine, loglogn < L(n) < logn and L'(n) = o(L(n)),
then, there is a set of square tapes accepted by a strongly L(n) space-bounded two-dimensional deterministic
Turing machine, but not recognized by any L'(n) space-bounded 2-ptm with error probability less than 1 3

1. Introduction

The classes. of sets recognized by (one-dimensional) probabilistic finite automata and probabilistic Turing machines have
been studied extensively [3-6,12-14,18,23]. *As far as we know, however, there is only one literature concerned with prob-

- abilistic automata on a two-dimensional tape [17]. In [17], we introduced two-dimensional probabilistic finite automata
(2-pfa’s), and showed that '

(i) the class of sets recognized by 2-pfa’s with error probability less than %, 2-PFA, is incomparable with the class of sets
accepted by two-dimensional alternating finite automata (2-afa’s) [9], and

(if) 2-PFA is not closed under row catenation, column catenation, row + and column + operations in [21].

We believe that it is quite promising to investigate probabilistic machines on a two-dimensional tape.
The classes of sets accepted by two-dimensional (deterministic, nondeterministic, and alternating) finite automata and
Turing machines have been studied extensively [1,8-11,15,16,19,22]. In this paper, we introduce a two-dimensional proba-

bilistic Turing machine (2—ptm), and investigate several properties of the class of sets of square tapes recognized by 2-ptm’s
with error probability less than 1 5 and with sublogarithmic space.

Section 2 gives some definitions and notations necessary for this paper.

Let 2-PTM3 (L(n)) be the class of sets of square tapes recognized by L(n) space-bounded 2-ptm’s with error probability
less than . (See Section 2 for the definition of L(n) space-bounded 2-ptm’s.)

In Sectlon 3, we investigate a relationship between 2-afa’s and 2-ptm’s with sublogarithmic space, and show that there
is a set in 2-AFA®, but not in 2-PTM?*(L(rn)) with L(n) = o(log n), where 2-AFA® denotes the class of sets of square tapes
accepted by 2-afa’s. As a corolla.ry of this result, it follows that there is a set in 2-AFA®, but not recognized by any 2-pfa
‘with error probability less than 1 5. This partially solves an open problem in [17]. Unfortunately, it'is still unknown whether
there is a set of square tapes recogmzed by a 2-pfa with error probability less than , but not in 2 AFAS.

In Section 4, we investigate a space hierarchy of 2-ptm’s with error probabxhty less than % 5 and with sublogarithmic
space. It is well known [10,11,15,16] that there is an infinite space hierarchy among classes of sets of square tapes accepted
by two-dimensional (deterministic, nondeterministic and alternating) Turing machines with sublogarithmic space. Section 4
shows that if L(n) is space-constructible by a two-dimensional Turing machine, loglogn < L(n) < logn and L'(n) = o(L(n)),
then there is a set of square tapes accepted by a strongly L(n) space-bounded two-dimensional deterministic Turing machine,
but not in 2-PTM?*(L'(n)). As a corollary of this result, it follows that 2-PTM?((loglog n)¥) ; 2-PTM*((log log n)**1) for
any posmve integer k > 1.

2. Prehmmarles

Let ¥ be a finite set of symbols. A two-dimensional tape over X is a two-dimensional rectangular array of elements of
3. The set of all the two-dimensional tapes over ¥ is denoted by £(2). Given a tape z € %3, we let /() be the number
of rows and I2(z) be the number of columns. For each m,n > 1, let T™" = {g € 5@ | lj(z) = m & b(z) = n}.
If1<ip <l(a) for k = 1,2, we let m(zl,zz) denote the symbol in x with coordinates (i1,i3). Furthermore, we define

z((41,42), (i},45)], only when 1 < §; < ¢} < ll(z) and 1 < 43 < 45 < Iy(z), as the two-dimensional tape z satisfying the
following (i) and (ii): :

