0oooo0O0oooo
10410 1998 0 19-26 19

Some Modifications of Lockout-Free Mutual Exclusion
Algorithms

Hironobu Kurumazaki, Minako Kawa,
Yasuaki Nishitani, and Yoshihide Igarashi

Department of Computer Science, Gunma University, Kiryu, Japan 376-8515

E-mail:igarashi@comp.cs.gunma-u.ac.jp

Abstract

In this paper we propose two mutual exclusion algorithms in the asyn-
chronous multi-writer/reader shared memory model. One is a modification
of the N-process algorithm by Peterson, and the other is a modification of
the tournament algorithm by Peterson and Fischer. For these modified al-
gorithms, some processes have the advantage of access to the resource over
other processes. We show the lockout-freedom of these modified algorithms
by analyzing the time bounds for the trying region.

1 Introduction

Mutual exclusion is a problem of managing access to a single indivisible resource
that can only support one user at a time. An early algorithm for the mutual
exclusion problem was proposed by Dijkstra [5]. His algorithm guarantees mutual
exclusion, but it does not guarantee the high-level fairness. Subsequent algorithms
improve on the Dijkstra’s algorithm by guaranteeing fairness to the different users
[12, 13] and by weakening the type of shared memory [1, 2, 3, 4,6, 7, 9, 10]. Books
by Raynal [15] and by Lynch [11] contain a number of mutual exclusion algorithms
and their variations. ‘ | | _

In this paper we propose two mutual exclusion algorithms in the asynchronous
multi-writer /reader shared memory model. Our algorithms are modifications of
the N-process algorithm by Peterson [13] and the tournament algorithm by Peter-
son and Fischer [14] so that we allow priority of some users to access the resource.
These modified algorithms guarantee the lockout-freedom. The lockout-freedom
of these algorithms are proved by showing time bounds for spending in the trial
region.

2 Preliminary

A user with access to the resource is modeled as being a critical region. When a
user is not involved in any way with the resource, it is said to be in the remainder
region. In order to gain admittance to its critical region, a user executes a trying
protocol. The duration from the start of execufing the trying protocol to the

20

entrance of the critical region is called the trying region. After the end of using
the resource by a user, it executes an exit protocol. The duration of executing the
exit protocol is called the exit region. Each user follows a cycle, moving from its
remainder region to its trying region, then to its critical region, then to its exit
region, and then back again to its remainder region. This cycle can be repeated.

The inputs to process ¢ from user U; are the try; action which means a request
by U; for access to the resource, and the exit; action which means an announcement
by U; that it is done with the resource. The outputs of process ¢ are crit; which
means the granting of the resource to U;, and rem; which tells U; that it can
continue with the rest of its work. » :

The system to solve the mutual exclusion problem should satisfy the following
conditions.

(1) There is no reachable system state in which more than one users are in the
critical region.

(2) If at least one user is in the trying region and no user is in the critical region,
then at some later point some user enters the critical region.

(3) If a user is in the exit region, then at some later point the user enters the
remainder region.

Conditions (1),(2) and (3) above are called mutual exclusion, progress for the
trying region, and progress for the exit region, respectively. The following condi-
tions are called the lockout-freedom.

(1) If all users always return the resource, then any user that reaches the trying
region eventually enters the critical region. »
(2) Any user that reaches the exit region eventually enters the remainder region.

3 Modification of N-process algorithm

The N-process algorithm by Peterson is a lockout-free mutual exclusion algorithm
-using multi-writer/ reader shared variables [13]. We modify this algorithm so that
some users have advantage of easier access to the resource than other users.

The set of processes {1,2,...,n} is divided into two disjoint groups, a low
priority group G with 41 processes and a high priority group Go with n — i;
processes. Without loss of generality we may assume that G; = {1,...,4;} and

Gs = {t1+1,...,n}. We choose an appropriate level {; where {; should be between
0 and 77 — 1.
procedure 2priorityME(G1 = {1....,11},G2 = {i; + 1,...,n}, 1)

{0<i <ip—1}

shared variables

for every ke{l, ...,n—1}:"
turn(k) € {1, ..., n} initially arbitrary. writable and readable by all pro-
cesses;

for every i € {1 zl}
flag(z) € {0,...,n—1}, nntlally 0, writable by ¢ and readable by all
J#

for every i € {L1+1 :
flag(i) € {l, ..., n - l} lmtlally Iy, writable by ¢ and readable by all

J# 4

process i { 1 <1 <1 }
input actions { inputs from user U; to process ¢ }: try;, ezit;;
output actions { outputs to user U; }: crit;, rem;;

** Remainder region **

tT‘yi:
if 1 <1 <1 then
for k =1 to l; do begin

flag(i) == F;
turn(k) :=1;
waitfor [Vj # 4 (1 < j <141): flag(j) < k] or [turn(k) # 1]
end; :
for k=1 +1ton—1 do begin
flag(i) == k;
turn(k) :=1;
waitfor [V5 # i : flag(j) < k] or [turn(k) #1¢ |
end;
crits;

** Critical region **

exit;:
if 1 <4 <4 then flag(z) :=0
else flag(1) = l1;

rem;;

Assertion 1 In any ezecution by 2priorityME, for any k, 1 < k < 1y, there are .
at most i1 — k winners from G at level k.

