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1. INTRODUCTION

In this paper, we consider holomorphic families of rational maps from the view
point of complex dynamics. The proofs of most of results presented here will be
appeared elsewhere. Also, some of results which have been given already in our
paper of the proceedings of the same conference last year are stated as modified
version.

There is a correspondence of holomorphic families of Riemann surfaces to those
of rational maps(i. e. Riemann surfaces ~ quasi-Fuchsian groups ~ complex dynam-
ics). We recall the following finiteness theorem for holomorphic families of Riemann
surfaces parameterized by a Riemann surface of finite type.

Theorem 1.1 (Parshin-Arakelov). Let X be a Riemann surface of finite type.
Then, there are only finitely many non-isomorphic and locally non-trivial holomorphic
families of Riemann surfaces of fized finite type (g,n) with 29 — 2+ n > 0 over X.

Once the finiteness theorem is established, uniform boundedness of the number of
families is an interesting question, that is, if the Riemann surface X varies in the
moduli space, then whether or not there exists an upper bound of the numbers of
holomorphic families over X which does not depend on X.

Recently, we have obtained a partial answer to this problem ([S2]).

Theorem 1.2. Let X be a Riemann surface of type (p, k). Then, the number of
non-isomorphic and locally non-trivial holomorphic families of Riemann surfaces of
type (g,n) over X is uniformly bounded if (g,n) = (0,n), (1,1),(1,2) or (2,0).

As a corresponding problem in holomorphic families of rational functions, we shall
consider the following one.

Problem. Let X be a Riemann surface of type (g,n). Then, is there only finitely
many nou-isomorphic and locally non-trivial holomorphic families of rational maps
of degree d > 27 And if it is finite, then is there an upper bound of the number of
families which depends only on d, g and n?
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Unfortunately, this problem has a negative answer. Namely, we can find a Riemann
surface of finite type over which there are infinitely many non-isomorphic and locally
non-trivial holomorphic families of rational maps. However, we shall show that if we
restrict our families to ones which satisfy a certain reasonable condition, then the
number of families over a Riemann surface of finite type is finite. And we establish
a rigidity theorem for holomorphic families over a Riemann surface of finite type.

Secondly, we consider the monodromy of holomorphic families.

In case of holomorphic families of Riemann surfaces, all Riemann surfaces which
appear in fibers of a family are quasiconformally equivalent to each other. So, ana-
lytic continuations of closed curves in the parameter space determines a (homotopy
class of) quasiconformal self mapping of the Riemann surfaces. It induces a homo-
morphisms of the fundamental group of the surface to the mapping class group which
is called monodromy. It is known that the monodromy groups play an important role
in holomorphic families of Riemann surfaces (cf. [IS], [S1]). |

On the other hand, in case of holomorphic families of rational maps with the same
degree, all rational maps in a family are not necessarily quasiconformally equivalent
to each other. In this paper, we consider holomorphic families of rational maps over
the punctured disk A* = {0 < |2| < 1}, and assume that they are obtained by quasi-
conformal deformations. We shall show that under a condition the monodromy for a
simple closed curve in A* around the origin is of infinite order. It is a generalization
of a result in a paper of McMullen [Mc2]. The result corresponds to the fact that for
a holomorphic family of Riemann surfaces over the punctured disk, the monodromy
for a simple closed curve around the origin is a Dehn twist if the family does not
have an analytic continuation to the origin ([I]). Our proof deeply depends on the
theory of Teichmiiller spaces of complex dynamics which is developed in a paper of
McMullen and Sullivan [MSu].

2. WEAKLY STABLE FAMILIES AND FINITENESS THEOREM

We give a finiteness theorem for holomorphic families of rational maps belonging
to a certain class which is a generalization of stable (J-stable) families.

Definition 2.1 (Weakly stable family). Let { Rx}xcar be a holomorphic family of
rational maps of degree d over a complex manifold M and & a positive integer. Then,
it is called a weakly k-stable family over M if it satisfies the following condition.
(1) There exists some period p such that the set of periodic points Ey of ) with
period p consists of just k points for every A € M.
(2) There exists a neighbourhood U of A € M such that each points of Ey is
holomorphic with respect to X' € U.

We can show that any stable family is a weakly stable family.



54

Proposition 2.1. Let {R)}xenr be a stable holomorphic families of rational maps of
degree d over a complex manifold M. Then, it is a weakly k-stable family over M for
a sufficiently large order k.

On the other hand, there is a weakly stable family of rational maps which is not
stable. Thus, the weakly stability is actually a generalization of the stability.

Theorem 2.2. Let X be a Riemann surface of type (g,n). We denote by N(X,d, k)
the number of non-isomorphic and locally non-trivial weakly k-stable holomorphz(’
families of rational maps of degree d over X, and set

N(X,d) = Z N(X,d, k).

k=3(2d2+1)
Then, there exists an N = N(g,n,d) depending only on g,n and d such that N(X,d) <
N for all X of type (g,n).

We show a rigidity theorem for weakly stable families of rational maps.

Theorem 2.3. Let X be a Riemann surface of type (g,n). Then there is a number
L(g,n,d) which depends only on g,n and d such that if k > L(g,n,d), then any
weakly k-stable family of rational maps of degree d over X s locally trivial.