(i) Lz) = —i1+1 and lo(z) = th—ia + 1;
(ii) for each i,j (1 < i <li(2), 1 <j<la(2),2(4,5) =z(ir + i~ 1,42+ 5 — 1).
We next 1ntroduce a two-dimensional probabilistic Turing machine which isa natural extension of a two-way probablhstlc

'I‘urmg machine (3, 4] to two dimension. Let § be a finite set. A coin-tossing distribution on S is a mapping ¥ from S to
{0, 2,1} such that Eaes’l/)( ) = 1. The mapping means “choose a with probability #(a)”.
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A two-dimensional probabilistic Turing machine (denoted by 2-ptm) is a 7-tuple M = (Q,%,T, 9,40, 4a,gr), Where Q
is a finite set of states, ¥ is a finite input alphabet (# ¢ X is the boundary symbol), T' is a finite storage tape alphabet
(B €T is the blank symbol), § is a transition function, qo € Q is the initial state, g, € Q is the accepting state, and g, € Q
is the rejecting state. As shown in Fig.1, the machine M has a read-only rectangular input tape over I surrounded by
the boundary symbols # and has one semi-infinite storage tape, initially blank. The transition function ¢ is defined on
(Q—{qa,qr}) x (ZU{#}) xT such that for each ¢ € Q—{qa,qr}, each o € ZTU{#} and each vy € I', d[g, 7,7] is a coin-tossing
distribution on @ x (I’ — { B}) x {Left, Right, Up, Down, Stay}x {Left, Right, Stay}, where Left means “moving left”, Right
“moving right”, Up “moving up”, Down “moving down” and Stay “staying there”. The meaning of é is that if M is in
state ¢ with the input head scanning the symbol o and the storage tape head scanning the symbol v, then with probability
8lg,0,7)(¢',7',d1,dz2) the machine enters state g, rewrites the symbol v by the symbol ', either moves the input head one
symbol in direction d; if dy €{Left, Right, Up,-Down} or dose not move the input head if d; =Stay, and either moves the
storage tape head one symbol in direction dy if d2 €{Left, Right} or dose not move the storage tape head if d; =Stay.

Given an input tape z € %(2), M starts in the initial state go with the input head on the upper left-hand corner of z, with
all the cells of the storage tape blank and with the storage tape head on the left end of the storage tape. The computation
of M on z is then governed (probabilistically) by the transition function § until M either accepts by entering the accepting
state g, or rejects by entering the rejecting state g,. We assume that & is defined so that the input head never falls off an
input tape out of the boundary symbols #, the storage tape head cannot write the blank symbol, and fall off the storage
tape by moving left. M halts when it enters state gq or ¢,. ’

Let L C 2@ and 0 < e < % A 2-ptm M recognizes L with error probability € if for all ¢ € L, M accepts = with
probability at least 1 — ¢, and for all ¢ ¢ L, M rejects = with probability at least 1 —e.

In this paper, we are concerned with 2-ptm’s whose input tapes are restricted to square ones. Let L : N - N U {0} be a
function, where N denotes the set of all the positive integers. We say that a 2-ptm M is L(n) space-bounded if for each n > 1,
and for each input tape z with l1(z) = lz(z) = n; M .uses at most L(n). cells of the storage tape. By 2-PTM‘(L(n)), we
denote the class of sets of square tapes recognized by L(n) space-bounded: 2-ptm’s with error probability less than 3 5 (whose
input tapes are restricted to square ones). Especially, by 2-PFA®, we denote 2-PTM?*(0), i.e, the cla,ss of sets of square tapes
recognized by two-dimensional probabilistic finite automata [17] with error probability less than 3

A two-dimensional alternating finite automaton (2-afa) is a two-dimensional analogue of the alternating finite automaton
{2] with the exception that the input tape head moves left, right, up or down on the two-dimensional tape. See [9] for the
formal definition of 2-afa’s. By 2-AFA®, we denote the class of sets accepted by 2-afa’s whose input tapes are restricted to
square ones. Throughout this paper, we assume that logarithms are base 2. ‘ ‘

3. 2-AFA°* versus 2-PTM*(L(n)) with L(n) = o(logn)

This section investigates a relationship between 2-AFA® and 2-PTM?*(L(n)) with L{n) = o(logn). We first give some
preliminaries necessary for getting our desired result.

