LAYER HEAT POTENTIALS FOR A BOUNDED CYLINDER WITH FRACTAL LATERAL BOUNDARY

HISAKO WATANABE (渡辺ヒサ子)

Ochanomizu University

1. Introduction

Let D be a bounded smooth domain in \mathbb{R}^d and set

$$\Omega_D = D \times (0, T)$$
 and $S_D = \partial D \times [0, T]$.

The double layer heat potential Φf of $f \in L^p(S_D)$ is defined by

(1.1)
$$\Phi f(X) = -\int_0^T \int_{\partial D} \langle \nabla_y W(X - Y), n_y \rangle f(Y) d\sigma(y) ds$$

for $X = (x, t) \in (\mathbb{R}^d \setminus \partial D) \times \mathbb{R}$, where \langle , \rangle is the inner product in \mathbb{R}^d , n_y is the unit outer normal to ∂D , σ is the surface measure on ∂D and W is the fundamental solution for the heat operator, i.e.,

$$W(X) = W(x,t) = \left\{ egin{array}{ll} rac{\exp\left(-rac{|x|^2}{4t}
ight)}{(4\pi t)^{d/2}} & ext{if } t > 0 \ 0 & ext{otherwise.} \end{array}
ight.$$

The double layer heat potential is important not only physically but also mathematically. For example, R. M. Brown proved that the solution to the initial-Dirichlet problem in a Lipschitz cylinder for the heat operator can be written by a double layer heat potential and the solution to the initial-Neumann problem in a Lipschitz cylinder for the heat operator is given by a single layer heat potential (cf. $[B_1]$, $[B_2]$).

If D is a bounded domain with fractal boundary, then n_y and the surface measure can not be defined. But if D has a smooth boundary and f is a C^1 -function on \mathbf{R}^{d+1} with compact support, then we see by the Green formula that for $X = (x, t) \in D \times \mathbf{R}$

(1.2)
$$\Phi f(X) = \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} \langle \nabla_y f(Y), \nabla_y W(X - Y) \rangle dy + \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} f(Y) \triangle_y W(X - Y) dy$$

and for $X = (x, t) \in (\mathbf{R}^d \setminus \overline{D}) \times \mathbf{R}$

(1.3)
$$\Phi f(x) = -\int_0^T ds \int_D \langle \nabla_y f(Y), \nabla_y W(X - Y) \rangle dy - \int_0^T ds \int_D f(Y) \triangle_y W(X - Y) dy.$$

So we see that, if a function f defined on S_D can be extended to be a function $\mathcal{E}(f)$ on $\mathbf{R}^d \times [0,T]$ such that for each $t \in [0,T]$ the function $x \mapsto \mathcal{E}(f)(x,t)$ is a C^1 -function on $\mathbf{R}^d \setminus \partial D$ and, for each $x \in \mathbf{R}^d \setminus \partial D$ and each j $(j=1,2,\cdots,d)$ the function $t \mapsto \frac{\partial \mathcal{E}(f)}{\partial x_j}(x,t)$ is measurable, then the right-hand sides of (1.2) and (1.3) may be defined.

In this paper we assume that D is a bounded domain in \mathbb{R}^d $(d \geq 2)$ and ∂D is a β -set satisfying $d-1 \leq \beta < d$. Here, according to [JW] we say that a closed set F is a β -set if there exist a positive Radon measure μ on F and positive real numbers r_0 , b_1 , b_2 such that

$$(1.4) b_1 r^{\beta} \le \mu(B(z, r) \cap F) \le b_2 r^{\beta}$$

for all $z \in F$ and all $r \le r_0$, where B(z, r) stands for the open ball in \mathbb{R}^d with center z and radius r.

We note that, if D is a bounded Lipschitz domain, then ∂D is a (d-1)-set and the surface measure μ has the property (1.4) for $F = \partial D$ and $\beta = d-1$. Furthermore if ∂D consists of a finite number of self-similar sets, which satisfies the open set condition, and whose similarity dimensions are β , then ∂D is a β -set such that the β -dimensional Hausdorff measure \mathcal{H}^{β} restricted to ∂D has the property (1.4) for $F = \partial D$ (cf. [Hu]).

