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HIEFEE ORI ETIEFEEIIDONT
— On MPR-posets in phylogeny —

RHEK - B - EHEE R 5L (Hiroshi Narushima)

A mathematical theory for the subject on ancestral character-state reconstructions under
the maximum parsimony in phylogeny has been developing ([2]-[10]).

We use the notations in [2] and [5]. Let Q denote the set that may be either the set R
of real numbers or the set N of nonnegative integers. Note that { expresses the linearly
ordered character-states. Let T = (V = Vp UV, E, o) be any undirected tree with the
endnodes evaluated by a weight function ¢ : Vo — Q, where V is the set of nodes, Vj, is

- the set of endnodes which are nodes of degree one, V4 is the set of internal nodes, and E is
the set of branches. We call this tree an el-tree. For an el-tree T', we define an assignment
AV — Qsuch that M|V, (the restriction of A to Vp) = o, where A(u) is called a state of
» under A. This assignment is called a reconstruction on an el-tree T. For each branch e
in E of an el-tree T' with a reconstruction A, we define the length I(e) of branch e = {u, v}
by [A(u) — A(v)|. Then the length L(T|)\) of an el-tree T under the reconstruction \ is the
sum of the lengths of the branches. That is, L(T|\) = ¥,z l(e). Furthermore we define
the minimum length L*(T") of T by

L*(T) = min{L(T'|\) | \ is a reconstruction on T}.

Note that L*(T) is well-defined. A Most-Parsimonious Reconstruction denoted by MPR
on an el-tree T' is a reconstruction A such that L(T'|\) = L*(T). Generally an el-tree T has
more than one MPR. The set {A(u) |\ is an MPR on T} of states is called the MPR-set
of a node u and written as .S,,.

Let T'= (V, E) be a rooted (directed) tree, where V' is the set of nodes and E(C V x V)
is the set of branches. For each u and v in V, we write 4 — v or u = p(v) when (u,v) € E,
i.e., uis a parent of v (or v is a child of u). For each w.and v in V, u is called an ancestor
of v, written u = v, if there is a sequence of nodes v = uy,ug, - -, u, = v in V such that
u; — u;11(2 € [n — 1]). In a rooted tree, there is only one node without a parent, which is
called the root, and a node without a child is called a leaf For each v in V, we denote a
subtree of T' induced from a subset {u} U{v € Viju = v} of V by T, = (V,, E,). Note that
u is the root of T,.

For a given el-tree T = (Vp U Vg, E,0), we define a rooted el-tree T rooted at any
element r in V = Vo U V. The rooted el-tree T(") is simply written T if it is understood.
In addition, if r is an endnode, i.e., 7 € Vo and s is its unique child, we denote the rooted
tree 7" by (T, ) to vizualize the structure. In this case, the subtree 7} is called the body
of the tree T("; otherwise, i.e., if r € V, the body of T is T itself.
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Let I; = [a;,b;] (¢ € [m]) be any family of closed intervals in Q. Let all the endpoints a;
and b; of I; (¢ € [m]) be sorted in ascending order and then be arranged as follows:

T1 S22 < LT S T -0 £ Tomee

Then we call the closed interval [Zm,Zm+1] in Q the median interval of the closed inter-
vals I; (i € [m]), which is the key concept in a series of our papers, and denote it by
med(y, I, - -, I,) or med(J; : 1 € [m]).

For each node u in the body of a rooted el-tree T, we assign a closed interval I(u) of Q
recursively as follows: ; | ,
I(w) = { [0(u), o(u)] if uis a leaf,

med(/(v) : u — v) otherwise.
We call I(u) the characteristic interval of a node u and so I is called the characteristic
interval map on T'. :

We now restate the results in the previous paper [2], which are used in this paper. Let T
be a rooted el-tree (T§,r) and I be the characteristic interval map on T'. Let A.,s denote
the restriction A|V,, of a reconstruction A on T to a subtree T}, of T. Then a set Rmp2(r, s)
of reconstructions on T is defined recursively as follows:

A(s) € med([A(r), A(r)], I(t) : s — 1),

Acs> € Rmp2(r,s) <= { and Vt(s — t) (Ac> € Rmp2(s, t)).

Note that Acss (with A(r) = o(r)) can be considered a reconstruction on 7. The.followi’ng
are Theorem 1 (Theorem 3 (ii)) and Corollary 5 in [2].