Let M be a 2-ptm and T be the input alphabet of M. For each m > 2 and ea.ch 1<n<m- 1 an (m;n)—chunk over
¥ is a pattern as shown in Fig. 2, where v, € X(m~1)X7 and ¢, € Zmx(m-n) By ch(mny(v1,v2), we denote the (m,n)-chunk
as shown in Fig. 2. For any (m,n)-chunk v, we denote by v(#) the pattern obtained from v by attaching the boundary
symbols # to v as shown in Fig. 3. Below, we assume without loss of generality that M enters or exits the pattern v(#)
only at the face designated by the bold line in Fig. 3. Thus, the the number of the entrance points to v(#) (or the exit
points from v(#)) for M is n + 3. We suppose that these entrance points (or exit points) are named (2,0), (2,1),..., (2,n),
(1,m+ 1), (0,n + 1) as shown in Fig. 4. Let PT(v(#)) be the set of these entrance points (or exit points). To each cell of
v(#), we assign a position as shown in Fig. 4. Let PS(v(#)) be the set of all the positions of v(#). For-eachn > 1, an
n-chunk over T is a pattern in I'*", For any n-chunk-u, we denote by u(#) the pattern obtained from u by attaching the
boundary symbols # to u as shown in Fig. 5. We again assume without loss of generality that M enters or exits the pattern
u(#) only at the face designated by the bold line in Fig. 5. The number of the entrance points to u(#) (or the exit points
from u(#)) for M is again n + 3, and these entrance points (or exit points) are named (2,0), (2,1),..., (2,n), (1,n + 1),
(0,n +1)" as shownin Fig. 5. Let PT(u(#)) be the set of these entrance points (or exit points). For any (m,n)-chunk v
over ¥ and any n-chunk u over X, let v{u] be the tape in X™*™ consisting of v and u as shown in Fig. 6.

Let M be a 2-ptm. A storage state of M is a combination of the state of the finite control, the non-blank contents of the
storage tape, and the storage tape head position. Let g, and g, be the accepting and rejecting states of A, respectively and =
be an (m, n)-chunk (or an n-chunk) over the input alphabet of M (m > 2,n > 1). We define the chunk probabilities of M on
z as follows. A starting condition for the chunk probability is a pair (s,l), where s is a storage state of Af and [ € PT(z(#));
its-intuitive meaning is “M has just entered z(#) in storage state s from entrance point ! of z(#)”. A stopping condition
for the chunk probability is either:

(i) a pair (s,l) as above, meaning that M exits from z(#) in storage state s at exit point !,

(ii) “Loop” meaning that the computation of M loops forever within z(#),
(iii) “Accept” meaning that M halts in the accepting state g, before exiting from z(#) at exit points of z(#), or
(iv) “Reject” meaning that M halts in the rejecting state g, before exiting from x(#) at exit points of z(#).

For each starting condition ¢ and each stopping condition 7, let p(z,0,7) be the probability that stopping condition 7
occurs given that M is started in starting condition ¢ on an (m, n)-chunk (or n-chunk) z

Computations of a 2-ptm are modeled by Markov chains [20] with finite state space, say {1,2,...,s} for some s. A
particular Markov chain is completely specified by its matrix R = {r;;}1<i j<s of transition probabilities. If the Markov chain
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is in state i, then it next moves to state j with probability r;;. The chains we consider have the designated starting state,
say, state 1, and some set T, of trapping states, so 7y = 1 for all t € T,.. For t € T}, let p*[{, R} denote the probability that -
Markov chain R is trapped in state t when started in state 1. The following lemma which bounds the effect of small changes
in the transition probabilities of a Markov chain is used below.

