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Dynamical Systems
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1 Introduction

The Frobenius-Perron and Koopman operators are useful for various mathematical fields.
We consider the following transformation.

S(z,y) = (az + by + a,cx +dy+ )  (mod 1), (1.1)

where 0 < 2,y < 1, a,b,c,d € R and 0 < o, < 1. This transformation may display
" three levels of irregular behavior (ergodicity, mixing and exactness) depending on the

coefficients a,b,c,d,a and . We investigate the relation between the coefficients and
the behavior using these operators. We first give a necessary and sufficient condition for
S to be measure preserving [Theorem 4], because measure preserving is supposed in the
definition of mixing and exactness. In the case of a,b,¢,d € Z and a = § = 01in (1.1), we
show a necessary and sufficient condition for S to be mixing [Theorem 9]. In Theorem 10,
we show S displays the following behaviors depending on a,b,c,d € Zand 0 < 0,8 < 1
in (1.1):

(i) S is mixing;

(ii) S is ergodic, but not mixing;

(iii) S is not ergodic.

2 The Frobenius-Perron and Koopman Operators

Definition (Markov operator). Let (X, A, 1) be a measure space. Any linear opera-
tor P: L' — L! satisfying
(a) Pf20forf20,f€L1;
() IPfl =17l for f>0,fe L
~is called a Markov operator.

Definition (nonsingular). A measurable transformation S : X — X on a measure
space (X, A, ) is nonsingular if x4(S~(A)) = 0 for all A € A such that p(A) = 0.

‘Definition . Let (X, A, u) be a measure space. If S: X — X is a nonsingular transfor-
mation, the unique operator P : L! — L! defined by

/Pf(:b),u(da:) = / f(z)u(dz) for A€ A (2.1)
A S-1(4)

is called the Frobenius-Perron operator corresponding to S.
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Definition . Let (X, .4, u) be a measure space, S : X — X anonsingular transformation,
and f € L. The operator U : L™ — L* defined by

Uf(z) = f(S(z))
is called the Koopman operator with respect to S.

Definition (measure-preserving). Let (X,.4, ) be a measure space and S : X = X
a measurable transformation. Then S is said to be measure preserving if

pw(S7H(A)) = u(A) forall A € A.

Definition (ergodic). Let (X, A, ,u) be a measure space and let a nonsingular trans-
formation S : X — X be given. The S is called ergodic if every invariant set A € A is
such that either pu(A) = 0 or u(X\A) = 0.

Definition (mixing). Let (X, A, ) be a normalized measure space, and S: X - X a
measure-preserving transformation. S is called mixing if

lim (AN S™(B)) = w(A)u(B)  forall A,B € A

n—oo

Definition (exact). Let (X, A, u) be a normalized measure space and S : X — X a
measure-preserving transformation such that S(A) € A for each A € A. If

lim p(S™(A)) =1 for every A € A, u(A) >0,

n-—»00

then S is called exact.
Remark 1. If S is exact, then S is mixing. If S is mixing, then S is ergodic.

The proof of ergodicity, mixing, or exactness using these definitions is difficult. So we
will use the following theorem and proposition.

Theorem 1 ([1]). Let (X, A, p) be a normalized measure space, S : X — X a measure-
preserving transformation, and P the Frobenius-Perron operator corresponding to S. Then

(a) S is ergodic if and only if

n—1 )
lim =Y (P*f,0) = (1, 1)(L9)  for feLlgel™;
k=0

(b) S is mizing if aﬁd only if

lim (P"f,g) = (f,1{1,9)  for fe L' g€ L™

(c) S is ezact if and only if

lim [PPf— (DI =0 Jor fe I
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Proposition 2 ([1]). Let(X, A, p) be a normalized measure space, S : X — X a measure-
preserving transformation, and U the Koopman operator corresponding to S. Then

(a) S is ergodic if and only if

n—1

m =37, Uk = (£,1(L,g)  for feLlgel™

(b) S is mizing if and only f

lim (f,Ug) = (f,1)(,9)  for feL'ge L™

3 The dynamics of S"(z,y)
Consider first a = 8 =0 in (1.1), i.e.
S(z,y) = (az + by, cz + dy) (mod 1),

where a,b,c,d € R. Let X = [0,1) x [0,1) and X° = (0,1) x (0,1) and O,P,Q and R be
the points (0,0), (a, c), (a + b,c+ d) and (b, d) € R?, respectively.