Let $0 < \alpha \le 1$ and F be a closed set in \mathbb{R}^d . We denote by $\Lambda_{\alpha}(F \times [0,T])$ the Banach space of all continuous functions f on $F \times [0,T]$ such that $f(\cdot,t)$ is α -Hölder continuous for every $t \in [0,T]$ with norm

$$||f||_{\infty,\alpha} = \sup_{X \in F \times [0,T]} |f(X)| + \sup_{x,y \in F, x \neq y, t \in [0,T]} \frac{|f(x,t) - f(y,t)|}{|x - y|^{\alpha}}.$$

Further let $0 < \alpha$, $\lambda \le 1$. We also denote by $\Lambda_{\alpha,\lambda}(F \times [0,T])$ the Banach space of all $f \in \Lambda_{\alpha}(F \times [0,T])$ such that f is λ -Hölder continuous with respect to the time variable with norm

$$||f||_{\infty,\alpha,\lambda} = ||f||_{\infty,\alpha} + \sup_{x \in F, t, s \in [0,T], t \neq s} \frac{|f(x,t) - f(x,s)|}{|t - s|^{\lambda}}.$$

We will prove the following lemma in §3.

Lemma 1.1. Let $d-1 \leq \beta < d$ and F be a compact β -set in \mathbf{R}^d satisfying (1.4) and $F \subset B(0, R/2)$. Then there exists a bounded operator \mathcal{E} from $\Lambda_{\alpha}(F \times [0, T])$ to $\Lambda_{\alpha}(\mathbf{R}^d)$ with the following properties:

(i) $\mathcal{E}(f)(\cdot,t)$ is a C^1 -function on $\mathbf{R}^d \setminus F$ for each $t \in [0,T]$, and both of $\mathcal{E}(f)(x,\cdot)$ and $\left(\frac{\partial \mathcal{E}(f)}{\partial x_j}\right)(x,\cdot)$ $(j=1,\cdots,d)$ are measurable for each $x \in \mathbf{R}^d$ and for each $x \in \mathbf{R}^d \setminus F$, respectively,

(ii) $\mathcal{E}(f) = f$ on F and supp $\mathcal{E}(f)(\cdot,t) \subset B(0,2R)$ for each $t \in [0,T]$.

(iii)

$$\left|\frac{\partial \mathcal{E}(f)}{\partial y_i}(y,s)\right| \leq c\|f\|_{\infty,\alpha} \mathrm{dist}(y,\partial D)^{\alpha-1}, \quad \left|\frac{\partial^2 \mathcal{E}(f)}{\partial y_i \partial y_k}(y,s)\right| \leq c\|f\|_{\infty,\alpha} \mathrm{dist}(y,\partial D)^{\alpha-2}$$

for every $(y, s) \in (\mathbf{R}^d \setminus F) \times [0, T]$.

(iv) If
$$f \in \Lambda_{\alpha,\lambda}(F \times [0,T])$$
, then $\mathcal{E}(f) \in \Lambda_{\alpha,\lambda}(\mathbf{R}^d \times [0,T])$.

Using Lemma 1.1 we define, for $f \in \Lambda_{\alpha}(S_D)$,

(1.5)
$$\Phi f(X) = \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} \langle \nabla_y \mathcal{E}(f)(y, s), \nabla_y W(X - Y) \rangle dy + \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} \mathcal{E}(f)(y, s) \triangle_y W(X - Y) dy$$

for $X = (x, t) \in D \times \mathbf{R}$ and

(1.6)
$$\Phi f(X) = -\int_0^T ds \int_D \langle \nabla_y \mathcal{E}(f)(y, s), \nabla_y W(X - Y) \rangle dy$$
$$-\int_0^T ds \int_D \mathcal{E}(f)(y, s) \triangle_y W(X - Y) dy$$

for $X = (x,t) \in (\mathbf{R}^d \setminus \overline{D}) \times \mathbf{R}$.