Let B > 1. Say that two numbers r and ' are §-close if either. (i) r =r' =0 or (ii) 7 > 0,7 > 0and 87! < L <
Two Markov chains R = {ry;}{;_; and R' = {r};}{;_, are B-close if r;j and r}; are (-close for all pairs i, j.

Lemma 3.1 [3]. Let R and R’ be two s-state Markov chains which are [3‘—close7 and let ¢ be a trapping state of Both
R and R'. Then p*[t, R] and p*[t, R'] are 3**-close.

Theorem 3.1 There exists a set in 2-AFA®, but not in 2-PTM?(L(n)) for any L(n) = o(logn).
Proof. Let T; = {z € {0,1}®3n > 2l (z) = lz(z) = n & Fi(2 < i < n)z[(1,1),(1,n)] = m[(z 1), (¢,n)] ( i.e., the top row
of z is identical with some another row of z)}]}.

T} is accepted by the 2-afa M; which acts as follows. Given an input tape = with ll(x) = ls(z) > 2, M; existentially
chooses some row other ‘than the top row, say the i-th row, of z. Then M; universally tries to check that, for each
j(1 <7 < ly(x),2(i,5) = z(1, 7). That is, on the i-th row and j-th column of z(1 < j < l5(z)), M; enters a universal state
to choose one of two further actions. One action is to pick up the symbol 2(%, ), move up with the symbol stored in the finite
control, compare the stored symbol with the symbol z(1,;), and enter an accepting state if both the symbols are identical.
The other action is to continue to move right one tape cell (in order to pick up the symbol (¢, + 1) and compare it with
the symbol z(1,j + 1)). It will be obvious that M; accepts T.

We next show that Ty ¢ 2-PTM?*(L(n)) with L(n) = o(logn). Suppose to the contrary that there exists a 2-ptm M
recognizing T; with error probability € < % For large n, let

e U(n) = the set of all the n-chunks over {0,1},
o W(n) = {0,1}(m~=1*"_where m, = 2" + 1, and
o V(1) = {chm,m (w1, w2)|lwi € W(n) &wy € {0} xmn=nl},

We shall below consider the computations of M on the input tapes of side-length m,. For large n, let C(n) be the set
of all the storage states of M using at most L(m,) storage tape cells, and let c(n) = |C(n)|. Then c(n) = bL(m=) for some
constant b. Consider the chunk probabilities p(v, o, 7) defined above. For gach (mp,n)-chunk v in V(n), there are a total of

“d(n) = e(n) x [PT(u(#))] x (c(n) x [PT(u(#))| +3) = 0(n2t”"‘"))

chunk probabilities for some: constant t. Fix some ordering of the pairs (o, 7) of starting a.nd stoppmg conditions and let
p(v) be the vector of these d(n) probabilities according to this ordering.

We first show that if v € V(n) and if p is a nonzero element of p(v), then p > 2~ C(”)“(") where a(n) {PS(v(#))| =
O(m?2) = O(e™) for some constant e.

