Dynamical Systems for the Frobenius-Perron Operator

Mai Matsui (松井 麻依) and Mie Matsuto (松戸 美江)

Ochanomizu University

1 Introduction

The Frobenius-Perron and Koopman operators are useful for various mathematical fields. We consider the following transformation.

$$S(x,y) = (ax + by + \alpha, cx + dy + \beta) \pmod{1},\tag{1.1}$$

where $0 \le x, y < 1$, $a, b, c, d \in \mathbf{R}$ and $0 \le \alpha, \beta < 1$. This transformation may display three levels of irregular behavior (ergodicity, mixing and exactness) depending on the coefficients a, b, c, d, α and β . We investigate the relation between the coefficients and the behavior using these operators. We first give a necessary and sufficient condition for S to be measure preserving [Theorem 4], because measure preserving is supposed in the definition of mixing and exactness. In the case of $a, b, c, d \in \mathbf{Z}$ and $\alpha = \beta = 0$ in (1.1), we show a necessary and sufficient condition for S to be mixing [Theorem 9]. In Theorem 10, we show S displays the following behaviors depending on $a, b, c, d \in \mathbf{Z}$ and $0 \le \alpha, \beta < 1$ in (1.1):

- (i) S is mixing;
- (ii) S is ergodic, but not mixing;
- (iii) S is not ergodic.

2 The Frobenius-Perron and Koopman Operators

Definition (Markov operator). Let (X, \mathcal{A}, μ) be a measure space. Any linear operator $P: L^1 \to L^1$ satisfying

- (a) $Pf \ge 0$ for $f \ge 0, f \in L^1$;
- (b) $\|Pf\| = \|f\|$, for $f \ge 0, f \in L^1$

is called a Markov operator.

Definition (nonsingular). A measurable transformation $S: X \to X$ on a measure space (X, \mathcal{A}, μ) is nonsingular if $\mu(S^{-1}(A)) = 0$ for all $A \in \mathcal{A}$ such that $\mu(A) = 0$.

Definition. Let (X, \mathcal{A}, μ) be a measure space. If $S: X \to X$ is a nonsingular transformation, the unique operator $P: L^1 \to L^1$ defined by

$$\int_{A} Pf(x)\mu(dx) = \int_{S^{-1}(A)} f(x)\mu(dx) \quad \text{for } A \in \mathcal{A}$$
 (2.1)

is called the **Frobenius-Perron operator** corresponding to S.

Definition. Let (X, \mathcal{A}, μ) be a measure space, $S: X \to X$ a nonsingular transformation, and $f \in L^{\infty}$. The operator $U: L^{\infty} \to L^{\infty}$ defined by

$$Uf(x) = f(S(x))$$

is called the Koopman operator with respect to S.

Definition (measure-preserving). Let (X, \mathcal{A}, μ) be a measure space and $S: X \to X$ a measurable transformation. Then S is said to be measure preserving if

$$\mu(S^{-1}(A)) = \mu(A)$$
 for all $A \in \mathcal{A}$.

Definition (ergodic). Let (X, \mathcal{A}, μ) be a measure space and let a nonsingular transformation $S: X \to X$ be given. The S is called **ergodic** if every invariant set $A \in \mathcal{A}$ is such that either $\mu(A) = 0$ or $\mu(X \setminus A) = 0$.

Definition (mixing). Let (X, \mathcal{A}, μ) be a normalized measure space, and $S: X \to X$ a measure-preserving transformation. S is called mixing if

$$\lim_{n\to\infty}\mu(A\cap S^{-n}(B))=\mu(A)\mu(B)\qquad\text{for all }A,B\in\mathcal{A}.$$

Definition (exact). Let (X, \mathcal{A}, μ) be a normalized measure space and $S: X \to X$ a measure-preserving transformation such that $S(A) \in \mathcal{A}$ for each $A \in \mathcal{A}$. If

$$\lim_{n \to \infty} \mu(S^n(A)) = 1 \quad \text{for every } A \in \mathcal{A}, \mu(A) > 0,$$

then S is called **exact**.

