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LAYER HEAT POTENTIALS FOR A BOUNDED CYLINDER
WITH FRACTAL LATERAL BOUNDARY

HiSAKO WATANABE (i1t ¥ F)

Ochanomizu University

1. Introduction

Let D be a bounded smooth domain in R? and set
2p =D x(0,T) and Sp=98D x|[0,T)].
The double layer heat potential ® f‘ of f € LP(Sp) is defined by
T
(1.1) 20 == [ [ (9, WX ~¥),n)1(V)do(w)ds
. 0 . » »
for X = (z,t) € (R?\ 8D) x R, where ( , ) is the inner product in R%, n, is the

unit outer normal to 8D, ¢ is the surface measure on 8D and W is the fundamental
solution for the heat operator, i.e.,

exp (-1 ift>0
W(X)=W(z,t)={ @iz
0 otherwise.

The double layer heat potential is important not only physically but also mathe-
matically. For example, R. M. Brown proved that the solution to the initial-Dirichlet
problem in a Lipschitz cylinder for the heat operator can be written by a double
layer heat potential and the solution to the initial-Neumann problem in a Lipschitz
cylinder for the heat operator is given by a single layer heat potential (cf. [Bi],
[B2]). |

If D is a bounded domain with fractal boundary, then n, and the surface measure
can not be defined. But if D has a smooth boundary and f is a C!-function on R%+!
with compact support, then we see by the Green formula that for X = (z,t) € DxR

T
a2 e = [Cds [ (900, 9 WX -y
T
+ /0 ds /R o OB (X =iy
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and for X = (z,t) € (R*\ D) xR

| T
(13) of(c) = [ ds [ (V,00),9,W(X - ¥)hay
_ / " s / FY)A,W (X —Y)dy.
0 D

So we see that, if a function f defined on Sp can be extended to be a function
E(f) on R4 x [0, T] such that for each ¢ € [0,T] the function z S(f)(a: t)is a
C'-function on R%\ 8D and, for each z € R?\ 9D and each j (j = 1, 2,--- ,d) the
function t — ﬂ—f-l(:v t) is measurable, then the right-hand sides of (1.2) and (1.3)
may be defined.

In this paper we assume that D is a bounded domain in R? (d > 2) and 8D is a
B-set satisfying d — 1 < 8 < d. Here, according to [JW] we say that a closed set F
is a (3-set if there exist a positive Radon measure p on F and positive real numbers
ro, b1, bz such that

(1.4) bir? < u(B(z,7r) N F) < byrP

for all z € F and all r < ry, where B(z,) stands for the open ball in R? with center
z and radius r.

We note that, if D is a bounded Lipschitz domain, then 8D is a (d—1)-set and the
surface measure u has the property (1.4) for F = 8D and 8 = d — 1. Furthermore
if 8D consists of a finite number of self-similar sets, which satisfies the open set
condition, and whose similarity dimensions are 3, then 8D is a (3-set such that the
B-dimensional Hausdorff measure H? restricted to 8D has the property (1. 4) for
F = 38D (cf. [Hu]).

Let 0 < @ < 1 and F be a closed set in R?. We denote by A, (F x [0,T]) the
Banach space of all continuous functions f on F x [0, T such that f(-,t) is a-Holder
continuous for every t € [0, 7] with norm

z,t) — , T
[flloc,a = sup |f(X)|+ sup ‘!f( )4 fc(!y A
X eFx[0,T] z,yEF,z#y,t€[0,T) |z ~ yl

Further let 0 < o, A < 1. We also denote by A, x(F x [0,T]) the Banach space of
all f € Aq(F x [0,T]) such that f is A\-Holder continuous with respect to the time
variable with norm

oo = [floa+  sup  LE@D=I@]

z€F,t,s€[0,T),t#s It - sll\

We will prove the following lemma in §3.
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Lemma1.1. Letd—1 < < d and F be a compact B-set in R? satisfying (1.4)

and F C B(0,R/2). Then there exists a bounded operator £ from Aq(F X [0, T]) to
Aq(R?) with the following properties:

(i) £(f)(-,t) is a C'-function on R?\ F for each ¢ € [0,T], and both of £(f)(z,-)

d (%?) (z,) (j = 1,---,d) are measurable for each z € R? and for each
z € R?\ F, respectively, » |

(ii) £(f) = f on F and supp &(f)(-,t) C B(0,2R) for each t € [0,T].

(ii)

o€ . - -
D (4,01 < ol it 0D 15D 0] < el sy, 0D) 2

for every (y,s) € (Rd \ F) x [0,T].
(iv) If f € AgA(F x [0,T)), then £(f) € Aqr(R? x [0,T1)).