Form a Markov chain K(v) with states of the form (s,l), where s is a storage state of M and le PS(w(#))U PT(v(#))
The chain state (s,1) with | € PS(v(#)) corresponds to M being in storage state s scanning the symbol at position I of
v(#). Transition probabilities from such states are obtained from the transition probabilities of M in the obvious way. For
example, if the symbol at position (i,7) of v(#) is 0, and if M in storage state s reading a 0 can move its input head left
and enter storage state s' with probability 1/2, then the transition probability from state (s, (i,7)) to state (s', (4,5 — 1)) is
1/2. Chain states of the form (s, (4,7)) with (z ]) € PT(v(#)) are trap states of K(v) and correspond to M just having
exited from v(#) in storage state s at exit point (i, (i, 7) of v(#). Now consider, for example, p = p(v, 0, T), where o = (s, @ 4))
and 7 = (¢, (k,1)) with (3,7), (k,!1) € PT(v(#)). If p > 0, then there must be some path of nonzero probability in K (v)
from (s, (4, 7)) to (&', (k,1)), and since K(v) has at most c(n)a(n) nontrapping states, there is such a path of length at most
¢(n)a(n). Since 1/2 is the smallest nonzero transition probability of M, it follow that p > 2~ ena(n), 1If ¢ = (s,(4,4)) with
(4,7) € PT(v(#)) and 7 = Loop, there must be a path of nonzero probabxhty in K(v) from state (s, (i,j)) to some state
(s',(i',4")) such that there is no path of nonzero probability from (s',(i',5')) to any trap state of the form (s" ,(k, 1)) with
(k,1) € PT(v(#)). Again, if there is such a path, there is one of length at most c(n)a(n). The remaining cases are similar.

For each v = ch(m, n)(w1, wz) € V{n), let

contens(v) = {u € U(n)|u = wi{(i, 1}, ({,n)] for some (1 <4 < 2")}.

Divide V(n) into contents-equivalence classes by making v and v' contents-equivalent if contents(v) = contents(v'). There

are .
an\  [2n o2
content_s(n)—(1>+<2>+...+(2n)—2 1

contents-equivalence classes of (ny,, n)-chunks in V(n). (Note that contents(n) corresponds to the number of all the nonempty
subsets of U(n).) We denote by CONTENTS(n) the set of all the representatives of these contents(n) contents-equivalence
classes. Of course, CONTENTS(n)| = contents(n). Divile CONTENTS(n) into M-equivalence classes by making v and
v' M-equivalent if p(v) and p(v’) are zero in exactly the same coordinates. Let E(n) be a largest M-equivalence class. Then
we have

|E(n)| > contents(n) /29,

Let d'(n) be the number of nonzero coordinates of p( ) for v € E(n). Let p(v) be the d'(n)-dimensional vector of nonzero
coordinates of p(v). Note that p(v) € [2-¢(maln) 1}4'(") for all v € E(n). Let log p(v) be the componentwise log.of plv).
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Then, log p(v) € [—c(n)a(n),OJd'("). By dividing each coordinate interval [—c(n)a(n),0] into subintervals of length y, we
divide the space [—c(n)a(n), 0]% (™ into at most (c(n)a(n)/u)%") cells, each of size s X & X ... X u. We want to choose p so
large enough that the number of cells is smaller than the size of E(n), that is, :

(el < 25 < ) 0

Concretely, we choose p = 27". (From the assumption that L(n) = o(logn), we have L(m,) = o(logm,). Thus, L(m,) =
o(n). From this, by a simple calculation, we can easily see that for large n, (1) holds for p = 2~"). Assuming (1), there must
be two different (my,, n)-chunks v,v' € E(n) such that log p(v) and log p(v’) belong to the same cell. Therefore, if p and p’
are two nonzero probabilities in the same coordinate of p(v) and p(v'), respectively, then

llog p —log p'| < .

It follows that p and p’ are 2#-close. Therefore, p(v) and p(v’) are componentwize 2*-close.
For this v and v/, we consider an n-chunk u € contents(v) — contents(v'). We describe two Markov chains, R and R/,
which model the computations of M on v[u] and v'[u], respectively. The state space of R is

C(n) x (PT(v(#)) U PT(u(#))) U {Accept,Reject,Loop}.
Thus the number of states of R is
z=c(n)(n+3+n+3)+3=2(n)(n+3)+3.