Remark 1. If S is exact, then S is mixing. If S is mixing, then S is ergodic.

The proof of ergodicity, mixing, or exactness using these definitions is difficult. So we will use the following theorem and proposition.

Theorem 1 ([1]). Let (X, \mathcal{A}, μ) be a normalized measure space, $S: X \to X$ a measure-preserving transformation, and P the Frobenius-Perron operator corresponding to S. Then

(a) S is ergodic if and only if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \langle P^k f, g \rangle = \langle f, 1 \rangle \langle 1, g \rangle \qquad \text{for } f \in L^1, g \in L^{\infty};$$

(b) S is mixing if and only if

$$\lim_{n\to\infty} \langle P^n f, g \rangle = \langle f, 1 \rangle \langle 1, g \rangle \qquad \text{for } f \in L^1, g \in L^\infty;$$

(c) S is exact if and only if

$$\lim_{n\to\infty} \|P^n f - \langle f, 1 \rangle\| = 0 \qquad \text{for } f \in L^1.$$

Proposition 2 ([1]). Let (X, A, μ) be a normalized measure space, $S: X \to X$ a measure-preserving transformation, and U the Koopman operator corresponding to S. Then

(a) S is ergodic if and only if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \langle f, U^k g \rangle = \langle f, 1 \rangle \langle 1, g \rangle \qquad \text{for } f \in L^1, g \in L^{\infty};$$

(b) S is mixing if and only if

$$\lim_{n \to \infty} \langle f, U^n g \rangle = \langle f, 1 \rangle \langle 1, g \rangle \qquad \text{for } f \in L^1, g \in L^{\infty}.$$

3 The dynamics of $S^n(x,y)$

Consider first $\alpha = \beta = 0$ in (1.1), i.e.

$$S(x,y) = (ax + by, cx + dy) \pmod{1},$$

where $a, b, c, d \in \mathbf{R}$. Let $X = [0, 1) \times [0, 1)$ and $X^{\circ} = (0, 1) \times (0, 1)$ and O,P,Q and R be the points (0, 0), (a, c), (a + b, c + d) and $(b, d) \in \mathbf{R}^2$, respectively.

Proposition 3. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by, cx + dy) \pmod{1},$$

where $a,b,c,d \in \mathbf{R}$ and the determinant of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by

$$det A = ad - bc = 1$$

and |a+d| < 2. If there exist $(x_0, y_0) \in X^{\circ}$ such that $S(x_0, y_0) = (x_0, y_0)$, then S is not ergodic.

Proof. We will show that there exists a nontrivial invariant set.

Let eigenvalues of A be $\mu \pm i\nu$. There exist $\theta \in [0, 2\pi]$ and $r, t \in \mathbf{R}$ satisfying

$$A = \left(\begin{array}{cc} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{array} \right) \left(\begin{array}{cc} r & 0 \\ 0 & t \end{array} \right) \left(\begin{array}{cc} \mu & \nu \\ -\nu & \mu \end{array} \right) \left(\begin{array}{cc} \frac{1}{r} & 0 \\ 0 & \frac{1}{t} \end{array} \right) \left(\begin{array}{cc} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{array} \right).$$

 $S(x_0,y_0)=(x_0,y_0)$ means that there exists $m,n\in \mathbf{Z}$ such that $A(x_0,y_0)+(m,n)=(x_0,y_0)$. By putting $T(x_0,y_0)=A(x_0,y_0)+(m,n)$, we see that the set $\Gamma(x,y)=\{T^n(x,y)|\ n=0,1,\cdots\}$ is on the ellipse with center (x_0,y_0) , since ad-bc=1 and |a+d|<2. If (x,y) is very near to (x_0,y_0) , $\Gamma(x_0,y_0)\subset X^\circ$ and $T^n(x,y)=S^n(x,y)$. So, if we take a sufficiently small set B such that $\mu(B)>0$ and $(x_0,y_0)\in B$, then $\Gamma(B)$ is an invariant set under S, which implies S is not ergodic.

