
Predicting like the best pruning of a decision tree
ba..sed on. the on-line DP

Eiji Takimoto Akira Maruoka Volodya Vovk
瀧本英二 丸岡章

Graduate School of Information Sciences Department of Computer Science
Tohoku University Royal Holloway, University of London

$\{\mathrm{t}2, \mathrm{m}\mathrm{a}\mathrm{r}\mathrm{u}\mathrm{o}\mathrm{k}\mathrm{a}\}@\mathrm{e}\mathrm{C}\mathrm{e}\mathrm{i}.\mathrm{t}\mathrm{o}\mathrm{h}\mathrm{o}\mathrm{k}\mathrm{u}.\mathrm{a}\mathrm{c}.\mathrm{i}\mathrm{p}$ vovk@dcs.rhbnc.ac.uk

Abstract
Helmbold and Schapire gave an on-line prediction algorithm that, when given an unpruned decision

tree, produces predictions not much worse than the predictions made by the best pruning of the given
decision tree. In this paper, inspired by the idea that finding the best pruning can be efficiently solved
by a dynamic programming in the “batch” setting where all the data to be predicted are given in
advance, we give a new prediction algorithm. This algorithm works well for a wide class of loss
functions, whereas the one given by Helmbold and Schapire works only for the absolute loss function.
Moreover, our algorithm is so simple and general that it could be applied to many other on-line
optimization problems solved by dynamic programming.

1 Introduction
Decision trees are widely used in the field of artificial intelligence and machine learning as natural ways
of representing decision rules. Especially, in the computational learning theory communities, inferring a
decision tree from given data is one of the most important problems, which has been widely investigated
in various learning models. In particular, decision trees are shown to be PAC learnable with the aid
of membership queries [1], while it remains open whether they are PAC learnable without membership
queries. On the other hand, many experimental algorithms for inferring decision trees such as the C4.5
software package [13] have been proposed. Although super-polynomial lower bounds in the sense of PAC
learning were proven for a wide class of algorithms including C4.5 [2], such algorithms are extensively used
for various problems in machine learning because of their efficiency and simplicity. The performance of
top-down learning algorithms for decision trees such as C4.5 was analyzed, and a theoretical explanation
of empirically successful heuristics of these algorithms was given [10].

Many experimental algorithms mentioned above involve two phases. In the first phase, a decision tree
that is consistent with the given data is constructed. The tree obtained here is typically too large resulting
in “over-fitting” the data, and the performance of predicting the test data is not always satisfactory.
Therefore, in the second phase, the tree is pruned by replacing some internal nodes (and associated
subtrees) with leaves so as to reduce the over-fitting. It is often observed that the pruned tree, in spite
of losing the consistency with the data, improves the quality of prediction.

Helmbold and Schapire gave in some sense a nearly optimal pruning algorithm [9]. In particular, they
gave an on-line prediction algorithm using a given unpruned decision tree and showed that its performance
will not be much worse than that of the best pruning of the given decision tree. Reund, Schapire, Singer
and Warmuth extended the result to the problem of pruning a decision graph [7].

In this paper, we give a new algorithm for predicting nearly as well as the best pruning of a decision
tree. Our algorithm is based on the observation that finding the best pruning can be efficiently solved by a
dynamic programming in the “batch” setting where all the data to be predicted are given in advance. The
performance of this DP algorithm is as good as that of Helmbold and Schapire’s algorithm with respect
to the loss bound for the absolute loss function; besides, the DP algorithm works for a wide class of loss
functions, whereas Helmbold and Schapire’s algorithm only works for the absolute loss function. The DP
algorithm are based on the Aggregating Algorithm, which combines predictions made by several experts
to make its own predictions so that the loss is not much larger than the loss of the best expert (see also [3]

数理解析研究所講究録
1041巻 1998年 191-198 191

and [17] $)$. In particular, for efficient implementation of our idea, we extend the notion of the Aggregating
Algorithm to have the Aggregating Pseudo-Algorithm (APA), which gives a “first approximation” to
the Aggregating Algorithm by combining and generating not the “genuine” predictions but what we call
the pseudopredictions. The DP algorithm assigns the APA to each node of the given tree \mathcal{T} so that it

combines the pseudopredictions coming from the child APAs and generates its own pseudoprediction sent
to the parent APA. This recursive application of the APA is a quite straightforward implementation of
the dynamic programming in that minimizing the loss at a node can be done by recursively minimizing
the losses at the child nodes. Our technique is so simple and general that it could be applied to many
other on-line optimization problems solved by dynamic programming.

