Structures of Lyapunov Regular Sets with Non-Zero Exponents

Masahiro KURATA Nagoya Institute of Technology

1 Inroduction

Let M be a closed manifold with a Riemannian metric and $f; M \to M$ be a C^2 -diffeomorphism. For $\lambda, \mu > 0$ and $1 \le k \le \dim M - 1$, we denote by $\Lambda = \Lambda(-\mu, \lambda, k)$ the set consisting of Lyapunov regular points x such that

- 1. Lyapunov exponents of x are less than $-\mu$ or greater than λ ,
- 2. the dimension of the fiber of stable bundle $E^s(x)$ equals k.

Without loss of generality, we may assume that Λ has a dense orbit. In this note we construct a "symbolic dynamics" that represents Λ , and study the structure of Λ in the case when Λ is a fractal set.

2 symbolic dynamics of Λ

The set Λ is represented by a "symbolic dynamics" as follows. I Let $\mathcal{W} = \{W_n\}_{n\geq 0}$ be a family of sets W_n of words of length n+1 such that

1. There are symbols $\{B_1, \dots, B_p, C_1, \dots, C_q\}$, and for any $n \geq 0$

$$W_n \subset \{B_1, \cdots, B_p, C_1, \cdots, C_q\}^{n+1},$$

- 2. $(\alpha_0, \dots, \alpha_n) \in W_n$ implies $\alpha_0, \alpha_n \in \{B_1, \dots, B_p\}$,
- 3. If $(\alpha_0, \dots, \alpha_n) \in W_n, (\beta_0, \dots, \beta_m) \in W_m$ and $\alpha_n = \beta_0$, then $(\alpha_0, \dots, \alpha_n, \beta_1, \dots, \beta_m) \in W_{n+m}$,
- 4. for any B_i, B_j $(1 \le i, j \le p)$, there are $n \ge 1$ and $(\alpha_0, \dots, \alpha_n) \in W_n$ with $\alpha_0 = B_i, \alpha_n = B_j$.

II For a family of sets of words $W = \{W_n\}_{n\geq 0}$ as above, we define a subset of shift (not necessarily subshift) $\Sigma = \Sigma(W)$ as follows:

- 1. $\Sigma = \Sigma(\mathcal{W}) \subset \{B_1, \cdots, B_p, C_1, \cdots, C_q\}^{\mathbb{Z}}$
- 2. Σ is generated by $W = \{W_n\}_{n\geq 0}$, that is,
 - (a) $\underline{\alpha} = (\alpha_n)_{n \in \mathbb{Z}} \in \Sigma$ if and only if for any N > 0 there are $m, n \geq N$ such that $(\alpha_{-m}, \alpha_{-m+1}, \cdots, \alpha_0, \cdots, \alpha_n) \in W_{m+n}$

(b)
$$\alpha_0 \in \{B_0, \cdots, B_n\}$$

III We denote by Σ a collection of $\Sigma = \Sigma(\mathcal{W})$, where $\mathcal{W} = \{W_n\}_{n\geq 0}$, is defined in I and II. And an equivalence relation \sim is defined in the disjoint union $\cup \Sigma(\mathcal{W})$ as follows:

if
$$\underline{a} \sim \underline{b}$$
 for $\underline{a} \in \Sigma, \underline{b} \in \Sigma'$ and $\sigma^n(\underline{a}) \in \Sigma, \sigma^n(\underline{b}) \in \Sigma'$ then $\sigma^n(\underline{a}) \sim \sigma^n(\underline{b})$, where σ is the shift map.

IV For the quotient space $\tilde{\Sigma} = \bigcup \Sigma(\mathcal{W})/\sim$, a shift map $\tilde{\sigma}: \tilde{\Sigma} \to \tilde{\Sigma}$ is defined as follows:

for
$$\underline{\alpha} = (\alpha_n)_n \in \Sigma$$
 with $\alpha_0, \alpha_k \in \{B_1, \dots, B_p\}$, we have $\tilde{\alpha}^k[\underline{\alpha}] = [\underline{\beta}]$, where $\underline{\beta} = (\beta_n)_n \in \Sigma$ is given by $\beta_n = \alpha_{n+k}$.

With the notations as above, we have the following.