Example 1. Suppose $A = \begin{pmatrix} -\frac{13}{10} & -\frac{7}{10} \\ \frac{113}{70} & \frac{1}{10} \end{pmatrix} (det A = 1).$

Put $(x_0, y_0) = (\frac{9}{32}, \frac{113}{224})$ or $(x_0, y_0) = (\frac{25}{32}, \frac{65}{224})$. Then $S(x_0, y_0) = (x_0, y_0)$. Thus, S is not

ergodic by Proposition 3.

Suppose $A = \begin{pmatrix} 1 & -\frac{1}{1000} \\ 1 & \frac{999}{1000} \end{pmatrix} (det A = 1)$. There doesn't exist $(x_0, y_0) \in X^\circ$ such that $A \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} m \\ n \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \qquad (m, n \in \mathbf{Z}).$

Now let's be back to the definitions of mixing and exact. Since measure preserving is supposed in the definition of mixing and exactness (i.e. $\mu(S^{-1}(A)) = \mu(A)$ for $\forall A \in \mathcal{A}$), we first give a necessary and sufficient condition for S to be measure preserving.

Let $A(X) = \bigcup_{l=1}^{M} B_l$, where $B_l \subset [m_l, m_l + 1) \times [n_l, n_l + 1), m_l, n_l \in \mathbf{Z}$. We define ϕ_l as $\phi_l(B_l) = \{(x - m_l, y - n_l) | (x, y) \in B_l\} \subset X$.

Lemma 1. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by, cx + dy) \pmod{1}$$

and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in \mathbf{R}$. The following statements are equivalent:

- (1) S is measure preserving;
- (2) The following statements hold:
 - (i) $|det A| = n \in \mathbb{N};$
 - (i) There exist the sets K_l $(l=1,2,\cdots,M)$ and a partition of X $\{D_j\}_{j=1}^k$ such that $B_l = \bigcup_{i \in K_l} \phi_l^{-1}(D_{j_l})$;
 - (iii) The number of elements of the set $\{l \mid D_j^{\circ} \cap \phi_l(B_l) \neq \emptyset\}$ is equal to n.
- (3) $|det A| = n \in \mathbb{N}$ and either (a) or (b) holds:
 - (a) $a, c \in \mathbf{Z}$ and there exist $(x_0, y_0) \in \mathbf{Z}^2$ on the line \overline{RQ} ;
 - (b) $b, d \in \mathbf{Z}$ and there exist $(x_0, y_0) \in \mathbf{Z}^2$ on the line \overline{PQ}

Proof. We show (1) implies (2). There exists a partition of $X \{D_j\}_{j=1}^k$ such that $D_j = \bigcap_{j_l=1}^{t_j} \phi_{j_l}(B_{j_l})$ $(1 \leq \forall j \leq k, \exists t_j \geq 1), \ \phi_l(B_l) = \bigcup_{l_i=1}^{h_l} D_{l_i} \ (1 \leq \forall j \leq k) \text{ and } \mu(D_j) > 0 \ (1 \leq j \leq k), \text{ where } \mu \text{ is Legesgue measure.}$

Then for any $j \in \{1, 2, \dots, k_0\}$ there exists $l \in \mathbb{N}$ such that $\mu(A^{-1}\phi_l^{-1}D_j) > 0$. Put $K_j = \{l \mid D_j^{\circ} \cap \phi_l(B_l) \neq \emptyset\}$ and k_j be the number of elements of K_j . Since $S^{-1}(D_j) = \bigcup_{l \in K_j} A^{-1}\phi_l^{-1}(D_j)$,

$$\mu(S^{-1}(D_j)) = k_j \mu(A^{-1}\phi_l^{-1}D_j)$$

= $k_j |det A|^{-1} \mu(D_j)$.