The state (8,(5,4)) € c(n) x PT(v(#)) of R corresponds to M just having entered uv(#) in storage state s from entrance
point (4, 7) of v(#), and the state (s, (k,!)’) € c(n) X PT(u(#)) of R corresponds to M just having entered u(#) in storage
state s’ from entrance point (k,!)' of u(#). For convenience sake, we assume that M begins to read any input tape z in the
initial storage state sy = (qo, A, 1), where g is the initial state of M, by entering z(1,1) from the lower edge of the cell on

which z(1,1) is written. Thus, the starting state of R is Initial2 (80,(2,1)7). The states Accept and Reject correspond to
the computations halting in the accepting state and the rejecting state, respectively, and Loop means that M has entered
an infinite loop. The transition probabilities of R are obtained from the chunk probabilities of M on u(#) and v(#).
For example, the transition probability from (s, (i,7)) to (s',(k,1)") with (2,]) € PT(v(#)) and (k,l)’ € PT(u(#)) is just
p(v, (s, (z i), (', (k, 1)), the transition probability from (s, (k, l) ) to (s, (1,7)) with (7, ) € PT(v(#)) and (k,I)’ € PT(u(#))
is p(u, (', (k,1)"), (g, (,7)")), the transition probability from (s, (,4)) to Accept is p(v, (s, (4, j)),Accept), and the transition
probability from (s',(k,1)") to Accept is p(u, (s', (k,1)"),Accept). The states Accept, Reject, and Loop are trap states. The
chain R’ is defined similarly, but using v'[u] in place of v[u].

Let acc(v[u})"(resp., acc(v'[u])) be the probability that M accepts input v[u] (resp acc(v'[u])). Then, acc(vlu]) (resp.,
acc(v'[u])) is exactly the probability that the Markov chain R (resp., R') is trapped in state Accept when started in state
Initial. From the fact that-v[u] is in T3, it follows that acc(v{u]) > 1 — €. Since R and R’ are 2¥-close, Lemma 3.1 implies
that

ace(v'[u]) _ ,-2us
ace(v(u]) 22

272#% approaches 1 as n increases. Therefore, for large n, we have
ace(v'[u]) > 275 (1 —¢) > =

because € < 1. This is a contradiction, because v'[u] ¢ T}. g

We conjecture that there is a set in 2-PFA’, but not in 2-AFA°®. The candidate set is Tp = {z € {0,1}"**|n > 2 & (the
numbers of 0’s and 1’s in z are the same)}. By using the idea in [4], we can show that T} is in 2-PFA®. But, we have no
proof of “Ty ¢2-AFA®”.

4. Space hierarchy between loglogn and logn

This section shows that there is an infinite space hierarchy for 2-ptm’s with error probability less than % whose spaces
are between loglogn and logn.

A two-dimensional deterministic Turing machine (2-dtm) is a two-dimensional analogue of the two—wa.y deterministic
Turing machine [7], which has one read-only input tape and one semi-infinite read-write storage tape, with the exception
that the input head moves left, right, up or down on the two-dimensional tape. The 2-dtm accepts an input tape z if it
starts in the initial state with the input head on the upper left-hand corner of z, and eventually enters an accepting state.
See [9,16] for the formal definition of 2-dtm’s.

Let L(n) : N = N U {0} be a function. A 2-dtm M is strongly L(n) space-bounded if it uses at most L(n) cells of the
storage tape for each n > 1 and each input tape = with I;(z) = lo(z) = n. Let strong 2-DTM?(L(n)) be the class of sets of
square tapes accepted by strongly L(n) space-bounded 2-dtm’s. i

A function L(n) : N — N U {0} is space-constructible by a two-dimensional Turing machine (2-tm) if there is a strongly
L(n) space-bounded 2-dtm M such that for each n > 1, there exists some input tape z with ly(z) = lo(z) = n on which M
halts after its storage tape head has marked off exactly L(n) cells of the storage tape. In this case, we say that M constructs
the function L(n). » i
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Let Xy, Xy be finite sets of symbols. A projection is a mapping 7 : z:?’ — Egz) which is obtained by extending the
mapping 7 : Xj = Xy as follows: .