Using Lemma 1.1 we define, for f € A,(Sp),

T
(15) #/x) = [ as / (V)09 VW (X~ Y))iy
/ ds / &)y, 9)A,W(X —Y)dy
for X = (z, t)EDxRand
T
(L6) 2/(X) =~ [ ds [ (9,9, 9, W(X - V))iy

T
- [ ds [ w18 xX - Yy
0 D

for X = (z,t) € (R?\ D) x R.
Furthermore we also define the operator K by

(17) K(2) = 3 (1(2) + B(2),

where
T .
II(Z)ZA d8A4\5<Vg(f)(y’s)’V9W(Z_Y)>dy
T
+ /0 ds /R p ENI) = 12D (Z =¥ )iy

+ f(Z) _ W(Z -Y)dy
(R4\D)x{0} ,
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and
| o
0(z) =~ [ ds [ (Ve(D) w9, VW (2 -V ))dy
) | -
- [ as / EDX) - HEVAW(Z-Y)iy-12) [ W(z-T)ay
0 D Dx{0}

Under these notations we will prove the following theorem in §3.

Theorem. Assume that D is a bounded doqu'n in R? such that 8D is a ﬁ-set.
Ifo<p—-(d—1)<a<1l and f € Ay a/2(SD), then, for each Z € 8D x [0,T],

(18) opdm L B(X) = KS(2)+3/(2)
and |
(1.9) lim 8f(X) = Kf(Z) - % £(2).

X—+2,Xe(R\D)x(0,T)

Thus we see that our double layer heat potentials have the same boundary be-
havior as the usual ones for a bounded cylinder with smooth lateral boundary.

Remark. In this paper we shall treat the double layer heat potentials of Holder
continuous functions on Sp. But under a similar consideration we can also the
double layer heat potentials of functions in a Besov space on Sp and prove that
they have the parabolically non-tangential limit at a.e. Z € Sp.

2. Properties of W

In this section we recall and study properties of the function W. To do so, we
use the parabolic metric § defined by

(X,Y) = (lz—yP>+t - 3|)1/2 for X = (m,t) ande = (y, s).

Lemma 2.1. (i) W(X) < ¢§(X,0)~¢,

(i) |V W(X)| < c8(X,0)~%1 if X #£ 0,

(i) | 52255 W (X)] < €8(X,0)79-2, |ZW (X)| < cd(X,0)742 if X #0,

(iv) I-az—,.a%:}a-;;W(X)l < ¢§(X,0)973, Ia-f;aW(X)! < ed(X,0)74% if X #0,
(V) [W(X =Y)=W(Z-Y)| <cd(X,Z2){6(X,Y)" %+ 6(Z,Y)™%}
f0<e<land X#Y,Z#Y,

(Vi) [V,W(X -Y)=V , W(Z-Y)| < c8(X, Z){6(X,Y)~ %~ 1-€+<s(z Y)—d-1-¢}
f0<e<land X#Y,Z#Y.
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Proof. The assertions (i), (ii), (iii) and (iv) are well known (cf. [B2, p.5]). The
assertions (v) and (vi) will be shown by the same method as in the proof of Lemma

2.3 in [W2]. O

Let DQe a bounded piecewise smooth domain in R¢ and u, v be smooth func-
tions on Dy x [0, p]. Using the divergence theorem, we obtain

(2.1)
P
/ (uL*v — vLu) dzdt
0 JDy .

P
=/ dt (quv—-vvxu,nm)da(m)—/ uvdz+/ uvdz,
0 3D, Dx {t=0} Dx {t=p}

where

o . o
L—A-—a and L -A+3t.

If Lu = L*v =0 in Dy X (0, p), then (2.1) implies

p
(2.2) / dt (uV v — vV u,n,)do(z) — uwvdx + / wvdzr = 0.
0 8D, Dox{t=0} Dox{t=p}

Let X = (z,t) (0 <t < T) be an exterior point of Dy x (0,7T). Then, setting
u=1and v(Y) = W(X —Y) and noting that W(X —Y) =0for Y = (y,T), we
deduce from (2.2) -

T
(2.3) /0 ds /a (VW (X = Y),my)do(y) ~ /D oy VXTI =0

Hereafter we assume that D is a bounded domain in R4 such that 9D is a 3-set
satisfying D C B(O, R/2).