2 Preliminaries
A decision tree \mathcal{T} is a rooted tree where every node u is labeled with an element $V(u)$ of a set $\hat{\mathrm{Y}}$ called
the prediction space. Assume that there is an instance space and each instance x induces a path from the
root to a leaf of \mathcal{T} . The path is denoted by path(x) and the leaf l in path(x) is denoted by $l=1\mathrm{e}\mathrm{a}\mathrm{f}\tau(x)$.
Then, \mathcal{T} defines a decision rule that maps each instance x to the prediction $V(1\mathrm{e}\mathrm{a}\mathrm{f}\tau(x))$. A pruning \mathcal{P}

of the decision tree \mathcal{T} is a tree obtained by replacing zero or more of the internal nodes (and associated
subtrees) of \mathcal{T} by leaves. The pruned tree P induces a decision tree that for instance x makes its prediction
$V(1\mathrm{e}\mathrm{a}\mathrm{f}_{\mathcal{P}())}x$. The set of all prunings of \mathcal{T} is denoted by PRUN (\mathcal{T}) .

We study learning in the on-line prediction model, where an algorithm is required not to actually
prune the tree but to make predictions for a given instance sequences based on a given decision tree
\mathcal{T} . The goal is to make predictions that are competitive with those made by the best pruning of \mathcal{T} . In
essence, this is the framework introduced by Littlestone and Warmuth $[11, 12]$ and developed further by
many researchers in various settings [4, 5, 6, 8, 15, 16]. Below we state the model in a general form.
A prediction algorithm A is given as input a template tree \mathcal{T} . At each trial $t=1,2,$ \ldots , algorithm A

receives an instance x_{t} and generates a prediction $\hat{y}_{t}\in\hat{Y}$. After that, an outcome $y_{t}\in Y$ is observed
(which can be thought of as the correct classification of x_{t}), where Y is a set called the outcome space.
At this trial, the algorithm A suffers loss $\lambda(y_{t},\hat{y}_{t})$, where λ : $Y\cross\hat{Y}arrow[0, \infty]$ is a fixed loss function. We
will call the triple (Y,\hat{Y}, λ) our game. One of the most popular games is the absolute-loss game where
$Y=\{0,1\},\hat{Y}=[0,1]$ and $\lambda(y,\hat{y})=|y-\hat{y}|$. Our algorithm works for a wide class of games including the
absolute-loss game, whereas Helmbold and Schapire’s algorithm only works for the absolute-loss game.
The (cumulative) loss of A for outcome sequence $y=(y_{1}, \ldots, y\tau)\in Y^{*}$, denoted $L_{A}(y)$, is defined as

$L_{A}(y)= \sum_{t=1}^{T}\lambda(y_{t},\hat{y}t)$.

Similarly, for a pruning \mathcal{P} of \mathcal{T} , the loss of P for $y\in Y^{T}$ is defined as

$Lp(y)= \sum_{1t=}^{T}\lambda(yt, V(1\mathrm{e}\mathrm{a}\mathrm{f}p(x_{t})))$.

The performance of A is measured by the relative loss compared with the loss of the optimal P for the
given instance and outcome sequences x and y .

3 Aggregating Algorithm

Helmbold and Schapire’s algorithm and our algorithm are based on the Aggregating Algorithm (AA for
short), which is a master algorithm that combines the predictions made by several experts and makes
its own predictions so that the loss is not much larger than the loss of the best expert [15]. The AA
can be conveniently defined in terms of the Aggregating Pseudo-Algorithm, or APA (cf. [17]), which
is a “first approximation” to the AA generating not “genuine” predictions $\hat{y}\in\hat{\mathrm{Y}}$ but what we call
pseudopredictions. (Explicit consideration of the APA is essential for efficient implementation of our idea
inspired by dynamic programming.) The pseudoprediction is then transformed to a genuine prediction

192

Figure 1: $\mathrm{A}\mathrm{P}\mathrm{A}(\beta)$

by the substitution function. In this paper, we extend the notion of the APA so that it combines not only
the genuine predictions but also the pseudopredictions. This enables us to apply the APA recursively
so that an APA combines the pseudopredictions generated by the child APAs and generates its own
pseudoprediction that will be passed to the parent APA. In this section, we describe the AA using the
notion of the APA and the substitution function.

