Dynamics of skew tent maps

Keiko ICHIMURA (市村 圭子) and Michiho ITO (伊藤 みちほ) Department of Information Sciences, Ochanomizu University

1 Introduction

We consider skew tent maps defined by

$$\begin{aligned} f_{a,b}(x) &= \begin{cases} ax+1, & (x \leq 0) \\ -bx+1, & (x \geq 0) \end{cases} \\ (a,b) &\in D := \{(a,b) : a > 0, b > 1, a+b \geq ab\}. \end{aligned}$$

By the dynamical behavior of $f_{a,b}$, the parameter domain D is divided into subdomains D_k defined by some algebraic curves : $D = \sum_{k=2}^{\infty} D_k$. In each D_k there are subdomains D_k^A where $f_{a,b}$ has unique attracting periodic orbit of period kand D_k^B where $f_{a,b}$ has 2k or k chaotic intervals, which is analyzed by the method of renormalization ([Ich][Ito]). In this paper we give the relation between \star product for kneading sequence and renormalization as Theorem 1. We also give an explicit proof of Theorem A in [MV91], which states monotonicity of kneading sequence of this family. Moreover we correct Corollary of Theorem 2 in [MV92] as Proposition 4.

We denote kneading sequence of $f_{a,b}$ by K(a, b) and topological entropy of $f_{a,b}$ by h(a, b). We refer basic definitions and notations from [Ich][CE80].

2 Renormalization and *-product

We denote $f_{a,b}$ by f in this section. For getting maximal level of renormalization, we assume sequence <u>B</u> is prime. Let $|\underline{A}|$ be the length of sequence <u>A</u> and int(J) interior of an interval J. For the definitions of renormalization and *-product, see [Ito] and [CE80] respectively.

Definition <u>S</u> is called *prime* if <u>S</u> does not have any finite sequence <u>A</u> ($\neq 0$) of L's and R's and any finite or infinite sequence <u>B</u> ($\neq C$) such that <u>S</u> = <u>A</u> \star <u>B</u>. **Theorem 1** $K(a,b) = \underline{A} \star \underline{B}$ where $\underline{A} \neq \emptyset$ is finite sequence of *L*'s and *R*'s and $\underline{B} \neq C$ is prime if and only if there exist invariant closed intervals $\{J_i\}_{i=0,\dots,|\underline{A}|}$ such that $J_{|\underline{A}|} \ni 0$, $fJ_i = J_{i+1}$ $(i = 0, \dots, |\underline{A}| - 1)$, $fJ_{|\underline{A}|} = J_0$ and $int(J_i) \cap int(J_{i'}) = \emptyset$ $(i \neq i')$. f can not have any refinement of $\{J_i\}$.

Proof Assume $K(a, b) = \underline{A} \star \underline{B}$ where $\underline{A} \ (\neq \emptyset)$ is finite sequence of L's or R's and $\underline{B} \ (\neq C)$ is prime. Set $x_n = f^n(1) \ (n \ge 0), \ p = |\underline{A}|$ and $\underline{A} = A_0 A_1 \cdots A_{p-1}$. Let J_i be convex hull of $\{x_{i+k(p+1)} : k = 0, 1, \cdots\}$ for $i = 0, \cdots, p$. Then, we have $fJ_i = J_{i+1} \ (i = 0, \cdots, p-1)$ and f is monotone on each J_i except of i = p. Remark that f^{p+1} on each J_i has same slopes. It follows that $f^{p+1}|_{J_i} \sim f^{p+1}|_{J_{i'}} \ (i \ne i')$. We consider the following two cases.

The first case : \underline{B} does not contain both L and R.

<u>B</u> is finite in this case. It follows that J_p contains a turning point 0 as an end point of it. Hence, $fJ_p = J_0$. As f is monotone on J_i for all $i (0 \le i \le p)$, f^{p+1} restricted on J_i is monotone and surjective on J_i . Hence, its slope is -1. Then $\{J_i\}$'s are disjoint or there would exist some i, i' such that $J_i = J_{i'}$ from continuity of f. The latter can not occur

because of the assumption of <u>A</u>. Therefore $\{J_i\}$ are disjoint. Notice that the first case corresponds to boundary curve of D_k^A and D_k^B .