Furthermore we also define the operator K by

(1.7)
$$Kf(Z) = \frac{1}{2} (I_1(Z) + I_2(Z)),$$

where

$$\begin{split} I_1(Z) &= \int_0^T ds \int_{\mathbf{R}^d \backslash \overline{D}} \langle \nabla \mathcal{E}(f)(y,s), \nabla_y W(Z-Y) \rangle dy \\ &+ \int_0^T ds \int_{\mathbf{R}^d \backslash \overline{D}} (\mathcal{E}(f)(Y) - f(Z)) \triangle_y W(Z-Y) dy \\ &+ f(Z) \int_{(\mathbf{R}^d \backslash \overline{D}) \times \{0\}} W(Z-Y) dy \end{split}$$

and

$$\begin{split} I_2(Z) &= -\int_0^T ds \int_D \langle \nabla \mathcal{E}(f)(y,s), \nabla_y W(Z-Y) \rangle dy \\ &- \int_0^T ds \int_D (\mathcal{E}(f)(Y) - f(Z)) \triangle_y W(Z-Y) dy - f(Z) \int_{D \times \{0\}} W(Z-Y) dy \end{split}$$

Under these notations we will prove the following theorem in §3.

Theorem. Assume that D is a bounded domain in \mathbb{R}^d such that ∂D is a β -set. If $0 \leq \beta - (d-1) < \alpha < 1$ and $f \in \Lambda_{\alpha,\alpha/2}(S_D)$, then, for each $Z \in \partial D \times [0,T]$,

(1.8)
$$\lim_{X \to Z, X \in D \times (0,T)} \Phi f(X) = Kf(Z) + \frac{1}{2}f(Z)$$

and

(1.9)
$$\lim_{X \to Z, X \in (\mathbf{R}^d \setminus \overline{D}) \times (0,T)} \Phi f(X) = Kf(Z) - \frac{1}{2}f(Z).$$

Thus we see that our double layer heat potentials have the same boundary behavior as the usual ones for a bounded cylinder with smooth lateral boundary.

Remark. In this paper we shall treat the double layer heat potentials of Hölder continuous functions on S_D . But under a similar consideration we can also the double layer heat potentials of functions in a Besov space on S_D and prove that they have the parabolically non-tangential limit at a.e. $Z \in S_D$.

2. Properties of W

In this section we recall and study properties of the function W. To do so, we use the parabolic metric δ defined by

$$\delta(X,Y) = (|x-y|^2 + |t-s|)^{1/2}$$
 for $X = (x,t)$ and $Y = (y,s)$.

 $\begin{array}{l} \textbf{Lemma 2.1.} \quad (\textbf{i}) \ W(X) \leq c\delta(X,0)^{-d}, \\ (\textbf{ii}) \ |\nabla_x W(X)| \leq c\delta(X,0)^{-d-1} \ \text{if} \ X \neq 0, \\ (\textbf{iii}) \ |\frac{\partial^2}{\partial x_i \partial x_j} W(X)| \leq c\delta(X,0)^{-d-2}, \ |\frac{\partial}{\partial t} W(X)| \leq c\delta(X,0)^{-d-2} \ \text{if} \ X \neq 0, \\ (\textbf{iv}) \ |\frac{\partial^3}{\partial x_i \partial x_j \partial x_k} W(X)| \leq c\delta(X,0)^{-d-3}, \ |\frac{\partial^2}{\partial x_j \partial t} W(X)| \leq c\delta(X,0)^{-d-3} \ \text{if} \ X \neq 0, \\ (\textbf{v}) \ |W(X-Y)-W(Z-Y)| \leq c\delta(X,Z)^{\epsilon} \{\delta(X,Y)^{-d-\epsilon} + \delta(Z,Y)^{-d-\epsilon}\} \\ \text{if} \ 0 \leq \epsilon \leq 1 \ \text{and} \ X \neq Y, \ Z \neq Y, \\ (\textbf{vi}) \ |\nabla_y W(X-Y)-\nabla_y W(Z-Y)| \leq c\delta(X,Z)^{\epsilon} \{\delta(X,Y)^{-d-1-\epsilon} + \delta(Z,Y)^{-d-1-\epsilon}\} \\ \text{if} \ 0 \leq \epsilon \leq 1 \ \text{and} \ X \neq Y, \ Z \neq Y. \end{array}$

Proof. The assertions (i), (ii), (iii) and (iv) are well known (cf. [B2, p.5]). The assertions (v) and (vi) will be shown by the same method as in the proof of Lemma 2.3 in [W2].