We have $k_j = |det A|$ for $1 \leq \forall j \leq k$ by $\mu(S^{-1}(D_j)) = \mu(D_j)$. Since

$$\sum_{j=1}^{k} |det A| \ \mu(D_j) = \sum_{l=1}^{M} \mu(\phi_l^{-1}(B_l))$$
$$= \mu(A(X)) = |det A|,$$

we have $\sum_{j=1}^{k} \mu(D_j) = 1$.

We show (2) implies (1). Let $G \in \mathcal{A}$. There exist $k_0 \in \mathbb{N}$, $\{G_i\}_{i=1}^{k_0}$ and $\{j_i\}_{i=1}^{k_0}$ $(j_i \in \{1, 2, \dots, k\})$ such that $G \cap D_{j_i} = G_i$ and $G = \bigcup_{i=1}^{k_0} G_i$ $(G_i^{\circ} \cap G_j^{\circ} = \emptyset \ i \neq j)$. There exist $\{i_m\}_{m=1}^n$ such that $G_i \subset \phi_{i_m}(B_{i_m})$. We have

$$\mu(S^{-1}(G)) = \mu(S^{-1}(\cup_{i=1}^{k_0} G_i)) = \sum_{m=1}^n \sum_{i=1}^{k_0} \mu(A^{-1}\phi_{i_m}^{-1}(G_i))$$
$$= n \sum_{i=1}^{k_0} \mu(A^{-1}\phi_{i_1}^{-1}(G_i)) = \sum_{i=1}^{k_0} \mu(G_i) = \mu(G).$$

We show (3) implies (2). Put $B'_l = B_l \mod 1$. Since there exist $(t_i, s_i) \in \mathbf{Z}^2$ (i = 1, 2) such that the line $\{(x - t_i, y - s_i) | (x, y) \in A(X)\} \cap A(X)$ is parallel to either $y = \frac{c}{a}x$ or $y = \frac{d}{b}x$, there exists $l' \in \{1, \dots, M\}$ for any $l \in \{1, \dots, M\}$ such that the line $B'_l \cap B'_{l'}$ is parallel to either $y = \frac{c}{a}x$ or $y = \frac{d}{b}x$. Then there exists a partition $\{D_j\}$ which satisfies the condition (2).

We show (2) implies (3). Consider the case of a, b, c, d > 0, det A > 0 and d > c. There exists $j \in \{1, \dots, M\}$ such that $(0,0) \in B_j$. Then there exist l_1, l_2 and $l_3 \in \{1, \dots, k\}$ such that $(0,0) \in D_{l_1} \cap D_{l_2} \cap D_{l_3}$, $D_{l_1}^{\circ} \cap D_{l_2}^{\circ} \cap D_{l_3}^{\circ} = \emptyset$, the line $D_{l_1} \cap D_{l_2}$ is parallel to $y = \frac{c}{a}x$ and the line $D_{l_1} \cap D_{l_3}$ is parallel to $y = \frac{d}{b}x$. The following statements hold:

- (I) There exists $j \in \{1, \dots, M\}$ and $(m_1, n_1) \in \mathbb{Z}^2$ such that $(m_1, n_1) \in \phi_j(D_{l_2})$;
- (II) There exists $i \in \{1, \dots, M\}$ and $(m_2, n_2) \in \mathbb{Z}^2$ such that $(m_2, n_2) \in \phi_i(D_{l_3})$.