First we extend the notion of a (genuine) prediction so that every prediction $\xi\in\hat{Y}$ is identified with
the function on the outcome space Y whose value $\xi(y)$ for $y\in Y$ equals the loss $\lambda(y, \xi)$ suffered by this
prediction when the true outcome is y . Here we are using ξ to denote two different objects: the prediction
in $\hat{\mathrm{Y}}$ and the function on Y describing the potential losses suffered by this prediction. More generally,
we define a pseudoprediction ξ to be an arbitrary function that maps every $y\in Y$ to a non-negative real
values $\xi(y)$, which is interpreted as the loss of ξ for outcome y . Note that a genuine prediction $\xi\in\hat{Y}$ is
a special form of a pseudoprediction, i.e., $\xi(y)=\lambda(y, \xi)$.

Assume that there are N experts $\mathcal{E}=\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{N}\}$. The APA combining the experts \mathcal{E} behaves as
follows. It maintains a weight $w_{i}^{t}\in[0,1]$ for each expert \mathcal{E}_{i} that reflects the actual performance of the
expert \mathcal{E}_{i} until time t . Initially (at time $t=1$), some positive weights $w_{i}^{t}=w_{i}^{1}$ are assigned to the experts
(often it is convenient not to assume that the weights are normalized). At each trial t , every expert \mathcal{E}_{i}

makes a pseudoprediction ξ_{i}^{t} for the given $\mathrm{i}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{C}\dot{\mathrm{e}}x_{t}$, and gives it to the APA. Then, the $\mathrm{A}\mathrm{P}\mathrm{A}$

. outputs
the pseudoprediction r_{t} which is a “weighted average” of ξ_{i}^{t} ,

$r_{t}(y)= \log_{\beta}\sum^{N}i=1\beta\xi^{l}i(y)\overline{w}_{i}^{t}$, $y\in Y$ (1)

(recall that $\xi_{i}^{t}(y)=\lambda(y,$ $\xi_{i}^{t})$ if ξ_{i}^{t} is a genuine prediction), where \overline{w}_{i}^{t} are the normalized weights:

$\overline{w}_{i}^{t}=\frac{w_{i}^{t}}{\sum_{i=1i}^{N}w^{t}}$.

Here, $\beta\in$] $0,1$ [is the parameter of the APA, and so the APA will sometimes be written as $\mathrm{A}\mathrm{P}\mathrm{A}(\beta)$ in
order to explicitly specify β . After receiving the correct classification $y_{t}\in \mathrm{Y}$, the APA updates the
weights according to the rule $w_{i}^{t+1}=w_{i}^{t}\beta^{\xi_{i}^{\iota}()}yt$ (so the larger the expert $\mathcal{E}_{i}’ \mathrm{s}$ loss is, the more its weight
decreases). The initial weight w_{i}^{t} of the experts are given to the APA in advance and are not necessarily
equal. Summarizing, we give in Figure 1 the description of $\mathrm{A}\mathrm{P}\mathrm{A}(\beta)$ (with the equal initial weights).

The loss of \mathcal{E}_{i} and that of $\mathrm{A}\mathrm{P}\mathrm{A}(\beta)$ for outcome sequence $y\in Y^{T}$ are denoted by

$L_{i}(y)= \sum_{=t1}\xi i(ty_{t})T$

193

and

$L_{\mathrm{A}\mathrm{P}\mathrm{A}(\beta)}(y)= \sum_{1t=}r_{t}(yt\tau)$,

respectively. The following theorem gives an upper bound of the loss of $\mathrm{A}\mathrm{P}\mathrm{A}(\beta)$ in terms of the loss of
the best expert.

Theorem 1 ([17]; implicitly [15]) Let $0<\beta<1$. Then, for any N experts \mathcal{E} and for any $y\in Y^{*}$,

$L_{\mathrm{A}\mathrm{P}\mathrm{A}} \beta)((y)\leq_{i\in\{}\min_{1,\ldots,N\}}(L_{i}(y)+\frac{\ln(1/\overline{w}_{i}^{1})}{\ln(1/\beta)})$,

where \overline{w}_{i}^{1} are the normalized initial weights of the experts.