Let D_0 be a bounded piecewise smooth domain in \mathbb{R}^d and u, v be smooth functions on $\overline{D_0} \times [0, \rho]$. Using the divergence theorem, we obtain

$$\begin{split} &\int_{0}^{\rho} \int_{D_{0}} \left(uL^{*}v - vLu \right) dxdt \\ &= \int_{0}^{\rho} dt \int_{\partial D_{0}} \langle u\nabla_{x}v - v\nabla_{x}u, n_{x} \rangle d\sigma(x) - \int_{D \times \{t=0\}} uvdx + \int_{D \times \{t=\rho\}} uvdx, \end{split}$$

where

$$L = \Delta - \frac{\partial}{\partial t}$$
 and $L^* = \Delta + \frac{\partial}{\partial t}$.

If $Lu = L^*v = 0$ in $D_0 \times (0, \rho)$, then (2.1) implies

$$(2.2) \int_0^{\rho} dt \int_{\partial D_0} \langle u \nabla_x v - v \nabla_x u, n_x \rangle d\sigma(x) - \int_{D_0 \times \{t=0\}} uv dx + \int_{D_0 \times \{t=\rho\}} uv dx = 0.$$

Let X=(x,t) $(0 \le t \le T)$ be an exterior point of $D_0 \times (0,T)$. Then, setting u=1 and v(Y)=W(X-Y) and noting that W(X-Y)=0 for Y=(y,T), we deduce from (2.2)

(2.3)
$$\int_0^T ds \int_{\partial D_0} \langle \nabla_y W(X-Y), n_y \rangle d\sigma(y) - \int_{D_0 \times \{s=0\}} W(X-Y) dy = 0.$$

Hereafter we assume that D is a bounded domain in \mathbb{R}^d such that ∂D is a β -set satisfying $\overline{D} \subset B(O, R/2)$.

Let us use the Whitney decomposition to approximate D and $\mathbb{R}^d \setminus \overline{D}$ (cf. [S, p.167]). Let $\mathcal{V}(D)$ be the Whitney decomposition of D and define

$$A_n = \bigcup_{k=k_0}^n \bigcup_{Q \in \mathcal{V}_k(D)} Q,$$

where $\mathcal{V}_k(D) = \{Q \in \mathcal{V}(D); Q \text{ is a } k\text{-cube}\}$ and k_0 is the smallest integer k such that $\mathcal{V}_k(D) \neq \emptyset$.

Similarly we also define

$$B_n = \left(\cup_{k=-\infty}^n \cup_{Q \in \mathcal{V}_k(\mathbf{R}^d \setminus \overline{D})} Q \right).$$

Then we have the following lemma.

Lemma 2.2. Set

$$g_n(X) = \int_0^T \int_{A_n} \triangle_y W(X - Y) dy \quad and \quad h_n(X) = \int_0^T \int_{B_n} \triangle_y W(X - Y) dy.$$

Then $\lim_{n\to\infty} g_n(X)$ and $\lim_{n\to\infty} h_n(X)$ exist on $\mathbf{R}^d \times [0,T]$ and for $X \in \mathbf{R}^d \times (0,T]$

$$\lim_{n\to\infty} g_n(X) = \int_{D\times\{0\}} W(X-Y)dy - \chi_D(X)$$

and

$$\lim_{n \to \infty} h_n(X) = \int_{(\mathbf{R}^d \setminus \overline{D}) \times \{0\}} W(X - Y) dy - \chi_{\mathbf{R}^d \setminus \overline{D}}(X)$$

Proof. Let $X = (x, t) \in \mathbb{R}^d \times (0, T]$ and $t > \rho > 0$. Applying (2.2) to $A_n \times (0, \rho)$, we have

$$\begin{split} &\int_{0}^{\rho}ds\int_{\partial A_{n}}\langle\nabla_{y}W(X-Y),n_{y}\rangle d\sigma(y)-\int_{A_{n}\times\{0\}}W(X-Y)dy\\ &+\int_{A_{n}\times\{\rho\}}W(X-Y)dy=0. \end{split}$$

Using the divergence theorem for A_n in \mathbb{R}^d , we have

$$\begin{split} &\int_0^\rho ds \int_{A_n} \triangle_y W(X-Y) dy - \int_{A_n \times \{0\}} W(X-Y) dy \\ &+ \int_{A_n \times \{\rho\}} W(X-Y) dy = 0. \end{split}$$

As $\rho \to t$ and $n \to \infty$, we obtain,

$$\lim_{n\to\infty}g_n(X)=\int_{D\times\{0\}}W(X-Y)dy-\chi_D(X).$$

On the other hand $g_n(X) = 0$ for t = 0. Hence $\lim_{n \to \infty} g_n(X)$ exists for each $X \in \mathbb{R}^d \times [0,T]$.