Suppose $(m_1, n_1) \neq (b, d)$ and $(m_2, n_2) \neq (a, c)$. There exists $l_4 \in \{1, \dots, k\}$ such that $(1, 1) \in D_{l_4}$, $\partial D_{l_4} \cap X^{\circ}$ is parallel to $y = \frac{c}{a}x$ and there is $\phi_{j_0}^{-1}(\partial D_{l_4} \cap X^{\circ})$ on $y = \frac{c}{a}x$ for $\exists j_0 \in \{1, 2, \dots, M\}$. There exists $(m_3, n_3) \in \mathbf{Z}^2$ such that $(m_3, n_3) \in \phi_{j_0}^{-1}(D_{l_4})$ and $(m_3, n_3) \neq (a, c)$. The parallelogram which has the vertices $(0, 0), (m_3, n_3), (b + m_3, d + n_3)$ and (b, d) satisfies the condition of (3). Put the parallelogram be B'. Suppose $B'' = \{(x - m_3, y - n_3) | (x, y) \in \underline{A}(X) \setminus B'\}$. If we repeat a similar procedure for B'', there are no lattice point on the line \overline{OP} , which contradicts the assumption. Either $(a, c) \in \mathbf{Z}^2$ or $(b, d) \in \mathbf{Z}^2$ holds. So (3) follows from (I) and (II). In the other cases, we may prove in a similar way.

By Lemma 1, we shall show the following theorem.

Theorem 4. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by, cx + dy) \pmod{1}$$

and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in \mathbf{R}$. The following (1) and (2) are equivalent:

(1) S is measure preserving;

(2)
$$|det A| = n \in \mathbb{N}$$
 and $(a, c)|n$ $(a, c \in \mathbb{Z})$
or $|det A| = n \in \mathbb{N}$ and $(b, d)|n$ $(b, d \in \mathbb{Z})$,

where (a, c) indicates a greatest common divisor of a and c.

Proof. We shall show that Lemma 1 (3) and Theorem 4 (2) are equivalent.

(Lemma 1 (3) \Longrightarrow Theorem 4 (2))

Let $a, c \in \mathbf{Z}$, ad - bc = n and let l be the line \overline{RQ} . Then $l : y = \frac{c}{a}(x - b) + d$. Let $(x_0, y_0) \in \mathbf{Z}^2$,

$$y_0 = \frac{c}{a}(x_0 - b) + d$$
$$= \frac{c}{a}x_0 + \frac{n}{a}$$

Suppose (a, c) = p, and (n, p) = m < p. Put p = mp', a = pa', c = pc', n = mn' then (n', p') = 1

So $y_0 = \frac{c'}{a'}x_0 + \frac{n'}{a'p'}$ and $a'y_0 - c'x_0 = \frac{n'}{p'}$ holds. $a'y_0 - c'x_0 \in \mathbf{Z}$ contradicts $\frac{n'}{p'} \notin \mathbf{Z}$. So (n,p) = p holds.

(Theorem 4 (2) \Longrightarrow Lemma 1 (3))

Let $|det A| = n, a, c \in \mathbf{Z}, l : y = \frac{c}{a}(x-b) + d = \frac{c}{a}x + \frac{n}{a}$. Put $(a, c) = p \in \mathbf{Z}$ then a = pa', c = pc', (a', c') = 1 (i.e. $\exists s, t \in \mathbf{Z}$ s.t. a's + c't = 1) holds. By p|n, put n = pn' $(n' \in \mathbf{Z})$. a'n's + c'n't = n' holds. If $x_1 = -n't \in \mathbf{Z}$ then

$$y_1 = \frac{c'}{a'}(-n't) + \frac{n'}{a'} = \frac{-c'tn' + n'}{a'} = \frac{a'n's}{a'} = n's \in \mathbf{Z}.$$

Hence $(x_1, y_1) \in \mathbf{Z}^2$.

By the above theorem, we can consider the case of $det A \in \mathbf{Z}$ hereafter.