Proposition 3. Let (X, A, 1) be a normalized measure space. Suppose S : X — X 1s
defined by
S(z,y) = (az + by,cx +dy)  (mod 1),

where a,b,c,d € R and the determinant of A = ( i Z ) is given by

detA=ad—bc=1

and |a + d| < 2. If there ezist (zo,y0) € X° such that S(zo,yo) = (o, Yo), then S is not
ergodic.

Proof. We will show that there exists a nontrivial invariant set.
Let eigenvalues of A be pu =+ iv. There exist § € [0,27] and r,t € R satisfying

A—( cosf sin0><r 0)( U V)('rl' 0><cos() —sin0>

~\ —sinf cosf 0 t -V u o1 sinf . cosf |’
S(zo,40) = (zo,yo) means that there exists m,n € Z such that A(zg,yo) + (m,n) =

(2o, o). By putting T'(zo, yo) = A(Z0, yo) + (m, n), we see that the set I'(z,y) = {T"(z, )|

n=20,1,---} is on the ellipse with center (zo,y), since ad —bc =1 and |a +d| < 2. If

(z,y) is very near to (zo, %), I'(zo,%) C X° and T™(z,y) = S™(2,y). So, if we take a

sufficiently small set B such that u(B) > 0 and (z¢,¥) € B, then I'(B) is an invariant
set under S, which implies S is not ergodic. a
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13 Z
Example 1. Suppose A = 1P ) (detA=1).
: 70

, ‘ 10
Put (zo,%) = (5, 23) or (z0,%) = (&, 55)- Then S(zo,%) = (0,%). Thus, S is not
ergodic by Proposition 3.

.
Suppose A = ( i oy ) (detA = 1). There doesn’t exist (zo,yo) € X° such that

1000

()= (0)=() mem

Now let’s be back to the definitions of mixing and exact. Since measure preserving is
supposed in the definition of mixing and exactness (i.e. u(S~1(A)) = u(A) for VA € A),
we first give a necessary and sufficient condition for S to be measure preserving.

Let A(X) = UM, B, where B; C [my,m; + 1) x [ng,n; + 1), my, n; € Z. We define ¢ as

&(B) = {(z — mi,y —m)|(z,y) € Bi} C X.

Lemma 1. Let (X, A, u) be a normalized measure space. Suppose S : X — X is defined

by
S(z,y) = (az + by,cz +dy)  (mod 1)

a b

and A = ( e d ), where a,b,c,d € R. The following statements are equivalent:

(1) S is measure preserving,
(2) The following statements hold:

(i) |detA| =n € N;
(i) There exist the sets K; (I = 1,2,---, M) and a partition of X {D;}}_; such
that By = Uj ek, 1 (Di);
(iii) The number of elements of the set {I | D} ¢i(B) # @} is equal to 7.

(3) |detA| = n € N and either (a) or (b) holds:

(a) a,c € Z and there exist (20,%) € 72 on the line RQ;
(b) b,d € Z and there exist (2o, o) € Z2 on the line PQ.

Proof. We show (1) implies (2). There exists a partition of X {D1}5=1 such that D; =
Ny ¢i(By) (1 <V < k3t > 1), &i(B) = 1Dy (1 <Vj < k)and u(D;) >
0 (1 <j<k), where p is Legesgue measure.

Then for any j € {1,2,---,ko} there exists { € IN such that w(A7'¢71D;) > 0. Put
K; = {l| D3N éi(B;) # 0} and k; be the number of elements of K. Since S~YD;) =
UleK,- A_lgbl-l(Dj) ’

w(STHD;)) = kiu(A™'¢;'D;)
= kj|detA|™' u(D;).
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We have k; = |detA| for 1 < Vj < k by u(S™Y(D;)) = u(D;). Since

k M
> ldetA|l w(D;) = Y p(¢N(BY)
=1 =1

— WA(X)) = |detA,

we have Z?zl p(D;) = 1.