From Assertion 1 there are at most (n — 41) + (¢1 — 1) = n — [} processes can
be at level [] in the trying region. Then we have the next assertion.

Assertion 2 In any ezecution by 2priorityME, for any k, l;+1 < k <n—1 there
are at most n — k winners at level k.

From Assertion 1 and Assertion 2 we have the next theorem.
Theorem 1 2priorityME satisfies mutual exclusion.

Let [be an upper bound on the time between successive steps of each process,
and let ¢ be an upper bound on the maximum time that a user spends in the
critical region.

We can prove the following two lemmas.

Lemma 2 In ZpriorityME. the time from when a process enters the level Iy of the
trying region until it enters the critical region is at most on=li=le 4 O(2"linl).

Lemma 3 In 2priorityME, the time from when a process of G enters of the trying
region until it enters the critical region is at most (271 4 2h-he 4+ 02" 1nl).

From the two lemmas above the following theorem is immediate.

Theorem 4 2priorityME is‘lockout-free.

22

We can generalize 2priorityME. We partition the set of processes into r disjoint
sets. Without loss of generality we may assume that these groups are G; =
{1,...,41}, Go = {1 + 1,...,492}, ..., Gr = {4,—1 + 1,...,n}. Each group G is
associated with a level bound /; (1 < j <), where 0 <[} <41—1,1; <lp <idp—1,

., Ir—1 <1, =n — 1. For convenience, we let [= 0.

procedure rpriorityME ((G1 = {1, ..., 01}, l1), (G2 = {51 + 1, ..., 42}, b)),
o (Gr = {1+ 1, ...,n}, 1)

shared variables
for every k € {1, ..., n—1}:
turn(k) € {1, ..., n}, initially arbitrary, writable and readable by all pro-
cesses;
for every j € {1, ..., r}
for every ¢ in Gj
flag(i) € Gj, initially I;_;, writable by 7 and readable by all j # i;

processi { 1 € Gy }
input actions { inputs from user U; to process i }: try;, ezit;;
output actions { outputs to user U; }: crit;, rem;;
** Remainder region **

iry;:
for s:=ttor do
for k:=1,_; to l; do begin
flag(i) :=k;
turn(k) = 1;
waitfor [Vj # 4 (1 < j <4,): flag(y) < k] or [turn(k) #1
end;
crit;;
- ** Critical region **
exil;:
for j=1tor do
if 1 € G; then flag(i) :=1;_y;
rems;

Assertion 3 In any ezecution by rpriorityME, for any 7,1 < j <7 and any k,
li-1+1<k <1, there are at most i; — k winners from G1 U...UG; at level k.
Lemma 5 In rpriorityME, for any j (1 < j < 1) the time from when a PTOCESS N
G enters the trying region until it enters the critical region is at most (27 ~li-1—14
olr—1=lia=14 4 2li—li-1=1ye 4 o2r—li-1p]).

From Assertion 3 and Lemma 5 we have the following theorem.

‘Theorem 6 rpriorityME solves the mutual exclusion problem .and is lockout-free.

4 Tournaments on priority trees

We modify the tournament algorithm of Peterson and Fischer [14] so that some
users have priority over some other users in getting access to the resource.
A simple priority tree is a binary tree structure recursively defined as follows:

(1) it consists of a single node, or
(2) it is composed of three disjoint sets of nodes, a root node, a single node as
its left subtree, and a simple priority tree as its right subtree.

Each node of a binary tree is labelled by the following rules.

(1) The root is labelled by A (the null string).
(2) If the label of a node z is I(z), the label of its left son is I(z)0 (i.e., the
juxtaposition of I(z) and 0) and the label of its right son is I(z)1.

Suppose that 2711 < N. Let o = L—ZN;_I —1and r' = [logy(N —2"a)]. A priority
tree T'(N,r) is a binary tree constructed as follows:

(1) Let T\ (N,r) be asimple priority tree with leaves labelled with 0,10, ...,1¢710

(2) Eachleafof 0,10,...,1¢710, of T5(N,r) is replaced with the complete binary
tree with 2" leaves, and leaf 1¢ is replaced with an essentially complete binary
tree with N — 2"q leaves.