Of course, the above theorem would say nothing if no restrictions on pseudopredictions are imposed,
because it is too easy to achieve the ideal performance for an algorithm that is allowed to always make
the identical 0 as its own pseudopredictions. However, if all the experts generates genuine predictions,
the APA outputs pseudopredictions that are mixtures, in some sense, of them, and the loss bound for
the APA implies the loss bound for the AA given by Theorem 2 below.

Let us say that a pseudoprediction r is a β -mixture if

$r(y)= \log_{\beta}\sum_{i=1}\beta^{\lambda(}y,\epsilon.)v_{i}n$

for some n , some predictions $\xi_{i}\in\hat{Y},$ $i=1,$ $\ldots,$
n , and some normalized weights $v_{i}>0,$ $\sum_{i=1}^{n}v_{i}=1$.

Notice that if all experts always output genuine predictions, the APA will always output mixtures. More
generally, the next lemma says that if all experts always output β-mixtures, the APA will always output
β-mixtures as well.

Lemma 1 Let $\xi_{1},$
$\ldots,$

ξ_{n} be any β-mixtures and let $v_{1},$ $\ldots,$ v_{n} be any non-negative normalized weights,
$\sum_{i=1}^{n}v_{i}=1$. Then, the function r defined as

$r(y)= \log_{\beta}\sum_{i=1}n\beta^{\xi(y}i)vi$

is a β-mixture.

Now we define the mixability curve $c(\beta)$ of the game $(\mathrm{Y},\hat{Y}, \lambda)$. For any $\beta\in$] $0,1$ [, we put

$c(\beta)=\sup\min_{yr\hat{y}\in\hat{\mathrm{Y}}}\sup_{Y\in}\frac{\lambda(y,\hat{y})}{r(y)}$,

where r ranges over all β-mixtures1. Generally, there is no β satisfying $c(\beta)<1$. For the absolute-loss
game, for example, the mixability curve is $c(\beta)=\ln(1/\beta)/2\ln(2/(1+\beta))$, which is greater than 1 for
every β . However, many important games including the square-loss game, the \log-loss game, etc., one
can choose β so that $c(\beta)=1$. A β -substitution function is a function Σ_{β} that maps every β-mixture r

to a prediction $\Sigma_{\beta}(r)\in\hat{Y}$ which satisfies for any $y\in \mathrm{Y}$

$\lambda(y, \Sigma_{\beta}(r))\leq c(\beta)r(y)$. (2)

Not that by the definition of the mixability curve, we can always find a substitution function.
Now we are ready to describe the AA (although it will not be used in this paper). The AA behaves

just like the APA except that the AA outputs not the pseudoprediction r_{t} but the genuine prediction
$1_{\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{l}\mathrm{y}}$, we have to put some assumptions on the game (Y,\hat{Y}, λ) in order to claim that such the value $c(\beta)$ exists. The

assumptions are so natural that they are satisfied by many popular games. For further details, see [17].

194

$\hat{y}_{t}=\Sigma_{\beta}(r_{t})$. Suppose that all experts always outputs β-mixtures. Then, Lemma 1 and inequality (2)
says that the loss of the AA for $y\in Y^{T}$, denoted $L_{\mathrm{A}\mathrm{A}(\beta)}(y)$, is upper bounded by

$L_{\mathrm{A}\mathrm{A}(\beta)}(y)= \sum_{t=1}^{T}\lambda(y, \Sigma_{\beta}(r_{t}))\leq c(\beta)\sum_{1t=}^{\tau}rt(y_{t})=c(\beta)L\mathrm{A}\mathrm{P}\mathrm{A}(\beta)(y)$.

Therefore, Theorem 1 implies the upper bound of the loss of the $\mathrm{A}\mathrm{A}$.

Theorem 2 ([15]) Let $0<\beta<1$. Then, for any N experts \mathcal{E} that generate β-mixtures and for any
$y\in Y^{*}$,

$L_{\mathrm{A}\mathrm{A}(\beta)}(y) \leq c(\beta)i\in\{^{\min_{N}}1,\ldots,\}(L_{i}(y)+\frac{\ln(1/\overline{w}_{i}^{1})}{\ln(1/\beta)})$. (3)

Note that since the genuine prediction $\xi\in\hat{Y}$ is a β-mixture (indeed, we have $\xi(y)=\log_{\beta}\sum_{i=1}^{n}\beta^{\lambda}(y,\xi i)v_{i}$

with $n=1,$ $\xi_{1}=\xi$ and $v_{1}=1$), the AA combines and generates the genuine predictions so that the loss
is upper bounded by inequality (3).