Lemma 2. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by, cx + dy) \pmod{1}$$

and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in \mathbf{R}$. Put $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$ and $\det A = \pm m (m \ge 1)$. Then

$$\begin{cases} a_{n+1} = az_n \mp mz_{n-1} \\ b_{n+1} = bz_n \\ c_{n+1} = cz_n \\ d_{n+1} = dz_n \mp mz_{n-1}, \end{cases}$$

where

$$\begin{cases} z_{-1} = 0 \\ z_0 = 1 \\ z_{n+1} = (a+d)z_n \mp mz_{n-1}. \end{cases}$$

Put $D = \{f(x,y) = \exp[2\pi i(px+qy)]|p,q \in \mathbf{Z}\}$. Since the linear span of D is dense in $L^1(X)$, we have the following.

Theorem 5. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by, cx + dy) \pmod{1},$$

where $a, b, c, d \in \mathbf{Z}$. Put $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$. Then the following statements are equivalent:

- (1) S is not mixing;
- (2) There exist $\{n_j\}_{j=1}^{\infty}$ and $(p, q, k, l) \neq (0, 0, 0, 0)$ $(p, q, k, l \in \mathbf{Z})$ such that $ka_{n_i} + lc_{n_i} p = kb_{n_i} + ld_{n_i} q = 0;$
- (3) There exists $\{z_{n_j}\}_{j=1}^{\infty}$ which satisfies either (i) or (ii).
 - (i) $z_{n_j} = z_{n_1}$ and $z_{n_j-1} = z_{n_1-1}$ for any j.
 - (ii) There exists an eigenvalue λ of matrix A such that

$$\lambda \in \mathbf{Q}$$
 and $\frac{z_{n_j} - z_{n_l}}{z_{n_j-1} - z_{n_l-1}} = \frac{\det A}{\lambda}$ for any $j, l(j \neq l)$.

Proof. $((1) \Longrightarrow (2))$

If S is not mixing, then $\lim_{n\to\infty}\langle f,U^ng\rangle\neq\langle f,1\rangle\langle 1,g\rangle=\begin{cases} 1 & k=l=p=q=0\\ 0 & \text{otherwise} \end{cases}$, i.e. for any n_0 , there exists $n_1\geq n_0$ such that $\langle f,U^{n_1}g\rangle=1$ with $(k,l,p,q)\neq(0,\cdots,0)$. Repeating the relation, we can show that there exists $n_2\geq n_1$ such that $\langle f,U^{n_2}g\rangle=1$ with $(k,l,p,q)\neq(0,\cdots,0)$. Taking this sequence $\{n_j\}_{j=1}^\infty$, the next holds: $\langle f,U^{n_j}g\rangle=1$ with $(k,l,p,q)\neq(0,\cdots,0)$, i.e. $ka_{n_j}+lc_{n_j}-p=0$ and $kb_{n_j}+ld_{n_j}-q=0$. This means (2) holds.

$$((2) \Longrightarrow (1))$$

We shall show that S is not mixing by Proposition 2(b). (S is mixing $\Leftrightarrow \lim \langle f, U^n g \rangle = \langle f, 1 \rangle \langle 1, g \rangle$ with g in a linearly dense set in $L^{\infty}(X)$. We define the Koopman operator as $U^n g(x,y) = g(S^n(x,y))$. If we take $g(x,y) = \exp[2\pi i(kx+ly)]$ and $f(x,y) = \exp[-2\pi i(px+qy)]$ with $k, l, p, q \in Z$ then we have $U^n g(x,y) = g(a_n x + b_n y, c_n x + d_n y)$ and

$$\langle f, U^n g \rangle = \int_0^1 \int_0^1 \exp[2\pi i \left\{ (ka_n + lc_n - p)x + (kb_n + ld_n - q)y \right\}] dx dy$$

$$= \begin{cases} 1 & \text{if } ka_n + lc_n - p = kb_n + ld_n - q = 0 \\ 0 & \text{otherwise} \end{cases} \cdots (A)$$

On the other hand,

$$\langle f, 1 \rangle \langle 1, g \rangle = \left\{ \begin{array}{ll} 1 & k = l = p = q = 0 \\ 0 & \text{otherwise} \end{array} \right.$$

By (2), for any $n_0 \in N$, there exists $t \geq n_0$ ($t \in \{n_j\}$) and $p, q, k, l \in Z$ such that $(p, q, k, l) \neq (0, 0, 0, 0)$ and $ka_t + lc_t - p = kb_t + ld_t - q = 0 \cdots (B)$. By (A) and (B), $\langle f, U^n g \rangle$ does not converge to $\langle f, 1 \rangle \langle 1, g \rangle$. So S is not mixing. (2) \Leftrightarrow (3)

Put $|\det A| = N$.