Similarly we can also prove the conclusion for h_n .

3. Double layer heat potentials

In this section we first prove Lemma 1.1 in §1.

Proof of Lemma 1.1 We use the extension operator \mathcal{E}_0 in [S, p.172] and choose a C^{∞} -function ϕ_0 such that

$$\phi_0 = 1$$
 on $B(0, R)$, supp $\phi_0 \subset B(0, 2R)$ and $0 \le \phi_0 \le 1$.

We define

$$\mathcal{E}(f)(x,t) = \mathcal{E}_0(f(\cdot,t))(x)\phi_0(x)$$

for $f \in \Lambda_{\alpha}(F)$ and $(x,t) \in (\mathbf{R}^d \setminus F) \times [0,T]$ and

$$\mathcal{E}(f)(x,t) = f(x,t)$$
 on $(x,t) \in F \times [0,T]$.

Then properties (i), (ii), (iii) follow from the definition and (13) on p.174 in [S]. Since the operator \mathcal{E}_0 is linear, positive and maps the constant function 1 to 1, (iv) is also valid.

In [W1] we gave the following lemma.

Lemma A. Let δ , k be non-negative numbers satisfying $d-\beta > \delta$ and $d-\delta - k > 0$. Then

$$\int_{B(z,r)} \operatorname{dist}(y,\partial D)^{-\delta} |y-z|^{-k} dy \le cr^{d-\delta-k}$$

for every $z \in \partial D$ and r > 0.

We next show that the double layer heat potential defined by (1.5) and (1.6) converges.

Lemma 3.1. Let $0 \le \beta - (d-1) < \alpha < 1$ and $f \in \Lambda_{\alpha}(S_D)$. Then Φf is caloric in $(\mathbb{R}^d \setminus \partial D) \times \mathbb{R}$.

Proof. Set, for $X = (x, t) \in D \times \mathbf{R}$,

(3.1)
$$J_1(X) = \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} \langle \nabla_y \mathcal{E}(f)(y, s), \nabla_y W(X - Y) \rangle dy$$

and let $X_0 = (x_0, t_0) \in D$. Choose $\rho > 0$ satisfying $\overline{B(x_0, 2\rho)} \subset D$. If $X = (x, t) \in B(x_0, \rho) \times \mathbb{R}$, then we deduce from Lemmas 2.1 and 1.1 and Lemma A

$$|J_1(X)| \leq \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} \operatorname{dist}(y, \partial D)^{\alpha - 1} \delta(X, Y)^{-1 - d} dy \leq c_1 \rho^{-1 - d} ||f||_{\infty, \alpha},$$

whence J_1 converges locally uniformly in D. We denote by g_1 the integrand of the right-hand side on (3.1). Since

$$|\nabla_y \frac{\partial^2}{\partial x_i \partial x_j} W(X - Y)| \le c_2 \delta(X, Y)^{-d - 3} \text{ and } |\nabla_y \frac{\partial}{\partial t} W(X - Y)| \le c_3 \delta(X, Y)^{-d - 3},$$

we see that the integral of Lg_1 over $(\mathbf{R}^d \setminus \overline{D}) \times [0,T]$ also converges locally uniformly on D. Therefore J_1 satisfies the heat equation in $D \times \mathbf{R}$.

Next, set

$$J_2(X) = \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} \mathcal{E}(f)(y, s) \triangle W(X - Y) dy.$$

Using Lemma 1.1, (iii), we can show by the above method that J_2 also converges locally uniformly in D and satisfies the heat equation. Thus we conclude that $\Phi f = J_1 + J_2$ has the same properties in $D \times R$. We can show that Φf also has the same properties in $(\mathbb{R}^d \setminus \overline{D}) \times R$.

Using Lemma 2.1, (iv), (v) and Lemma A, we can prove the following lemma by a similar method to that in the proof of [W1, Lemma 3.3].

Lemma 3.2. Let $0 \le \beta - (d-1) < \alpha < 1$ and $f \in \Lambda_{\alpha,\alpha/2}(S_D)$. Then both of the function J_1 defined by (3.1) and the function J_3 defined by

$$J_3(X) = \int_0^T ds \int_{\mathbf{R}^d \setminus \overline{D}} (\mathcal{E}(f)(Y) - \mathcal{E}(f)(X)) \triangle W(X - Y) dy$$

are are continuous on $\mathbf{R}^d \times [0,T]$. Furthermore the function J_1' (resp. J_3') obtained by replacing $\mathbf{R}^d \setminus \overline{D}$ with D in the definition of J_1 (resp. J_3) is also continuous on $\mathbf{R}^d \times [0,T]$.