We show (2) implies (1). Let G € A. There ex1st ky € N, {G;}, and {ji}*, (j; €
{1,2,--- ,k}) such that GN D;, = G, and G = U G;i (G ﬂGO =0 i#j) There exist
{im}fnz such that G; C ¢; (B,m) We have ‘

n

w(S7HG)) = u(SHUR,G ZZM 1471(Gy))

m=1 i=1 .
ko

= n) u(A¢;N(G) Zu
=1

We show (3) implies (2). Put B; = B; mod 1. Since there exist (¢;,s;) € Z2 (i = 1,2)
such that the line {(z —t;,y — s:)|(z,y) € A(X)} [ A(X) is parallel to either y = £z or
y = %m, there exists I' € {1,--- , M} for any | € {1,--- , M} such that the line B[ B’y
is parallel to either y = £z or y = ‘—lfa:. Then there exists a partition {D;} which satisfies
the condition (2).

We show (2) implies (3). Consider the case of a,b,c,d > 0, detA > 0 and d > ¢. There
exists j € {1,---, M} such that (0,0) € B;. Then there exist /;,l; and I3 € {1,--- ,k}
such that (0,0) € Dy, (\ Dy, Dy, D, (\ Dy, (D5, = 0, the line Dy, (| Dy, is parallel to

y = £z and the line Dy, [ Dy, is parallel to y = %m. The following statements hold:
(I) There exists j € {1,--- , M} and (m1,n1) € Z? such that (mq,n;) € ¢;(Dy,);
(II) There exists s € {1,---, M} and (m2,ny) € Z? such that (my, n2) € ¢5(Dy,).

Suppose (m1,n1) # (b,d) and (m2,ns) # (a,c). There exists Iy € {1,--- ,k} such that
(1,1) € Dy, 8D, X° is parallel to y = £z and there is ¢, (8D, [} X°) on y = <z
for 3jo € {1,2,---,M}. There exists (m3, ng) € Z* such that (mg,n3) € ¢;'(D,)
and (mg,n3) # (a,c). The parallelogram which has the vertices (0,0), (ms3,n3), (b +
mg,d+n3) and (b, d) satisfies the condition of (3). Put the parallelogram be B’. Suppose
B" = {(z —m3,y—n3)|(z,y) € A(X)\ B'}. If we repeat a similar procedure for B”, there
are no lattice point on the line OP, which contradicts the assumption. Either (a, c) € Z2
or (b,d) € Z? holds. So (3) follows from (I) and (II). In the other cases, we may prove in
a similar way. A ' 0O

By Lemma 1, we shall show the following theorem.

Theorem 4. Let (X, A, p) be a normalized measure space. Suppose S : X = X is defined

by :
S(z,y) = (az + by, cz + dy)  (mod 1)
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a b

and A = ( e d ), where a,b,c,d € R. The following (1) and (2) are equivalent:

(1) S is measure preserving,

(2) |detA] =n € N and (a,c)|n (a,c € Z)
or
|detA| = n € N and (b,d)|n (b,d € Z),

where (a,c) indicates a greatest common divisor of a and c.

Proof. We shall show that Lemma 1 (3) and Theorem 4 (2) are equivalent.
( Lemma 1 (3) = Theorem 4 (2) ) -
Let a,c € Z,ad — bc = n and let [ be the line RQ. Then!:y = £(z —b) + d. Let
(wO,yO) € Z2,
Yo = (zo—0d)+d
— fogrz

Suppose (a,c) = p, and (n,p) = m < p. Put p = mp',a = pa’,c = pc’,n = mn' then
(nlvpl) =1 :

So yo = fz—',:co + ;‘1,% and d'yy — dzy = lz—,' holds. a'yy — d'zg € Z contradicts 11;4 ¢ Z. So
(n,p) = p holds.

( Theorem 4 (2) = Lemma 1 (3) )

Let |detA] = n,a,c € Z,l : y = £(x —b)+d = ¢z + 2. Put (a,c) = p € Z then
a = pa,c = pcd,(a',d) =1 (ieds,t € Zst. a's+ct =1) holds. By pln, put
n=pn' (n' €Z). a'n's+ n't =n' holds. If z; = —n't € Z then

n' —ctn'+n' a'n's

!
— = = =nseZ.
al al al

. C, ,

Hence (z1,11) € Z2. | _ O

By the above theorem, we can consider the case of detA € Z hereafter.