(2)
$$\Leftrightarrow \exists \{n_j\} \text{ and } \exists (p,q,k,l) \neq (0,0,0,0) \text{ s.t. } ka_{n_j} + lc_{n_j} - p = kc_{n_j} + ld_{n_j} - q = 0$$

$$\Leftrightarrow \begin{cases} ka_{n_{j}} + lc_{n_{j}} - p = (ka + lc)zn_{j} - 1 \mp kNz_{n_{j}-2} - p = 0 \\ ka_{n_{i}} + lc_{n_{i}} - p = (ka + lc)zn_{i} - 1 \mp kNz_{n_{i}-2} - p = 0 \end{cases}$$

$$\Leftrightarrow k(a_{n_{j}} - a_{n_{i}}) + l(c_{n_{j}} - c_{n_{i}}) = (ka + lc)(z_{n_{j}-1} - z_{n_{i}-1}) \mp kN(z_{n_{j}-2} - z_{n_{i}-2}) = 0$$

$$\begin{cases} k = c = p = 0, l \neq 0, d \neq 0, \frac{z_{n_{j}-1}-z_{n_{i}-1}}{z_{n_{j}-2}-z_{n_{i}-2}} = \pm \frac{N}{d} \\ \text{or} \\ k = d = 0, l \neq 0, z_{n_{j}-1} = z_{n_{1}-1}, z_{n_{j}-2} = z_{n_{1}-2} \\ \text{or} \\ l = b = q = 0, k \neq 0, a \neq 0, \frac{z_{n_{j}-1}-z_{n_{i}-1}}{z_{n_{j}-2}-z_{n_{i}-2}} = \pm \frac{N}{a} \\ \text{or} \\ l = a = 0, k \neq 0, z_{n_{j}-1} = z_{n_{1}-1}, z_{n_{j}-2} = z_{n_{j}-2} \\ \text{or} \\ ka + lc \neq 0, kb + ld \neq 0, l \neq 0, \frac{z_{n_{j}-1}-z_{n_{i}-1}}{z_{n_{j}-2}-z_{n_{i}-2}} = \pm \frac{kN}{ka+lc} = \pm \frac{lN}{kb+ld} \end{cases}$$

 \Leftrightarrow (3).

Theorem 6. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by, cx + dy) \pmod{1},$$

where $a, b, c, d \in \mathbf{Z}$. Put $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$. If there exist $\{n_j\}_{j=1}^{\infty}$ and $(p, q, k, l) \neq (0, 0, 0, 0)$ $(p, q, k, l \in \mathbf{Z})$ such that $n_{j+1} - n_j = n_2 - n_1$ for any j and

$$ka_{n_{j}}+lc_{n_{j}}-p=kb_{n_{j}}+ld_{n_{j}}-q=0,$$

then S is not ergodic.

In order to obtain a criterion for demonstrating either mixing, exactness or ergodicity, we first show the following propositions using Theorem 5.

Proposition 7. Suppose det A > 0. Then the following statements holds:

- (1) If a + d = det A + 1, then $\{z_n\}$ satisfies the condition of Theorem 5(3)(ii);
- (2) If a + d = -(det A + 1), then $\{z_{2n}\}$ satisfies the condition of Theorem 5(3)(ii);
- (3) If $|a+d| \neq det A + 1$ (det $A \neq 1$), then there doesn't exist $\{z_{n_j}\}$ which satisfies the condition of Theorem 5(3);
- (4) Let det A = 1.