Theorem A. For any endnode r of an el-tree T, Rmp2(r, s) is the set of all MPRs on T

Noting that generally a phylogenetic tree has more than one MPR, Swofford and Maddi-
son [9] have defined more explicitly the ACCTRAN reconstruction originated with Farris
[1], and the DELTRAN reconstruction, which are considered to be more meaningful and
useful MPRs in phylogeny. Then Minaka [3] has introduced the usual partial ordering on
the set of all possible MPRs on a phylogenetic tree, in order to investigate the relationships
among the ACCTRAN, the DELTRAN, and other MPRs.

For any A and p in Rmp(T'), the partial ordering A < p is defined by A(u) < p(w) for all
u in V. The partially ordered set (Rmp(7T), <) is called the MPR-poset or Minaka poset.
From a lattice-theoretic point of view, we first have a question whether there exists the
greatest element (or the least element) in the MPR-poset or not.

The following is Proposition 5 in [7], which answers to the above question.

Proposition B. Let T be an el-tree. Let A max (Amin) denote a reconstruction A on T'
such that \(u) = max (S,) (min(S,)) for any internal node u. Then the reconstruction
Amax (Amin) 01 T is the greatest (least) element of the MPR-poset (Rmp(T), <).



46

In Narusihma and Misheva [6, 7], and Narushima [8], the two remarkable properties of
ACCTRAN reconstructions have been shown, and also some conditions for an ACCTRAN
reconstruction to be the greatest element or the least element in the MPR-poset have been
given.

In order to investigate ACCTRAN and DELTRAN reconstructions from another point
of view, Minaka [4] has implicitly defined another partial ordering “a is ancestral to b” on
a polarized transformation series, and then has introduced a partial ordering called “MPR
partial order” on Rmp(7’). We now give a mathematically explicit definition for the MPR
partial order.

We first define a binary relation <, on Q as follows. Let T be a rooted el-tree (T, ).
Foraand bin Q, a <,() bif and only if o(r) < a < bor g(r) > a > b. Then, it is easily
shown that the relation <, is a partial-ordering on Q.

We next define a binary relation <,y on Rmp(T) as follows. Let T be a rooted el-tree
(Ts,7). For A and p in Rmp(T), A <g(; p if and only if A(u) <oy w(u) for all w in V.
Clearly, the binary relation <, on Rmp(T) is a partial-ordering, and then the partially
ordered set (Rmp(7T'), <y(r)) is called a o(r)-version MPR-poset.

We here show an example for the MPR-poset (Rmp(T'), <) and an example for the
o(r)-version MPR-poset (Rmp(T), <¢()). An el-tree T = (Vo U Vg, E, o) is shown in

Fig.1.
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Figure 1: An el-tree T

All MPRs on T are recursively generated by Hanazawa-Narushima algorithm and shown
in Table 1. Then we have the MPR-poset (Rmp(T), <) shown in Fig.2.
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Table 1: The set Rmp(T) of all MPRs A8

Nla b cde fgh ij k. A7 A
M2 25 1 1 13 06 5 2 4 5
M2 2522130635 24

Al335 1113065 2 4 g A4
M|3 3522130635 24
133533130635 2 4 X2
del4 4 511130635 2 4 A3

Ar|4 452213065 24

Ms|4 4 533130635 2 4 N

Figure 2: The MPR-poset (Rmp(T), <)

Let the el-tree T in Fig.1 be rooted at k. Then we have a rooted el-tree T%) = (T}, k)
shown in Fig.3 (a). Noting o(k) = 2, we have the partial-ordering <,x)=<; on Q, of
which Hasse diagram is shown in Fig.3 (b). As a result, we have the 2-version MPR-poset
(Rmp(T), <3) shown Fig.4.

Figure 3: (a) A rooted el-tree (T3, k)  (b) The partial-ordering <,x)=<2
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Figure 4: The MPR-poset (Rmp(7), <;)

Note that the usual MPR-poset is uniquely defined for an el-tree, but the o(r)-version
MPR-poset depends on the root’s character-state of a rooted el-tree T' = (T, ).

We here describe some lattice-theoretic problems on o (r)-version MPR-posets.
Some lattice-theoretic problems on o(r)-version MPR-posets.

1. Whether there exists the greatest element (or the least element) in each

o(r)-version MPR-poset or not ?

2. If there is not the greatest element (or the least element), then what condi-

tions for the existence do we have ?
3. How many maximal (or minimal) elements do we have ?

4. Does any o(r)-version MPR-poset form a lower-semilattice ?
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