Lemma 3.3. Let $0 \leq \beta - (d-1) < \alpha < 1$ and $g \in \Lambda_{\alpha,\alpha/2}(\mathbb{R}^d \times [0,T])$ such that $g(\cdot,t) \in C^1(\mathbb{R}^d)$, supp $g(\cdot,s) \subset B(0,r_0)$ for every $t \in [0,T]$ and $\frac{\partial g}{\partial x_j}(x,\cdot)$ is bounded for every $x \in \mathbb{R}^d$. Let $X = (x,t) \in \mathbb{R}^d \times (0,T]$ and set, for $0 < \rho \leq T$,

$$\begin{split} A_{\rho}g(X) &= \int_{0}^{\rho} ds \int_{\mathbf{R}^{d} \setminus \overline{D}} \langle \nabla g(Y), \nabla_{y} W(X - Y) \rangle dy \\ &+ \int_{0}^{\rho} ds \int_{\mathbf{R}^{d} \setminus \overline{D}} (g(Y) - g(X)) \triangle_{y} W(X - Y) dy \\ &+ g(X) \int_{(\mathbf{R}^{d} \setminus \overline{D}) \times \{0\}} W(X - Y) dy \end{split}$$

and

$$B_{\rho}g(X) = -\int_{0}^{\rho} ds \int_{D} \langle \nabla g(Y), \nabla_{y} W(X - Y) \rangle dy$$
$$-\int_{0}^{\rho} ds \int_{D} (g(Y) - g(X)) \triangle_{y} W(X - Y) dy$$
$$-g(X) \int_{D \times \{0\}} W(X - Y) dy.$$

Then

(3.2)
$$A_T g(X) = B_T g(X) + g(X) \text{ for } X \in \mathbf{R}^d \times (0, T]$$

Proof. To simplify the notation, we use $A_{\rho}(x)$ and $B_{\rho}(X)$ instead of $A_{\rho}g(X)$ and $B_{\rho}g(X)$, respectively. We first show (3.2) in case $D=D_0$ is a bounded piecewise smooth domain. Let X=(x,t) and set, for $0<\rho< t$,

$$I_{\rho}(X) = -\int_{0}^{\rho} ds \int_{\partial D_{0}} g(Y) \langle \nabla_{y} W(X - Y), n_{y} \rangle d\sigma(y).$$

The Green formula for D_0 yields

$$(3.3) I_{\rho}(X) = -\int_{0}^{\rho} ds \int_{D_{0}} \langle \nabla g(Y), \nabla_{y} W(X - Y) \rangle dy$$
$$-\int_{0}^{\rho} ds \int_{D_{0}} (g(Y) - g(X)) \triangle_{y} W(X - Y) dy$$
$$-g(X) \int_{0}^{\rho} ds \int_{D_{0}} \triangle_{y} W(X - Y) dy$$

From (2.2) we deduce

$$\begin{split} &\int_0^\rho ds \int_{D_0} \triangle_y W(X-Y) dy \\ &= \int_{D_0 \times \{0\}} W(X-Y) dy - \int_{D_0 \times \{\rho\}} W(X-Y) dy, \end{split}$$

whence

$$\int_0^t ds \int_{D_0} \Delta_y W(X - Y) dy = \int_{D_0 \times \{0\}} W(X - Y) dy - \chi_{D_0}(x).$$

This and (3.3) imply

(3.4)
$$I_t(X) = B_t(X) + g(X)\chi_{D_0}(x) \text{ for } X \in (\mathbf{R}^d \setminus \partial D_0) \times (0, T].$$

Similarly, using the Green formula for $B(0,r)\setminus \overline{D}_0$ and $r\to \infty$, we obtain

$$I_t(X) = A_t(X) - g(X)\chi_{\mathbf{R}^d \setminus \overline{D}_0}(x)$$

for $X \in (\mathbf{R}^d \setminus \partial D_0) \times (0, T]$. This and (3.4) lead to

$$A_t(X) = B_t(X) + g(X)$$
 for $X \in (\mathbf{R}^d \setminus \partial D_0) \times (0, T]$.