Let us use the Whitney decomposition to approximate D and R4\ D (cf. [S,
p.167]). Let V(D) be the Whitney decomposition of D and define

An = Uik, YUgeni (D) @
where Vi(D) = {Q € V(D);Q is a k-cube} and ko is the smallest integer k such

that V(D) #0.
Similarly we also define

B, = (U;cl=—oo UQ€Vk(Rd\ﬁ) Q) )

Then we have the following lemma.
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Lemma 2.2. Set
T : ,T
gn(X) = / / CAW(X -Y)dy and ha(X) = / / AW(X —Y)dy.
0 Ja, o JB,
Then limy,_; 00 gn(X) and limy,_ o0 hyn(X) ezist on R?x[0,T) and for X € R%x (0,7
lim gn(X) = / W(X —Y)dy — xp(X)
n—roo Dx {0}

and ' ’
lim ho(X) = / WX -Y)dy— xpap(X)
noreo (R4\D)x{0}

Proof. Let X = (z,t) € R% x (0,T] and t > p > 0. Applying (2.2) to A, X (0,p),
we have

/  ds (V,W(X =Y),n,)do(y) — / W(X =Y)dy
0 8A, A, x{0}

'+/ W(X -Y)dy=0.
Anx{p}
Using the divergence theorem for A, in R¢, we have

P
/ ds/ AW(X -Y)dy —/ W(X —Y)dy
0 A, A, x{0}

+ / W(X -Y)dy=0.

Anx{p}
As p = t and n — 0o, we obtain,

lim_gn(X) = / W(X —=Y)dy — xp(X).
'f o0 Dx {0}

On the other hand g,(X) = 0 for t = 0. Hence lim,_,o gn(X) exists for each
X e R4 x[0,T). |
Similarly we can also prove the conclusion for h,,.
O

3. Double layer heat potentials

In this section we first prove Lemma 1.1 in §1.
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Proof of Lemma 1.1 We use the extension operator & in [S, p.172] and choose a
C°°-function ¢g such that

¢o=1 on B(0,R), supp¢p C B(0,2R) and 0 <¢p < 1.

We define
E(f)(z,t) = Eo(f(- 1)) (z)do(x)

for f € Ao(F) and (z,t) € (R?\ F) x [0,T] and
E(f)(z,t) = f(z,t) on (z,t) € F x[0,T].

Then properties (i), (ii), (iii) follow from the definition and (13) on p.174 in [S]. Since
the operator & is linear, positive and maps the constant function 1 to 1, (iv) is also
valid. O

In [W1] we gave the following lemma.

Lemma A. Letd, k be non-negative numbers satisfying d—3 > 6 andd—d—k >
0. Then .

/ dist(y, D) |y — 2| Fdy < crd=*=F
B(z,r)
for every z € 0D and r > 0.

We next show that the double layer heat potential defined by (1.5) and (1.6)
converges.

Lemma 3.1. Let0<f—(d—1)<a <1 and f € Ay(Sp). Then ®f is caloric
in (R?\ D) x R.

Proof. Set, for X = (z,t) € D x R,
T
(3.1) nx)= [ ds [ (9,009, 9, WX = Vhiy
0 R\D

and let X, = (zo,t0) € D. Choose p > 0 satisfying B(z,2p) C D. If X = (z,t) €
B(zg, p) x R, then we deduce from Lemmas 2.1 and 1.1 and Lemma A

' T
RIS [ ds [ sy, 00)" 18X, ¥) "y < 157 f o
RI\D
whence J; converges locally uniformly in D. We denote by g; the 1ntegrand of the

right-hand side on (3.1). Since

32
Y9z;0z,; 0

0

IVyz—5—W(X -Y)| < CzJ(X Y)-“’-3 and |V, W(X Y)| < c36(X,Y) 7473,
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we see that the integral of Lg; over (R%\ D) x [0, T also converges locally uniformly
on D. Therefore J; satisfies the heat equation in D X R.
Next, set '

T .
Jo(X) = /0 ds fR T DW=V

Using Lemma 1.1, (iii), we can show by the above method that J; also converges
locally uniformly in D and satisfies the heat equation. Thus we conclude that
& f = J; + J2 has the same properties in D x R. We can show that & f also has the
same properties in (R%\ D) x R. 0O

Using Lemma 2.1, (iv), (v) and Lemma A, we can prove the follbwing lemma by
a similar method to that in the proof of [W1, Lemma 3.3].

Lemma 3.2. Let0<f-(d—-1)<a < 1 and f € Aq,a/2(SD)- Then both of
 the function Jy defined by (3.1) and the function J; defined by

Jo(X) = / ds /R d _ E(H) (X)) AW(X — Y)dy

are are continuous on R% x [0,T). Furthermore the function Ji (resp. J3) obtained

by replacing R% \ D with D in the definition of Jy ('resp J3 ) 1s also continuous on
x[0,T].