Theorem 2.1. For a Lyapunov regular set $\Lambda = \Lambda(-\mu, \lambda, k)$, there are

- 1. a collection $\Sigma = {\Sigma(W)}$ of countable subsets of shifts $\Sigma(W)$,
- 2. an equivalence relation \sim on $\cup \Sigma(W)$ and the shift map $\tilde{\sigma}: \tilde{\Sigma} = \cup \Sigma(W)/\sim \to \tilde{\Sigma}$,
- 3. a collection of maps $\Psi = \Psi_{\Sigma} : \Sigma \to \Lambda$ (for $\Sigma \in \Sigma$) which is compatible with the equivalence relation \sim ,

such that the map

$$\tilde{\Psi}: \tilde{\Sigma} \longrightarrow \Lambda$$

induced from $\{\Psi = \Psi_{\Sigma} \mid \Sigma \in \Sigma\}$ is surjective and the diagram

is commutative.

Remark 2.1. Let ε be an arbitrary positive number. In Theorem2.1. we may choose the symbols $\{B_1, \dots, B_p, C_1, \dots, C_q\}$ of any \mathcal{W} and maps $\Psi = \Psi_{\Sigma}$ such that

- 1. p = 1,
- 2. diam $\Psi(\Sigma) < \varepsilon$ for $\Sigma = \Sigma(W) \in \Sigma$,
- 3. for $x = \Psi((\alpha_n)_n) \in \Psi(\mathcal{W})$ $\|Tf^n \mid E^s(x)\| < \exp(-\mu n) \quad \text{if } \alpha_0 = \alpha_n = B_1,$ $\|Tf^{-n} \mid E^u(x)\| < \exp(-\lambda n) \quad \text{if } \alpha_{-n} = \alpha_0 = B_1.$

3 Locally self-similarity with countable contractions

Let $\Lambda = \Lambda(-\mu, \lambda, k)$ be a Lyapunov regular set. In the sequel we assume that $\Sigma = \{\Sigma\}$, where $\Sigma = \Sigma(\mathcal{W})$, and maps $\Psi = \Psi_{\Sigma} : \Sigma \to \Lambda$ ($\Sigma \in \Sigma$) are given as in section 2 and satisfy Remark2.1.

Then Λ is a countable union of closed sets:

$$\Lambda = \bigcup_{\Sigma \in \Sigma} \Psi(\Sigma).$$

In this section we consider the structure of $\Psi(\Sigma)$.

Let $G_k(\mathcal{W})$ be the set of generators of \mathcal{W} , that is,

$$G_k(\mathcal{W}) = \{(a_0, \dots, a_k) \in W_k \mid a_0 = a_k = B_1, a_i \in \{C_1, \dots, C_q\} \ 1 \le i \le k-1\},\$$
 $G(\mathcal{W}) = \bigcup_k G_k(\mathcal{W}).$

For $\mathbf{a} = (a_0, \dots, a_k) \in G(\mathcal{W})$, the right contraction

$$R(\mathbf{a}): \Psi(\Sigma) \longrightarrow \Psi(\Sigma)$$

is defined by

$$R(\mathbf{a})(\Psi((\alpha_n)_n) = \Psi((\beta_n)_n) \text{ for } (\alpha_n)_n \in \Sigma,$$

where

$$\beta_n = \begin{cases} \alpha_{n-k}, & k \le n, \\ a_n, & 0 \le n \le k, \\ \alpha_n, & n \le 0. \end{cases}$$

Similarly the left contraction

$$L(\mathbf{a}): \Psi(\Sigma) \longrightarrow \Psi(\Sigma)$$

is defined by

$$L(\mathbf{a})(\Psi((\alpha_n)_n) = \Psi((\beta_n)_n) \text{ for } (\alpha_n)_n \in \Sigma,$$

where

$$\beta_n = \begin{cases} \alpha_n, & 0 \le n, \\ a_{n+k}, & -k \le n \le 0, \\ \alpha_{n+k}, & n \le -k. \end{cases}$$

Then we have the following.

Proposition 3.1. The set $\Psi(\Sigma)$ is a countable union of images of $\Psi(\Sigma)$ by maps $R(\mathbf{a})L(\mathbf{b})$;

$$\Psi(\Sigma) = \bigcup_{\mathbf{a}, \mathbf{b} \in G(\mathcal{W})} R(\mathbf{a}) L(\mathbf{b}) (\Psi(\Sigma)).$$

If the map $\Psi = \Psi_{\Sigma} \colon \Sigma \to \Lambda$ is injective, then for any $\mathbf{a}, \mathbf{b} \in G(\mathcal{W})$ the map

$$L(\mathbf{b})R(\mathbf{a}) = R(\mathbf{a})L(\mathbf{b}) \colon \varPsi(\Sigma) \longrightarrow \varSigma(\Sigma)$$

is a contraction. And $\Psi(\Sigma)$ is self-similar by countable contractions.