- (i) If |a+d|=0, then $\{z_{4n}\}$ satisfies the condition of Theorem 5(3)(i).
- (ii) If |a+d|=1, then $\{z_{6n}\}$ satisfies the condition of Theorem 5(3)(i).
- (iii) If |a + d| = -1, then $\{z_{3n}\}$ satisfies the condition of Theorem 5(3)(i).

Proposition 8. Suppose det A < 0. Then the following statements holds:

- (1) If $a + d = det A + 1 \neq 0$, then $\{z_n\}$ satisfies the condition of Theorem 5(3)(ii);
- (2) If $a+d=-(det A+1)\neq 0$, then $\{z_{2n}\}$ satisfies the condition of Theorem 5(3)(ii);
- (3) If a + d = det A + 1 = 0, $\{z_{2n}\}$ satisfies the condition of Theorem 5(3)(i);
- (4) If $|a+d| \neq |det A| 1$, there doesn't exist $\{z_{n_j}\}$ which satisfies the condition of Theorem 5(3).

Using the next theorem, we can know the behavior of S calculating det A and |a + d|.

Theorem 9. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by, cx + dy) \pmod{1},$$

where $a, b, c, d \in \mathbf{Z}$. The following statements are equivalent:

- (i) S is mixing;
- (ii) S is ergodic;
- (iii) Either (a), (b) or (c) holds:
 - (a) $det A \geq 2$ and $|a+d| \neq det A + 1$;
 - (b) $det A = 1 \ and \ |a + d| \ge 3;$
 - (c) det A < 0 and $|a + d| \neq |det A| 1$.

We consider the following transformation:

$$S(x,y) = (ax + by + \alpha, cx + dy + \beta) \pmod{1},$$

where $a, b, c, d \in \mathbf{Z}$ and $0 \le \alpha, \beta < 1$.

Theorem 10. Let (X, \mathcal{A}, μ) be a normalized measure space. Suppose $S: X \to X$ is defined by

$$S(x,y) = (ax + by + \alpha, cx + dy + \beta) \pmod{1},$$

where $a, b, c, d \in \mathbf{Z}$ and $0 \le \alpha, \beta < 1$. Let $S_0(x, y) = (ax + by, cx + dy) \pmod{1}$. The following statements hold:

- (1) If either det A = 1 and $|a + d| \ge 3$ or $|a + d| \ne \operatorname{sgn}(det A)(det A + 1)$, then S is mixing, where $\operatorname{sgn}(det A)$ indicates the sign of det A;
- (2) If either (i) or (ii) holds, then S is ergodic, but not mixing;

- (i) $|a+d| = \operatorname{sgn}(\det A)(\det A + 1)$, $A = \pm I$ (I is an 2×2 identity matrix) and $\alpha, \beta \notin \mathbf{Q}$.
- $(ii) \ \ a+d=det A+1, A\neq I \ \ and \ \ either \ \alpha c-(a-1)\beta\notin \mathbf{Q} \ \ or \ \alpha (d-1)-\beta b\notin \mathbf{Q}.$
- (3) If either (i),(ii),(iii) or (iv) holds, S is not ergodic.
 - (i) $det A = 1 \ and \ |a + d| \le 1$.
 - (ii) $|a+d| = \operatorname{sgn}(\det A)(\det A + 1)$, $A \neq \pm I$ and either $\alpha \in \mathbf{Q}$ or $\beta \in \mathbf{Q}$.
 - $\text{(iii)} \ |a+d|=\det A+1, \ A\neq I \ \text{and either} \ \alpha c-(a-1)\beta \in \mathbf{Q} \ \text{or} \ \alpha (d-1)-\beta b \in \mathbf{Q}.$
 - (iv) |a + d| = -det A 1 and $A \neq -I$.

References

[1] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Springer Verlag (1995)