Lemma 2. Let (X,.A,u) be a normalized measure space. Suppose S : X — X is defined

by | |
S(z,y) = (az + by,cz +dy)  (mod 1)

andA—_—(ccl Z),wherea,b,c,deR. PutA”z(a“ b") anddetAzﬁl:m(le).

Cn dn
Then ,
Opt1 = QZp F M2y
bn+1 = bzn
Cntl = C2yp
d'n+1 = dz, F mz,_1,
where
zZ1 = 0
20 = 1

Zny1 = (a + d)zp, Fmz,_1.
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Put D = {f(z,y) = exp[27i(pz + qy)]|p, ¢ € Z}. Since the linear span of D is dense in
L*(X), we have the following.

Theorem 5. Let (X, A, 1) be a normalized measure space. Suppose S : X — X is defined

by
S(z,y) = (az + by,cz +dy)  (mod 1),

where a,b,e,d € Z. Put A = (Z Z) and A™ = ( (Z" 3" ) Then the following

statements are equivalent:
(1) S is not mizing,

(2) There exist {n]};‘;l and (p, q,k,1) # (0,0,0,0) (p,q,k,! € Z) such that

ka,; +lc,;, —p = kby, +1d,, —q=0;

(3) There exists {znj };il which satisfies either (i) or (ii).

(i) 2n; = 2n, and 2,,,_1 = 24,1 for any j.

(ii) There ezists an eigenvalue A of matriz A such that

AEQ and SmTFm _ detA

i, 17 #1).
= frawili#)

Proof. ( (1) = (2))
. e . 1 k=l=p=¢qg=0
If S is not mixing, then lim, .. {(f,U"g) # (f,1}(1,9) = 0 otherwise

for any ng, there exists ny > ng such that (f,U™g) = 1 with (k,,p,¢)#(0,---,0). Re-
peating the relation, we can show that there exists ny > n; such that (f,U™g) = 1 with
(k,1,p,9)#(0,- - - ,0). Taking this sequence {nj};?il, the next holds : (f,U"g) = 1 with
(k,1,p,9)#(0,--- ,0), i.e. kan, +lcn; —p = 0 and kb,, + ld,; — g = 0. This means (2)
holds.

(2)=(1))

We shall show that S is not mixing by Proposition 2(b). (S is mixing < lim(f,U"g) =
(f,1)(1,g) with g in a linearly dense set in L>*(X). We define the Koopman opera-
tor as Ug(z,y) = g(S™(z,y)). If we take g(z,y) = exp[2mi(kz + ly)] and f(z,y) =
exp[—2mi(pz + qy)] with k,1,p,q € Z then we have U"g(z,y) = g(an + by, cnz + d,y)
and

, 1.e.

ol
(f,U"g) = / / exp[2ni {(ka, + lc, — p)z + (kb, + ld,, — q)y}]dzdy
o Jo

_J 1 if kay+lc,—p=kb,+1d, —q=0 -+ (A)
~ ] 0 otherwise

On the other hand,

_[1 k=l=p=¢=0
(f,1)(L,9) = { 0 otherwise
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By (2), for any ng € N, there exists t > ng (¢t € {n;}) and p,q,k,l € Z such that
(p,q,k,1) # (0,0,0,0) and ka; + lc; —p = kb, +1d, —q = 0---(B). By (A) and (B),
(f,Umg) does not converge to (f,1)(1,g). So S is not mixing.

(2)=(3)

Put | detA | = N.

(2) & 3{n;} and A(p, q,k,1) # (0,0,0,0) s.t. kan, +lcn, —p = ken, +1d,; —q =0 :

kay,; +lcn; —p = (ka+lc)zn; — 1 FkNzy, 2 —p =0
kan, +lco, —p = (ka+lc)zni =1 F kNzn, 2 —p=0

& k(an, — an,) +l(cn; — Cn;) = (ka +1c)(20,-1 — 2Zn;-1) F kN (25,2 — Zn;—2) =0

( Zn-—l Zn;-1
k=C""‘ —Ol#0d¢0’z—~2__':;’:‘:;:i%
or
k——-d—O 1760 an_l—,?.'n1 1,21"].._2 Zpy—2
or

ol l=b=g=0k+#0,a+#0, —“—‘-_gg-zﬁ:-g’-
or
l=a=0,k # 0, Zp;—1 = Zny—15%n;—2 = 2n;-2
or
-—1 Zn;—1
k ]CCL-I-ZC#O k‘b—l'-ld?éOl:,éO—:—_—zn—:; ﬂ:ksflc iklffld
< (3). : _ O