4 Hausdorff dimension of local stable manifolds

Form the propositions in the revious section, we have

$$\begin{split} \Psi(\Sigma) &= \bigcup_{\mathbf{a}_1, \mathbf{b}_1 \in G(\mathcal{W})} R(\mathbf{a}_1) L(\mathbf{b}_1) \left(\Psi(\Sigma) \right) \\ &= \bigcup_{\mathbf{a}_2, \mathbf{b}_2 \in G(\mathcal{W})} \bigcup_{\mathbf{a}_1, \mathbf{b}_1 \in G(\mathcal{W})} R(\mathbf{a}_2) L(\mathbf{b}_2) R(\mathbf{a}_1) L(\mathbf{b}_1) \left(\Psi(\Sigma) \right) \\ &= \bigcup_{\mathbf{a}_1, \mathbf{a}_2 \in G(\mathcal{W})} \bigcup_{\mathbf{b}_1, \mathbf{b}_2 \in G(\mathcal{W})} R(\mathbf{a}_2) R(\mathbf{a}_1) L(\mathbf{b}_2) L(\mathbf{b}_1) \left(\Psi(\Sigma) \right) \\ &= \cdots \\ &= \bigcup_{\underline{\mathbf{a}}, \underline{\mathbf{b}} \in G(\mathcal{W})^{\mathbb{N}}} R(\underline{\mathbf{a}}) L(\underline{\mathbf{b}}) \left(\Psi(\Sigma) \right), \end{split}$$

where

$$\underline{\mathbf{a}} = (\mathbf{a}_1, \mathbf{a}_2, \cdots), \ \underline{\mathbf{b}} = (\mathbf{b}_1, \mathbf{b}_2, \cdots) \in G(\mathcal{W})^{\mathbb{N}},$$

and

$$L(\underline{\mathbf{b}})(\Psi(\Sigma)) = \bigcap_{N>1} L(\mathbf{b}_N) \cdots L(\mathbf{b}_1)(\Psi(\Sigma)).$$

Besides the set $L(\underline{\mathbf{b}})(\Psi(\Sigma))$ coincides with an intersection of a local unstable manifold and $\Psi(\Sigma)$.

Let Lip $(R(\mathbf{a}) \mid L(\underline{\mathbf{b}}) (\Psi(\Sigma)))$ be the Lipshitz constant of the map

$$R(\mathbf{a}) \colon L(\underline{\mathbf{b}}) (\Psi(\Sigma)) \longrightarrow L(\underline{\mathbf{b}}) (\Psi(\Sigma))$$
.

By choosing $\varepsilon > 0$ in Remark2.1 sufficiently small, we have

$$\operatorname{Lip}\left(R(\mathbf{a})\mid L(\underline{\mathbf{b}})\left(\Psi(\Sigma)\right)\right)<\exp(-\lambda n).$$

Because the number of the elements of $G_k(\mathcal{W})$ is less than or equals q^{k-1} , this implies the following.

Proposition 4.1. For $\underline{\mathbf{b}} \in G(\mathcal{W})^{\mathbb{N}}$, there is $c(\underline{\mathbf{b}}) > 0$ such that

$$\sum_{\mathbf{a} \in G(\mathcal{W})} \operatorname{Lip}\left(R(\mathbf{a}) \mid L(\underline{\mathbf{b}}) \left(\varPsi(\Sigma)\right)\right)^{c(\underline{\mathbf{b}})} = 1.$$

The number $c(\underline{\mathbf{b}})$ dominates the Hausdorff dimension of the intersection of the local unstable manifold and $\Psi(\Sigma)$:

Proposition 4.2. The Hausdorff dimension of $L(\underline{\mathbf{b}})$ ($\Psi(\Sigma)$) is less than or equals $c(\underline{\mathbf{b}})$.

References

- [1] V.I.Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. soc. 19 (1968),197-231.
- [2] Y.B.Pesin, Lyapunov characteristic exponent and smooth ergodic theory, Russian Math.Surveys **32** (1977),no.4,55-114.