The second case : \underline{B} contains both L and R.

In this case $fJ_p = J_0$ and $f^{p+1}|_{J_i}$ has unique turning point c_i inside J_i . We set two slopes of $f^{p+1}|_{J_i} \quad \alpha(>0), \ \beta(<0)$. We divide J_i into two subinterval I_{α_i} and I_{β_i} corresponding to slope α and β . As $f^{p+1}|_{J_i}$ is surjective on J_i , we have that $\sup\{|\alpha|, |\beta|\} > 1$.

If $|\beta| = 1$, we reduce to the first case.

If $|\beta| > 1$ and $int(J_i) \cap int(J_{i'}) \neq \emptyset$, there exists $J_{i'}$ such that $f^{p+1}|_{J_{i'}}$ has two turning points (see Figure 1) or there exist i, i' such that $J_i = J_{i'}$. In the latter case we have J_m equals J_p for some $m (m \neq p)$. This contradicts that f is monotone on J_m because J_p includes turning point in it. Hence we obtain $int(J_i) \cap int(J_{i'}) = \emptyset$. Notice that the second case corresponds to D_k^B .

Conversely, if there exist disjoint invariant closed intervals $\{J_i\}_{i=0,\dots,|\underline{A}|}$ in theorem, we have $K(a,b) = \underline{A} \star \underline{B}$ with $\underline{A} = A_{J_0}A_{J_1} \cdots A_{J_{p-1}}$. If \underline{B} is not prime, f has refinement of $\{J_i\}$. Hence, \underline{B} is prime.

Now we have the relation of our renormalization (i.e., $(|\underline{A}|+1)$ - renormalization is a skew tent map of D) and \star -product.

Corollary 1 If $|\underline{B}| \neq 2$ in above theorem, then f is renormalizable of level $|\underline{A}| + 1$.

Proof Let p be $|\underline{A}|$. In the first case, we have $|\underline{B}| = 2$ because a turning point of f on J_p is 2-periodic point of f^{p+1} . In the second case, we have $|\beta| > 1$ and $f^{p+1}J_i = J_i$. It follows $(\alpha, \beta) \in D$. Therefore f is (p+1)-renormalizable on $[c_i, f^{p+1}(c_i)]$ (resp. $[f^{p+1}(c_i), c_i]$) if $c_i < f^{p+1}(c_i)$ (resp. $f^{p+1}(c_i) < c_i$).

It is well known that for a smooth unimodal map g, *n*-periodic g-admissible sequence implies the existence of n or 2n-periodic point ([Dev89]). This fact is proved by Schwarzian derivative. But we have the following analogous fact for skew tent maps.

Corollary 2 If $K(a,b) = \underline{A} \star \underline{B}$ where $\underline{A} (\neq \emptyset)$ is finite sequence of L's and R's and $\underline{B} (\neq C)$ is prime, then f has periodic points of period |A| + 1. Moreover if $|\underline{B}| = 2$, then f also has periodic points of period 2(|A| + 1).

Remark For showing Corollary 1 and 2, we need only the assumption $\underline{B} \neq C, L^{\infty}, R^{\infty}$ instead of primarity of \underline{B} .

3 Monotonicity of kneading sequences

In this section we will mention the monotonicity property of kneading sequence in the domain

$$\tilde{D} = \left\{ (a, b) \in D; \, a \ge 1 \right\}.$$

Let us define the order for parameter pairs as follows, according to M. Misiurewicz and E. Visinescu [MV91] :

 $(a,b) \succ (a',b') \Leftrightarrow a' \ge a, b' \ge b$, and at least one of these inequalities is strict.

Kneading sequences are monotone increasing with respect to this order.

Monotonicity Theorem (Theorem A in [MV91]) For (a', b'), (a, b) in D with $(a', b') \succ (a, b)$, it holds that K(a', b') > K(a, b).

This theorem is already proved in [MV91]. M. Misiurewicz and E. Visinescu showed the claim by using the estimation of topological entropy. But we shall reprove it by using only thier results for D^* in [MV91], and renormalization method, not via the topological entropy. For that purpose, we prepare Proposition 1, Proposition 2 and Proposition 3 (for the detailed proofs, see [Ich]).