We consider a one-to-one correspondence between the N processes and the N
leaves of T(N,r). The label associated with a process in T'(N, r) is called the index
of the process. We denote the complete binary tree and the essentially complete
binary tree that are replacements at the leaves of T (N,r) by Go,Gi1,...,Ge-1
and G, from left to right (see Figure 1).

A
0 1
Go 10 11
G 110 B . 121
G2 1210 12

Figure 1: A priority tree.

For T(N,r) and each process i, we introduce the following notations.

e comp(s,k) is the ancestor of 7 in depth k.

e role(i, k) is the (k+1)st high-order bit of ¢. (i.e., role(s, k) indicates whether
the leaf 7 is a descendant of the left or right child of the node for comp(i, k)).

23

, 1%,

e opponents(i, k) is the opponents of process ¢ in the depth k£ competition of
process ¢ (i.e., the set of process indices with the high-order % bits as ¢ and

the opposite (k + 1)st bit.)

procedure tournamentME (N,r)

shared variables
for every binary string z in the set of labels of T(N,r):

24

turn(z) € {0, 1}, initially arbitrary, writable and readable by those pro-
cesses ¢ for which z is a prefix of the index of 7;
for every ¢ in the set of leaves of T'(N,r):
flag(@) € {0, 1, ..., d(2)}, initially d(i), writable by ¢ and readable by all
J # 1 in the set of leaves of T'(N,r), where d(4) is the depth of ¢;
process i { ¢ is a leaf of G; }

input actions { inputs from user U to process ¢ }: try,, exit;;
output actions { outputs to user U; }: crit;, rem;;

** Remainder region **
try;: v
for k = d(:) —1 downto 0 do { d(:) = t+r+1if t < a—1, and otherwise
d@)=t+r"}
begin
flag(i) :=k;
turn(comp(i, k)) := role(s, k);
waitfor [Vj € opponents(z k) : flag(y) > k| or [turn(comp(i, k)) #
role(i, k) |
end;
crity;
** Critical region **
exit;:
flag(z) := d(z);

TEM;;

Assertion 4 In any reachable system state by tournamentME on T(N,r), and
for any depth k. 0 <k <a+1'—1, at most one process in depth k in any subtree
rooted in depth k is a winner, where a = [-2—\,—_| —1 and ' = [logy(N — 27a)].

From the two assertions above, the next theorem is immediate.
Theorem 7 tournamentME satisfies mutual exclusion.

As in the previous section, let { and ¢ be upper bounds on process step time
and critical region time, respectively. We show a tmle bound for tournamentMFE
in the following lemma.

Lemma 8 In tournamentME on a T(N,r), N =2"(a+ 1), the time from when a
process i in the set of leaves of G+ has just entered the trying region until it enters
the critical Tegion is at most (c +41)2™+H 4 212+l 4 (4 4 r +1 — a)27L.

Proof. For k, 0 <k <a+r—1, define T(k) to be the maximum time from
~when a process ¢ wins in depth k or it has just entered the trying region in depth %
(this event is denoted by m;(k)) until it enters the critical region. It is immediate
that 7'(0) < I since only one step is needed to enter the critical region after winning
the final competition.

We can consider the following two cases just after event m;(k). One is the case
where 7 is a winner at a node 1° for some s (1 < s < a), and the other is the case
where 4 is a winner at a node that is not a node 1° for any s(1 < s < a). In the
former case, within at most time ((a — &k +1)2" + 3){ + ¢+ T'(k — 1) after m;(k), for

25

every j in opponents(i, k), flag(j) > k holds or turn(comp(i, k)) be set to be not
equal to role(i, k). In the latter case, within at most time (2"+3)l4-c+T'(k—1) after
7;(k), for every 7 in opponents(i, k), flag(j) > k holds or turn(comp(i, k)) be set
to be not equal to role(s, k). Then, within at most time 277 in the former case and
within at most time (a—k+1)2"] in the latter case, process ¢ moves up one level as a
winner in depth k—1. Hence, the total time from event m;(k) until process ¢ arrives
at the entrance to the critical region is at most 2T'(k—1) + ¢+ ((a —k+2)2" + 3)L.
Thus, we need to solve the following recurrence for T'(d(7)).

TO) < I | |
T(k) < 2T(k—1)+c+ ((a—k+2)2" +3)l

Then we can derive the following inequality.