Theorem 6. Let (X, A, 1) be a normalized measure space. Suppose S : X — X is defined

by
S(z,y) = (ax + by,cx +dy)  (mod 1),

a a, b,

where a,b,c,d € Z. Put A = Z and A" = ( o d ) If there exist {nj};il and
(p,q,k,1) # (0,0,0,0) (p,g,k,l € Z) such that nj1; —n; = ng —mny for any j and

kan; +lc,, —p = kb, +1d,;, —q=10,
then S is not ergodic.

In order to obtain a criterion for demonstrating either mixing, exactness or ergodicity,
we first show the following propositions using Theorem 5.

Proposition 7. Suppose detA > 0. Then the following statements holds:
(1) Ifa+d=detA+ 1, then {2,} satisfies the condition of Theorem 5(3)(ii);
(2) Ifa+d = —(detA+ 1), then {22,} satisfies the condition of Theorem 5(3)(ii);

(3) If |a+ d| # detA + 1 (detA # 1), then there doesn’t exist {2.,} which satisfies
the condition of Theorem 5(3);

(4) Let detA = 1.
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(i) If |a+d| = 0, then {z4,} satisfies the condition of Theorem 5(3)(i).
(i) If|a+d| = 1, then {26.} satisfies the condition of Theorem 5(3)(i).
(iii) If |a +d| = —1, then {z3,} satisfies the condition of Theorem 5(3)(i).
Proposition 8. Suppose detA < 0. Then the following statements holds: |
(1) Ifa+d =detA+1+#0, then {2,} satisfies the condition of Theorem 5(3)(ii);
(2) Ifa+d = —(detA+1) # 0, then {z2,} satisfies the condition of Theorem 5(3)(ii);
(3) Ifa+d=detA+1=0, {22,} satisfies the condition of Theorem 5(3)(i);

(4) If |a+d| # |detA| — 1, there doesn’t exist {2, } which satisfies the condition of
Theorem 5(3).

Using the next theorem, we can know the behavior of S calculating detA and |a + d|.

Theorem 9. Let (X, A, 1) be a normalized measure space. Suppose S : X — X is defined
by
S(z,y) = (az + by,cz + dy) = (mod 1),

where a,b,c,d € Z. The following statements are equivalent:
(i) S is mizing;
(ii) S is ergodic;
(iii) Either (a), (b) or (c) holds:

(a) detA > 2 and |a+d| # detA+1;
(b) detA=1 and |a+d| > 3;
(c) detA < 0 and |a+ d| # |detA] — 1.

We consider the following transformation:

S(z,y) = (az + by+a', cz+dy+8) (mod 1),
where a,b,c,d€ Z and 0 < o, (3 < 1.

Theorem 10. Let (X, A, ) be a normalized measure space. Suppose S : X — X 1is
defined by '

S(z,y) = (az + by + o, cz + dy + B) (mod 1),

where a,b,c,d € Z and 0 < o, B < 1. Let So(z,y) = (az + by, cz + dy) (mod 1).
The following statements hold:

(1) If either detA =1 and |a +d| > 3 or |a + d| # sgn(detA)(detA + 1), then S is
mizing, where sgn(detA) indicates the sign of detA; :

(2) If either (i) or (il) holds, then S is ergodic, but not mizing;
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(i) |a + d| =sgn(detA)(detA + 1), A = £I (I is an 2 X 2 identity matriz) and
a,fB ¢Q. |
(i) a+d=detA+1,A+# I and either ac— (a—1)8 ¢ Q or a(d - 1) - Bb ¢ Q.
(3) If either (i),(ii),(iii) or (iv) holds, S is not ergodic. |
(i) detA=1and|a+d <1,
(i) |a + d| = sgn(detA)(detA +1), A # £1 and either a € Q or § € Q.
(iii) |a+d| =detA+1, A# I and either ac—(a—1)B € Q or a(d—1)-Bbe Q.
(iv) |a+d| = —detA—1 and A # —1I. '
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