Lemma 3.3. Let0<fB—(d—1)<a<1landge€ A, a/z'(Rd [0,T]) such that
g(-,t) € CHRD), supp g(-,s) € B(0,ro) for everyt € [0,T] and —9—(:13, -) is bounded
for every x € R®. Let X = (x, t)eR“x (0,T] and set, for0<p<T

Ap90x) = [ ds / (Vo(Y), VW (X — Y))dy
/ ds / — g(X))A, W(X Y)dy
+g(X) WX -Y)dy

J(RI\D)x {0}

and
By == [ as [ (Va0), 9,W(x 1)y
= [Cas [ 0r) - g0pa,wx - ¥)ay
0 D : . .

o) [ WX -V
Dx{o} .
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Then

‘ (3:2) A7g(X) = Brg(X) + g(X) for X € R% x (0,T)

Proof. To simplify the notation, we use A,(z) and B,(X) instead of A,g(X) and
B,g(X), respectively. We first show (3.2) in case D = Dy is a bounded piecewise
smooth domain. Let X = (z,t) and set, for 0 < p <7, '

) == ["as [ (T, (X =), nydo(y).
The Green formula for Dy yields |
(3:3) 1,(X) = - [ O<Vg<¥>,'vyW<X-Y>>'dy
- [ [ ) - sxnawx - vy

p
— g(X) / ds [ AW(X —Y)dy
0 Dg

From (2.2) we deduce
v . |
/ ds | AW(X -Y)dy
0 Do

- / WX —Y)dy- / W(X —Y)dy,
Dox{0) Dox s}

whence
/t ds / AW (X —Y)dy = / WX = Y)dy — xp, (5).
0 Do Do x{0}

This and (3.3) imply |

B4) LX) = Bi(X) +9(X)xp(x) for X € (R*\ 6D) x (0,71
Similarly, using the Green formula for B(0,r) \ Dy and r — 0o, we obtain

I(X) = Ay(X) - 9(X)Xpa\D, (<)
for X € (R4\ 8Dp) x (0,T). This and (3.4) lead to

CA(X) = By(X) + g(X) for X € (R*\ 8Dy) x (0,T].
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Noting that A¢(X) = Ar(X) and B,(X) = Br(X), we obtain (3.2) for X € (R%
8D) x (0, T]. Since Ar and Br are continuous on R? x (0,T] by Lemma 3.2, (3.2)
holds for a bounded piecewise smooth domain D = Dj.

'We next show (3.2) for a bounded domain such that 9D is a 3-set. We use (3.2)
for Dy = A,. Since

T
/o /R IVg(Y)||V,W (X — Y)|dyds < oo,
T | .
[ s [ lot) - a0l wx - Ydy <co
0 R4

and ,
/ W (X —Y)dy < oo,
Rdx {0}

we see that (3.2) holds for the domain D as n — oo. , O
Lemma 3.4. Let0<f—-(d—-1)<a andvf € Aq,a/2(Sp). Then (3.2) holds
for g = E(f). |

Sketch of Proof. Let f € Aqo/2(Sp) and {vm} be a mollifier on R such that
Supp Um C B(0,1/m). We define, for Y = (y,s) € R? x [0, T},

= (E(F)(-> ) * vm) (3)
Lemma 3.3 yields |
ATgm(X) = Brgm(X) + gm(X) for X € R? x (0,T):

Using gm(X) = &(f)(X) uniformly as m — co and Lemmas A, 1.1 and 2.1, we can
show that :

Argm(X) = ArE(f)(X)

and -
Brgm(X) — Br&(f)(X)

for X € R® x [0,T] as m — oo.

We can also show the following lemma.

Lemma 3.5. Let0 < 8 —(d—1) < a < 1. Then the opemtor K defined by
(1.7) is a bounded operator from Ay o/2(SD) to Aaa/2(SD)-

Let us prove our thorem.
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Proof of Theorem. Let X € D x (0, T]. Using Lemma 2.2, we have ®f(X) =
A7 f(X). Since Arf is continuous on R¢ x (0, 7] by Lemma 3.2, we have

lim f(X)= Arf(2).

X—+Z,XeDx(0,T)

On the other hand Lemma 3.4 yields

K1(2) = 3 (Arf(2) + Brf(2)) = Azf(2) ~ 11(2).

Therefore we have (1.8). Similarly we can show (1.9). | | _ a
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