Tk) < (c+3)A+2+22+ - +25 Y 42k 4 (2Fa —a+ E)271
< (c+4n2* +28Tal + (k- a)27
For 0 < ¢ < a—1, T(d@) < (c+4)2H++ 4 942+ g (4 4 r 4+ 1 — a)271,
and for ¢t = a, T(d(1)) < (c+ 41)21+" + 2t+27al + (¢t + 7 —)2"1. Thus, the lemma
holds. ‘ O

We have the following theorem from Theorem 7 and Lemma 8.

Theorem 9 tournamentME solves the mutual exclusion problem and is lockout-
free.

A speed-up version of tournamentME is given in [8]. If we use the speed-up
version on the complete binary tree with n leaves, its running time is (n—1)c+0(nl)
[8]. This is an improvement over the original tournament algorithm [11, 14] whose
running time is (n — 1)c + O(n?l).

5 Concluding remarks

There may be a natural request to design a distributed operating system such
that some processes have advantage of access in some degree to the resource over
other processes. We have proposed two such mutual exclusion algorithms in shared
memory model. One is a modification of the N-process algorithm by Peterson, and
the other is a modification of the tournament algorithm by Peterson and Fischer.
We show the lockout-freedom of these algorithms by analyzing time bounds for
trying region. The time bounds shown in this paper seem not to be tight. We
need a finer analysis to derive better time bounds for these algorithms. In order
to obtain a substantial improvement of the time efficiency, further modifications
of these algorithms will be needed. The mutual exclusion algorithms given in this
paper do not guarantee the FIFO property. Namely, even if a process in a high
priority group enters the trying region earlier than a process in a low priority
group, the latter process may catch up the former process and it enters the critical
region earlier than the process in the high priority group. For our purpose, we
need a mutual exclusion algorithm that guarantees the advantage of access to the
resource in a stronger sense. Designing such algorithms is also worthy for farther
investigation. '

26

References

(1] J.E.Burns, “Mutual exclusion with linear waiting using binary shared vari-
ables”, ACM SIGACT News, vol.10, pp.42-47, 1978.

(2] J.E.Burns, P.Jackson, N.A.Lynch, M.J.Fischer, and G.L.Peterson, “Data re-
quirements for implementation of N-process mutual exclusion using a single
shared variable”, J. of the ACM, vol.29, pp.183-205, 1982.

[3] J.E.Burns, and N.A.Lynch, “Bounds on shared memory for mutual exclusion”,
Information and Computation, vol.107, pp.171-184, 1993. '

[4] A.B.Cremers and T.N.Hibbard, “Mutual exclusion of N processors using an
O(NV)-valued message variable”, 5th International Colloquium on Automata,
Languages and Programming, Udine Italy, Lecture Notes in Computer Science,
vol.62, pp.165-176, 1978.

[5] E.W.Dijkstra, “Solution of a problem in concurrent programming control”,
Communications of the ACM, vol.8, p.569, 1965.

[6] M.J.Fischer, N.A.Lynch, J.E.Burns, and A.Borodin, “Resource allocation with
immunity to limited process failure”, 20th Annual Symposium on Foundations
of Computer Science,San Juan, Puerto Rico, pp.234-254, 1979.

[7] M.J.Fischer, N.A.Lynch, J.E.Burns, and A.Borodin, “Distributed FIFO allo-
cation of identical resources using small shared space”, ACM Trans. on Pro-
gramming Languages and Systems, vol.11, pp.90-114, 1989.

[8] H.Kurumazaki, M.Kawa, Y.Nishitani, Y.Igarashi “Some Modifications of
Lockout-Free Mutual Exclusion Algorithms”, To appear in SIGAL-TR, In-
formation Processing Society of Japan, May, 1998

[9] L.Lamport, “The mutual exclusion problem. Part IT : Statement and solutions”,
J. of the ACM, vol.33, pp.327-348, 1986.

(10] L.Lamport, “A new solution of Dijkstra’s concurrent programming problem”,
Comnunications of the ACM, vol.17, pp.453-455, 1974.

[11] N.A.Lynch, “Distributed Algorithms”, Morgan Kaufmann, San Francisco,
California, 1996.

[12] N.A.Lynch and M.J.Fischer, “On describing the behavior and implementation
of distributed systems”, Theoretical Computer Science, vol.13, pp.17-43, 1981.

[13] G.L.Peterson, “Myths about the mutual exclusion problem”, Information .
Processing Letters, vol.12, pp.115-116, 1981.

[14] G.L.Peterson and M.J.Fischer, “Economical solutions for the critical section
problem in a distributed system”, Proccedings of the 9th Annual ACM Sym-
posium on Theory of Computing, Boulder, Colorado, pp.91-97, 1977.

[15] M.Raynal, “Algorithms for Mutual Exclusion”, MIT Press, Cambridge, Mas-
sachusetts, 1986. -