Noting that $A_t(X) = A_T(X)$ and $B_t(X) = B_T(X)$, we obtain (3.2) for $X \in (\mathbb{R}^d \setminus \partial D) \times (0,T]$. Since A_T and B_T are continuous on $\mathbb{R}^d \times (0,T]$ by Lemma 3.2, (3.2) holds for a bounded piecewise smooth domain $D = D_0$.

We next show (3.2) for a bounded domain such that ∂D is a β -set. We use (3.2) for $D_0 = A_n$. Since

$$\begin{split} &\int_0^T \int_{\mathbf{R}^d} |\nabla g(Y)| |\nabla_y W(X-Y)| dy ds < \infty, \\ &\int_0^T ds \int_{\mathbf{R}^d} |g(Y)-g(X)| |\triangle_y W(X-Y)| dy < \infty \end{split}$$

and

$$\int_{\mathbf{R}^d \times \{0\}} W(X - Y) dy < \infty,$$

we see that (3.2) holds for the domain D as $n \to \infty$.

Lemma 3.4. Let $0 \le \beta - (d-1) < \alpha$ and $f \in \Lambda_{\alpha,\alpha/2}(S_D)$. Then (3.2) holds for $g = \mathcal{E}(f)$.

Sketch of Proof. Let $f \in \Lambda_{\alpha,\alpha/2}(S_D)$ and $\{v_m\}$ be a mollifier on \mathbf{R}^d such that supp $v_m \subset B(0,1/m)$. We define, for $Y=(y,s)\in \mathbf{R}^d\times [0,T]$,

$$g_m(Y) = (\mathcal{E}(f)(\cdot, s) * v_m)(y).$$

Lemma 3.3 yields

$$A_T g_m(X) = B_T g_m(X) + g_m(X)$$
 for $X \in \mathbf{R}^d \times (0, T]$.

Using $g_m(X) \to \mathcal{E}(f)(X)$ uniformly as $m \to \infty$ and Lemmas A, 1.1 and 2.1, we can show that

$$A_T g_m(X) \to A_T \mathcal{E}(f)(X)$$

and

$$B_T g_m(X) \to B_T \mathcal{E}(f)(X)$$

for $X \in \mathbf{R}^d \times [0,T]$ as $m \to \infty$.

We can also show the following lemma.

Lemma 3.5. Let $0 \le \beta - (d-1) < \alpha < 1$. Then the operator K defined by (1.7) is a bounded operator from $\Lambda_{\alpha,\alpha/2}(S_D)$ to $\Lambda_{\alpha,\alpha/2}(S_D)$.

Let us prove our thorem.

Proof of Theorem. Let $X \in D \times (0,T]$. Using Lemma 2.2, we have $\Phi f(X) = A_T f(X)$. Since $A_T f$ is continuous on $\mathbb{R}^d \times (0,T]$ by Lemma 3.2, we have

$$\lim_{X\to Z,X\in D\times(0,T)}\Phi f(X)=A_Tf(Z).$$

On the other hand Lemma 3.4 yields

$$Kf(Z) = \frac{1}{2} (A_T f(Z) + B_T f(Z)) = A_T f(Z) - \frac{1}{2} f(Z).$$

Therefore we have (1.8). Similarly we can show (1.9).

References

- [B1] R. M. Brown, The method of layer potentials for the heat equation in Lipschitz cylinders, Amer. J. Math. 111 (1989), 339–379.
- [B2] R. M. Brown, The initial-Neumann problem for the heat equation in Lipschitz cylinders, Trans. Amer. Math. Soc. 320 (1990), 1–52.
- [H] J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J. 30 (1981), 713-747.
- [JW] A. Jonsson and H. Wallin, A Whitney extension theorem in L_p and Besov spaces, Ann. Inst. Fourier, Grenoble 28, 1 (1978), 139–192.
- [S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton- New Jersey, 1970.
- [W1] H. Watanabe, The double layer potentials for a bounded domain with fractal boundary, Potential theory–ICPT94, 463-471, Walter de Gruyter, Berlin-New York, 1996.
- [W2] H. Watanabe, The initial-boundary value problems for the heat operator in non-cylindrical domains, J. Math. Soc. Japan 49 (1997), 399–430.