(i) Ik(z) = U(2) for each k = 1,2, and
Fz) =o' o | (i) 7(2(i,5)) =2'(i,5) for each (i,5)(1 <i < l()
and 1 < j < ly(z)).

Theorem 4.1 If L(n) is space-constructible by a 2-tm, loglogn < L(n) < logn, and L'(n) = o(L(n)), then, there exists a
set in strong 2-DTM?®(L(n)), but not in 2-PTM?*(L'(n)).

Proof. Let L : N = N be a function space-constructible by a two-dimensional Turing machine such that loglogn < L(n) <
logn (n > 1), and M be a strongly L{n) space-bounded 2-dtm which constructs the function L, and T[L, M) be the following
set, which depends on L and M:

TIL,M] = {z € (Z x {0,1)P|3n > 2 [li(z) = la(z) = n & 3r(r < L(n)) [(when the tape hy(z) is presented to M, it uses r
cells of the storage tape and halts) & 3i(2 < i < n)[ha(=((1,1), (1,)]) = ha(2[(i,1), (i, 7)])]]]}, where ¥ is the input alphabet
of M, and h; (hs) is the projection obtained by extending the mapping hy : X x {0,1} = ¥ (k2 : ¥ x {0,1} — {0,1}) such
that for any ¢ = (a,b) € & x {0,1}, h1{c) = a (hz(c) = b).

We first show that T[L, M] € strong 2-DTM*(L(n)). The set T[L, M] is accepted by a strongly L(n) space-bounded
2-dtm M, which acts as follows. When an input tape z € (Z x {0,1})® with I1(z) = l2(z) = n,n > 2, is presented to M;,
M directly simulates the action of M on h;(z). If M does not halt, then Mj also does not halt, and will not accept z.
If M, finds out that M halts (in this case, note that M; has used at most L(n) cells of the storage tape, because M is a

strongly L(n) space-bounded), then M; checks by using the non-blank part of the storage tape that ha(z) is a desired form.
M, enters an accepting state only if this check is successful. .

We next show that T[L, M] ¢ 2-PTM*(L'(n)), where L'(n) = o(L(n)). For each n > 1, let t(n) € £ be a fixed tape
such that (i) l1(¢(n)) = l2(t(n)) = n and (ii) when t(n) is presented to M, M marks off exactly L(n) cells of the storage tape
and halts. (Note that for each n > 1, there exists such a tape #(n), because M constructs the function L.) Now, suppose
that there exists a 2-ptm M, recognizing T[L, M] with error probability € < . We can derive a contradiction by using the
same idea as in the proof of Theorem 3.1. The main difference is

(i) to replace

. “U(n) = the set of all the n-chunks over {0,1}”,

o “W(n) = {0,1}(m=~1)xn_where m, = 2" + 17,

e “V{(n) = {chim, n)(wi,wa)lw) € W(n) & w; € {0}’"""(’""_")}”,

e “c(n) = |C(n)| = b5(™=) for some constant 5",

o “d(n) = c(n) x [PT(v(#))| x (c(n) x |[PT(v(#))| + 3) = O(n?tHm=))”,

o “p>27Ma(n) where a(n) = |PS(v(#))] = O(mZ) = O(e"™) for some constant e”,

o “for each v = ch(p,, n)(w1,w2) € V(n), ‘
contens(v) = {u € U(n)|u = w1[(4,1), (¢,n)] for some i(1 < i < 2")}7,

o “contents(n) = (§) + (%) + ...+ (%) = 2" — 1 contents-equivalence classes of (mn,n)-chunks in V(n)”,

o “py=2"""