4 A prediction algorithm based on dynamic programming
In this section, we give a new prediction algorithm that performs nearly as well as the best pruning of a
decision tree. The idea of our algorithm comes from the fact that the best pruning for a given instance
sequence x and outcome sequence y can be effectively computed by a dynamic programming provided
that x and y are known in advance.

For a node u , let \mathcal{T}_{u} denote the subtree of \mathcal{T} rooted at u , and let child(u) denote the set of child nodes
of u . More precisely, \mathcal{T}_{u} is defined inductively as follows: If u is a leaf of \mathcal{T} , then \mathcal{T}_{u} is the leaf u itself,
and if u is an internal node of \mathcal{T} , then \mathcal{T}_{u} is the tree whose root u is connected with the subtrees \mathcal{T}_{v} for
$v\in \mathrm{c}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{d}(u)$. Let R denote the root of T . Note that we have $\mathcal{T}_{\mathrm{R}}=\mathcal{T}$. For an outcome sequence $y\in Y^{*}$,
the loss suffered at u is denoted by $L_{u}(y)$. That is,

$L_{u}(y)=$ \sum $\lambda(y_{t}, V(u))$.
$t:u\in \mathrm{p}\mathrm{a}\mathrm{t}\mathrm{h}(x_{\iota})$

Then, for any pruning \mathcal{P}_{u} of \mathcal{T}_{u} , the loss suffered by P_{u} , denoted $L_{P_{v}}(y)$, can be represented by the sum
of $L_{i}(y)$ for all leaves l of P_{u} . In other words, we can write $L_{\mathcal{P}_{u}}(y)=L_{u}(y)$ if P_{u} consists of a single leaf
u and $L_{P_{u}},(y)= \sum_{v\in \mathrm{C}\mathrm{h}:1\mathrm{d}}(u)pLv(y)$ otherwise. Here, \mathcal{P}_{v} is the subtree of \mathcal{P}_{u} rooted at v , and it is also a
pruning of \mathcal{T}_{v} . Since the losses $L_{P_{v}}(y)$ for $v\in \mathrm{c}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{d}(u)$ are independent of each other, we can minimize
the loss $L_{P_{u}}(y)$ by minimizing each loss $L_{P_{v}}(y)$ independently. Therefore, we have for any internal node
u of \mathcal{T} ,

$\min_{P_{u}\in \mathrm{P}\mathrm{R}\mathrm{U}\mathrm{N}(\tau_{u})}L,Pu(y)=\min\{L_{u}(y),\sum_{:1\mathrm{d}(u\rangle}\min_{\mathrm{R}\mathrm{U}\mathrm{N}(\tau_{v})}Lpvv\in \mathrm{c}\mathrm{h}\mathcal{P}v\in \mathrm{p}(y)\}$. (4)

Since dynamic programming can be applied to solve the minimization problem above, we can efficiently
compute P_{R} that minimizes $L_{P_{\mathrm{R}}}(y)$, which is the best pruning of \mathcal{T} .

Now we construct an on-line version of the dynamic programming. The key idea is to associate the
APA and two mini-experts $\mathcal{E}_{u}=\{\mathcal{E}_{u\perp}, \mathcal{E}_{u\downarrow}\}$ with each internal node u of \mathcal{T} , one $\mathcal{E}_{u\perp}$ generating $V(u)$

and the other $\mathcal{E}_{u\downarrow}$ generating the pseudoprediction of the subtrees below u , and to apply the APA at
u , denoted $\mathrm{A}\mathrm{p}\mathrm{A}_{u}(\beta)$, that combines these two pseudopredictions to obtain its own pseudoprediction r_{u}^{t}

at u . Recall that the genuine prediction $V(u)$ is regarded as a pseudoprediction. More precisely, when
given an instance x_{t} that goes through u and $v\in \mathrm{c}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{d}(u)$, the second expert $\mathcal{E}_{u\downarrow}$ generates $\gamma^{t}v$