As to \star -product, we have the following.

Proposition 1 Let <u>A</u> and <u>B</u> be symbolic sequences of L, R, and C with $\underline{A} \succ \underline{B}$. Then for all $n \ge 1$, $R^{\star n} \star \underline{A} \succ R^{\star n} \star \underline{B}$.

3.1 Monotonicity in D^*

Let D^* be the domain $\{(a, b) \in D; a + b < ab^2, a > 1\}.$

M. Misiurewicz and E. Visinescu proved in [MV91] that K(a',b') > K(a,b) for $(a',b'), (a,b) \in D^*$ such that $(a',b') \succ (a,b)$. This domain D^* is characterlized by the following.

Fact 1 (Lemma 2.1 in [MV91]) $(a,b) \in D^* \Leftrightarrow K(a,b) \succ RLR^{\infty}$.

First, monotone increasing property of kneading sequence is proved in D^* .

Fact 2 (Proposition 4.3 in [MV91]) If (a, b) and (a', b') are in D^* with $(a, b) \prec (a', b')$, then $K(a, b) \prec K(a', b')$.

3.2 Renormalization and \star -product (for D)

Proposition 2 Let (a, b) be in D. The following three conditions are equivalent mutually.

(i)
$$(a,b) \in D_0$$
.

- (ii) There exists a unique number $m \ge 1$ and a prime sequence \underline{B} whose length is longer than 2 such that $K(a, b) = R^{\star m} \star \underline{B}$.
- (iii) There exists some number $m \ge 1$ such that $\varphi^m(a, b) \in D^*$, where $\varphi(a, b) = (b^2, ab)$.

Furthermore, there exist closed subintervals of $I_{a,b}$, $\{I_i\}_{i=0, \dots, 2^{m-1}}$ such that their interiors are disjoint mutually, $f_{a,b}I_i = I_{i+1}$ for $0 \leq i \leq 2^m - 2$ and $f_{a,b}I_{2^m-1} = I_0$, $I_{2^m-1} \ni 0$, and $f_{a,b}^{2^m}|_{I_i} \sim f_{\varphi^m(a,b)}$.

Proposition 3 Let $(a,b), (a',b') \in \tilde{D} \setminus D^*$ such that $(a,b) \prec (a',b')$. If $\varphi^m(a,b) \in D^*$ and $\varphi^n(a',b') \in D^*$, then $m \ge n$.

3.3 Proof of Monotonicity Theorem

Assume that $(a, b) \prec (a', b')$.

- (i) If both (a, b) and (a', b') belong to D^* , then the proof is already given by Fact 2.
- (ii) Assume that either (a, b) or (a', b') belongs to D^* . Then (a', b') is in D^* because $(a, b) \prec (a', b')$. By virtue of Fact 1, $K(\varphi^n(a, b)) \preceq RLR^{\infty} \prec K(\varphi^n(a', b'))$. We have that $K(a, b) \prec K(a', b')$ as an order relation " \prec " is total.
- (iii) Assume that (a, b) and (a', b') both belong to $\tilde{D} \setminus D^*$. Then, by Proposition 3, their kneading sequences are written as, for some $n \leq m$,

$$K(a,b) = R^{\star m} \star K(\varphi^m(a,b))$$
 and $K(a',b') = R^{\star n} \star K(\varphi^n(a,b)).$

If m = n, then we have that $\varphi^n(a, b) \prec \varphi^n(a', b')$ since φ is an increasing function. Because $K(\varphi^n(a, b)) \prec K(\varphi^n(a', b'))$ and from Proposition 1, we have that $K(a, b) \prec K(a', b')$.

If n < m, then we have that $\varphi^n(a, b) \neq D^*$ and $\varphi^n(a', b') \in D^*$. By virtue of Fact 1, it follows that

$$K(\varphi^n(a,b)) \preceq RLR^{\infty} \prec K(\varphi^n(a',b')).$$

By Proposition 1, we have that $K(a, b) \prec K(a', b')$.

96

 \Box

4 Renormalization and topological entropy

Now we correct two statements of [MV92].