¢ “n-chunk u € contents(v) — contents(v')”, and

o “2=c(n)(n+3+n+3)+3=2c(n)(n+3)+3",

in the prdof of Theorem 3.1, with

e “U(n) = the set of all the L(n)—chunks v over & x {0, 1} such that h;(x) = t(n)[(1, 1), (1, L(n))]",
o “W(n) = {w € (T x {0,1})= VLM Ry (w) = t(n)((2, 1), (n, L(n))]}",
. “V(n) = {chin,L(n) (w1, w2)| wy € W(n) & (wy is a tape in
(T x {0})*(m=L(M) such that hy(wz) = t(n)[(1, L(n +1)), (n,n)])}",
e “c(n) = |C(n)| = b¥'(® for some constant b”,
o “d(n) = c(n) x |PT(v(#))] x (c(n) x |PT(v(#))] + 3) = O(L(n)%¥ ™M) for some constant ¢”,
o “p 227, where a(n) = |PS(v(#))| = O(n?)”, ‘
o “for each v = chn 1(n))(w1,w2) € V(n), contents(v) = {u € U(n)|u = wl[(i, 1), (4, L(n))] for some i(1'< i<n-1)}",

(ul(n)) TR (2::)) i 9Ln) Sn_1

(2L1(n)) +...+ (322:;) =22 _q otherwise
contents-equivalence classes of (n, L(n))-chunks in V(n)”,

o 4y — 2—L(n)n‘, o :

contents(n) = {

o “L(n)-chunk u € contents(v) — contents(v')”, and
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o “z=c(n)(L(n) + 3+ L(n) +3) + 3 = 2¢(n)(L(n) +3) + 3",
respectively, and

(ii) to consider the computations on the input tapes of side-length n and on (n, L(n))-chunks, instead of considering the
computations on the input tapes of side-length m,, and on (mp,n)-chunks. ’

The details of the proof is left to the reader as an exercise. We note that by making a simple calculation, we can easily
ascertain that :

v e(n)a(n)\4™  contents(n)
(-T—) < —am (S IEM) ‘ ' :

for large n and for our new ¢(n), a(n), d(n), i, and contents(n), because loglogn < L(n) < logn and L'(n) = o(L(n)). s
Since (loglogn)¥, k > 1, is space-constructible by a 2-tm (in fact, (loglog n)* is space-constructible by one-dimensional
Turing machine [7]), it follows from Theorem 4.1 that the following corollary holds. : : )

Corollary 4.1 For any integer k > 1,
2-PTM*((log log n)¥) ; 2-PTM?((log log n)**1).

Remark 4.1 It is well-known [7] that, in the one-dimensional case, there exists no space-constructible function which )
grows more slowly than the order of loglogn. On the other hand, Morita et al, [15] and Szepietowski [22] showed that the
function log®(n) (k > 1),log* n and log® log* n are all space-constructible by a two-dimensional Turing machine, where
these functions are defined as follows: ' ' ‘

. 0 (n=0)
log ") n = { flogyn] (n > 1)

log*+Vn = logM (log®¥ n) for k > 1
exp*0=1, exp*(n+1) = 2°9P"
log*n = min{z|exp*z > n}

It is shown in [10,11,16] that for two-dimensional (deterministic, nondeterministic and alternating) Turing machines whose
input tapes are restricted to square ones, log(") space-bounded machines are more powerful than log(kH) space-bounded ma-
chines (k > 1). We conjecture that for each k > 2, 2-PTM?(log(F+1) n) ; 2-PTM*(log*) n)), but we have no proof of this
conjecture.

5. Conclusion

We conclude this paper by giving the following open problems.

(1) For what L(n), is there a set in 2-PFA®, but not accepted by any L(n) space-bounded two-dimensional alternating
Turing machine? '

(2) Is there an infinite space hierarchy for 2-ptm’s with error probability e < % whose spaces are below log log n?

It will be also interesting to investigate the relationship among the accepting powers of 2-ptm’s with error probability
€< %, 2-atm’s with only universal states, and two-dimensional nondeterministic Turing machines [9]. We will discuss this
topics in a forthcoming paper. i
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