’ i.e., the
pseudoprediction made by $\mathrm{A}\mathrm{p}\mathrm{A}_{v}(\beta)$, the APA at node v . Then, taking the weighted average of $V(u)$

and r_{v}^{t} according to equation (1), $\mathrm{A}\mathrm{p}\mathrm{A}_{u}(\beta)$ obtains the pseudoprediction r_{u}^{t} at u . To obtain the genuine
prediction \hat{y}_{t} , our algorithm applies the β-substitution function to the pseudoprediction at the root, that
is, $\hat{y}_{t}=\Sigma_{\beta}(r_{\mathrm{R}}t)$.

The algorithm using the AA instead of the APA was analyzed in the conference version [14] of this
paper. However, as seen in the previous section, application of the substitution function turned out to

195

Figure 2: $\mathrm{A}\mathrm{p}\mathrm{A}_{u}(\beta)$

be the most inefficient step in the AA (it leads to multiplying the loss bound by $c(\beta)$), we perform it
only once during every trial (at the very end of the trial); in the internal nodes we combine not genuine
predictions but pseudopredictions using the APA.

We give the APA at node u in Figure 2 and the prediction algorithm $\mathrm{D}\mathrm{P}(\beta)$ that controls the APAs
in Figure 3.

Let the loss suffered by $\mathrm{A}\mathrm{p}\mathrm{A}_{u}(\beta)$ be denoted $\hat{L}_{u}(y)$. That is,

$\hat{L}_{u}(y)=\sum_{\mathrm{t}t:u\in \mathrm{p}\mathrm{a}\mathrm{h}(xt)}r_{u}^{t}(y_{t})$
.

Since the first expert $\mathcal{E}_{u\perp^{\mathrm{s}\mathrm{u}}}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{S}$the loss $L_{u}(y)$ and the second expert $\mathcal{E}_{u\downarrow}$ suffers the loss $\sum_{v\in \mathbb{C}}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{d}(u\rangle^{\hat{L}}v(y)$,
Theorem 1 says that for any internal node u of \mathcal{T} ,

$\hat{L}_{u}(y)\leq\min\{L_{u}(y),\sum_{uv\in \mathrm{c}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{d}()}\hat{L}v(y)\}+(\ln 2)/(\ln(1/\beta))$. (5)

By the similarity of equation (4) and inequality (5), we can roughly say that $\hat{L}_{u}(y)$ is not much larger
than the loss of the best pruning of \mathcal{T}_{u} . More precisely, applying inequality (5) recursively, we obtain the
following upper bound on the loss $\hat{L}_{\mathrm{R}}(y)$ at the root:

$\hat{L}_{\mathrm{R}}(y)\leq L_{P}(y)+|P|(\ln 2)/(\ln(1/\beta))$,

for any pruning $P\in \mathrm{P}\mathrm{R}\mathrm{U}\mathrm{N}(T)$, where $|\mathcal{P}|$ denotes the number of the nodes of P that are not the leaf
of T. (Indeed, every node of P which is not $T’ \mathrm{s}$ leaf gives an extra loss of $(\ln 2)/(\ln(1/\beta)).$) Since every
APA in the algorithm combines and generates β-mixtures, Lemma 1 says that the pseudoprediction ξ_{R}^{t}

at the root is always a β-mixture. Therefore, inequality (2) gives the loss bound of the DP that satisfies

$L_{\mathrm{D}\mathrm{P}(\beta})(y)\leq c(\beta)(L_{P}(y)+|P|(\ln 2)/(\ln(1/\beta)))$,

196

Figure 3: Algorithm $\mathrm{D}\mathrm{P}(\beta)$

for all $\mathcal{P}\in \mathrm{P}\mathrm{R}\mathrm{U}\mathrm{N}$ and $y\in Y^{*}$. .
For estimating the time spent by $\mathrm{a}\dot{\mathrm{o}}$rithm $\mathrm{D}\mathrm{P}(\beta)$, we have to consider the explicit representa-

tion of the β-mixture and the computational feasibility of the β-substitution function. For this pur-
pose, it may be convenient to identify a β-mixture $r= \log_{\beta}\sum_{i}n=1\beta^{\xi i}vi$ as the probability distribution
$((\xi_{1}, v_{1}),$

$\ldots,$
$(\xi_{n}, v_{n}))$ that induces r . Using this representation, we can say that Σ_{β} is, say, linearly com-

putable at β if there exists an algorithm that computes each value $\Sigma_{\beta}((\xi_{1}, v_{1}),$
$\ldots,$

$(\xi_{n}, v_{n}))$ in time $O(n)$.
For example, many popular games including the absolute-loss game, the square-loss game, the log-loss
game, etc., their substitution functions are all linearly computable at appropriate choices of β . Now, we
have our main theorem.