First: kneading sequence for boundary curve of $A_m (= D_{m+1}^A)$ and $B_m (= D_{m+1}^B)$.

In Theorem 1 of the paper [MV92], they say ;

$$(\lambda,\beta)(=(a,b)) \in A_m \Leftrightarrow K(\lambda,\beta) = (RL^m)^{\infty},$$

 $(\lambda,\beta) \in B_m \Leftrightarrow K(\lambda,\beta) = RL^{m-1} \star \underline{B} \text{ with } \underline{B} \in M$

where M is set of kneading sequence for tent map $f_{\lambda,\lambda}$ $(1 < \lambda \leq 2)$.

 A_m and B_m have common boundary curve : $\lambda^m \mu = 1$. In our opinion this curve should be discussed separately from A_m and from B_m . We find our reason in the fact that the kneading sequence on this curve is $RL^mRL^{m-1}C$, not admitted by one on A_m and on B_m .

Second: topological entropy of $B_1(=D_0)$ is not constant.

In Corollary in [MV92], they say ;

let $(\lambda, \beta), (\lambda', \beta') \in \{(\lambda, \beta) \in D; \lambda \leq 1\}$ such that $(\lambda, \beta) < (\lambda', \beta'),$

 $(\lambda,\beta), (\lambda',\beta') \in A_m \cup B_m \Rightarrow h(\lambda,\beta) = h(\lambda',\beta').$

Namely, topological entropy on B_m is constant for all $m (\geq 1)$. But we can show the followings :

Proposition 4 Let (λ, β) , $(\lambda', \beta') \in \{(\lambda, \beta) \in D; \lambda \leq 1\}$. If $(\lambda, \beta) < (\lambda', \beta')$,

$$h(\lambda,\beta) < h(\lambda',\beta').$$

Proof From [MT88] we obtain that topological entropy of $f_{a,b}$ for B_1 naturally follows from one of its renormalized map of subdomain $a \ge 1$ where the strictly monotonicity holds.

A counter example to this statement is given in [Ich].

Acknowledgments. The author would like very much to thank Professor K. Nishizawa of Josai University and Professor M. Fujimura of National Defense Academy for their valuable discussions and suggestions.

References

- [ITN79a] S. Ito, S. Tanaka, and H. Nakada. On unimodal linear transformations and chaos I. Tokyo J. Math., 2(2):221-239, 1979.
- [ITN79b] S. Ito, S. Tanaka, and H. Nakada. On unimodal linear transformations and chaos II. *Tokyo J. Math.*, 2(2):241–259, 1979.
- [NY95] H. E. Nusse and J. A. Yorke. Border-collision bifurcations for piecewise smooth one-dimensional maps. International Journal of Bifurcation and Chaos, 5(1):189–207, 1995.
- [CE80] P. Collet and J. P. Eckmann. Iterated maps on the interval as dynamical systems. Progress in Physics. Birkhauser, Boston, 1980.
- [Dev89] R. L. Devaney. An introduction to chaotic dynamical systems. Addison-Wesley, 1989.
- [MV91] J. C. Misiurewicz and E. Visinescu. Kneading sequences of skew tent maps. Ann. Inst. Henri Poincare, 27:125–140, 1991.
- [MV92] J. C. Marcuard and E. Visinescu. Monotonicity properties of some skew tent maps. Ann. Inst. Henri Poincare, 28:1–29, 1992.
- [MT88] J. Milnor and W. Thurston. On iterated maps on the interval. Springer LNM 1342 (1988),465-563.
- [IN97a] K. Ichimura and K. Nishizawa. Bifurcations for skew tent maps I (stair type). *RIMS Kokyuroku*, 986:41–48. Kyoto Univ., 1997.
- [IN97b] M. Ito and K. Nishizawa. Bifurcations for skew tent maps II (renormalization). *RIMS Kokyuroku*, 986:49–56. Kyoto Univ., 1997.
- [Ich] K. Ichimura. Dynamics and kneading sequences of skew tent maps. Science Bulletin of Josai university, Special Issue 4, to appear.
- [Ito] M. Ito. Renormalization and topological entropy of skew tent maps. Science Bulletin of Josai university, Special Issue 4, to appear.