Theorem 3 (Main) Let $\beta\in$] $0,1$ [and $c(\beta)$ be the value of the mixability curve at β for the game $(Y, \mathrm{Y}^{\Lambda}, \lambda)$.
Then, for any \mathcal{T} and $y\in Y^{*}$, when given $\mathcal{T},$ $\mathrm{D}\mathrm{P}(\beta)$ makes predictions for y so that the loss is at most

$L_{\mathrm{D}\mathrm{P}(\beta})(y) \leq c(\beta)\min_{\mathrm{R}P\in \mathrm{P}\mathrm{U}\mathrm{N}(\mathcal{T})}(L_{\mathcal{P}}(y)+\frac{\ln 2}{\ln(1/\beta)}|\mathcal{P}|)$. (6)

Moreover, if Σ_{β} is linearly computable at β

) A generates a prediction at each trial t in time $O(|x_{t}|)$.

References
[1] N. Bshouty, Exact learning via the monotone theory, Inform. Computation 123 (1995) 146-153.

[2] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour and S. Rudich, Weakly Learning DNF
and Characterizing Statistical Query Learning Using Fourier Analysis, in: Proc. 26th STOC (1994)
253-262.

[3] N. Cesa-Bianchi, Y. Freund, D. Helmbold, D. Haussler, R. Schapire and M. Warmuth, How to use
expert advice, in: Proc. 25th STOC (1993) 382-391.

[4] T. Cover and E. Ordentlich, Universal portfolios with side information, IEEE Trans. Inform. Theory
42 (1996) 348-363.

[5] A. $\mathrm{D}\mathrm{e}\mathrm{s}_{\mathrm{a}\mathrm{n}\mathrm{t}}\mathrm{i}_{\mathrm{S}}$, G. Markowsky, and M. N. Wegman, Learning probabilistic prediction functions, in:
Proc. 29th FOCS (1988) 110-119.

197

[6] Y. Reund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an appli-
cation to boosting, in: Lecture Notes in Computer Science, Vol. 904 (1995) 23-37. To appear in J.
Computer System Sciences.

[7] Y. Reund, R. Schapire, Y. Singer and M. Warmuth, Using and combining predictors that specialize,
in: Proc. 29th STOC (1997).

[8] D. Haussler, J. Kivinen and M. K. Warmuth, Tight worst-case loss bounds for predicting with
expert advice, Technical Report $\mathrm{U}\csc_{-}\mathrm{c}\mathrm{R}\mathrm{L}_{-}94- 36$, University of California, Santa Cruz, CA, revised
December 1994. Short version in: Lecture Notes in Computer Science, Vol. 904 (1995).

[9] D. Helmbold and R. Schapire, Predicting nearly as well as the best pruning of a decision tree, in:
Proc. 8th COLT (1995) 61-68.

[10] M. Kearns and Y. Mansour, On the boosting ability of top-down decision tree learning algorithms,
in: Proc. 28th STOC (1996) 459-468.

[11] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm, Machine Leaming 2 (1988) 285-318.

[12] N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Inform. Computation 108
(1994) 212-261.

[13] J. Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann, 1993).

[14] E. Takimoto, K. Hirai and A. Maruoka, A simple algorithm for predicting nearly as well as the best
pruning labeled with the best prediction values of a decision tree, in: Lecture Notes in Artificial
Intelligence, Vol. 1316 (1997) 385-400.

[15] V. Vovk, Aggregating strategies, in: Proc. 3rd COLT (1990) 371-383.

[16] V. Vovk, Universal forecasting algorithms, Inform. Computation 96 (1992) 245-277.

[17] V. Vovk, A game of prediction with expert advice, accepted for publication in J. Comput. Inform.
Syst. Short version in: Proc. 8th COLT (1995) 51-60.

198