3. MONODROMY OF HOLOMORPHIC FAMILIES OF RATIONAL MAPS

First, we describe a motivation of the problem treated in this section. In Me2],
McMullen considers a holomorphic family of polynomials Py over ¥ = {A | 10 <
A < oo} (2 A*={2]0 < |z| < 1}) defined by "

Py(z) = 2* + A2

It is shown that the family is quasiconformally stable. Hence, for any point A in X
there exists a neighbourhood Uy, of A in ¥ such that Py and P, are quasiconformally
conjugate to each other for each A" in Uy. Thus, we may take a quasiconformal
self-mapping [y of C such that :

(3.1) Pyo fx(z) = fxo Py(2)

for all z € C. We take a circle C = {re’ | 0 < 6 < 27} € ¥. Then, an analytic
continuation of Py along C' determines a quasiconformal mapping fo satisfying

(32) | Pyo fe(z) = fc o PA(2)

The quasiconformal mapping fc is not uniquely determined by C, but from (3.2) the
restriction fo|s(p,) on the Julia set J(F,) is uniquely determined. Moreover felipy
depends on the homotopy class [C] of C in . So, we denote it by w[C] P2 and call

it monodromy of the family for [C] on the Julia set. Then, the following is shown
(IMc2]).
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Proposition 3.1. The order of w[]c(lp*) is infinite.

The proof is done by using an approximation of the Julia set J(P)) via a nested
sequence of closed curves in the Fatou set F'(P,) and by a careful analysis of the
action of fc on the nested sequence. We shall use the similar method to extend
Proposition 3.1.

As the first step, we derive a similar result by a different method to quasiconformal
stable families of rational maps over the punctured disk A*. '

Let { Ry} ea+ be a quasiconformally stable family over the punctured disk A*. We
consider a monodromy wic; of the family for a simple closed curve C' around the
origin. Then, we have the following theorem.

Theorem 3.2. Let {R)}rca- be a locally non-trivial quasiconformally stable family
over the punctured disk A*. Suppose that the limit limy_o Ry does not exist in the
space of rational maps which are quasiconformally conjugate to Ry, for some Ay € A*.
Then, the order of wic is infinite.

Remark 3.1. Theorem 3.2 is applicable not only when the limit limy_¢ B does not
exist but also when the limit Ry = limy_.q Ry exists but not in the Teichmiiller space
of RA.

Corollary 3.3. Let {Ry}aen- be a locally non-trivial quasiconformally stable holo-
morphic family of rational maps over the punctured disk A*. Suppose that Ry (A €
A*) is not affine and it is a post critically finite rational map, that is, the set of
forward orbits of critical points of Ry is finite. Then, the limit limy_o Ry exists in
the space of rational maps which are quasiconformally conjugate to R).

The statement of Theorem 3.2 is similar to that of Proposition 3.1, but it does not
cover that of Proposition 3.1 because wJC(RA) may be of finite order even if wi is of

infinite order. Here, we extend Proposition 3.1 by the following way.

"Theorem 3.4. Let { Py} xeax be a locally non-trivial quasiconformal stable holomor-
phic family of polynomials of degree d over the punctured disk A* and C(\) the set of
finite critical points of Px. Suppose that the limit limy_o Py does not exist in the space.
of rational maps which are quasiconformally conjugate to Py, for some Ao € A*, and
that the set of finite critical points C(A) of Py has the following properties.

(1) There exists a non-empty subset A(X) of C(A) such that any c € A(X) is
attracted to oo, that is, lim, ., P{(c) = oo.

(2) C(A)—A(X) is not empty, and any c € C(A\)— A(X) is either a super-attracting
fized point or belongs to a parabolic component of F(Py). Furthermore, if ¢ is

in a parabolic component, then it is a unique critical point in the component.

Then, w{c(]p V) s of infinite order.
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Remark 3.2. We have some comments about the above assumption.

e From the assumption in Theorem 3.4, we have d > 3. Furthermore, we see
that the Julia set J(Py) is not connected.

e Suppose that in a holomorphic family of rational maps satisfying the above
conditions (1) and (2), and that postcritical sets of critical points in A()) are
disjoint to each other for any A € A*. Then the postcritical set gives a holo-
morphic motion on A*. It follows from Corollary 7.5 in [MSu] that the family
is quasiconformally stable. In particular, if A()A) consists of only one critical
point, then the family satisfying the condition (1) and (2) is quasiconformally
stable.

4. EXAMPLES

In this section, we exhibit some examples about Theorem 3.4. The following fam-
ilies are defined over {|A\| > M} for some M > 0. As we noted in the remark of
Theorem 3.4, holomorphic motions formed by the postcritical set induces the quasi-
conformal stability of the family. Thus, we verify that all of the following families
are quasiconformally stable if they satisfy the conditions (1) and (2) in Theorem 3.4.

Example 1. P\(z) = z¢ — Xz¢7! (d > 3).
This is a direct extension of an example given in McMullen [Mc2]. We have

Pi(2) = d2*? (z ~ c—i—g—l)\) .

Thus, z = 0 is a super-attracting fixed point and a = (d — 1)\/d is another critical
point. We verify that if M > 0 is sufficiently large, then « is attracted to oc. Thus,
the family satisfies the condition of Theorem 3.4.

Example 2. For n > 2,

(4.1)
P\(2) = (7;_21)_)\—:5{(” + Dn2™? — (n+2)n(A + 12" + (n+2)(n + A"}
We have .
' oy m+2)n+)n
) = s a2 D)

Hence, z = 0,1, ) are critical points and z = 0,1 are super-attracting fixed points. ‘
From (4.1), we have

n(n+1)(n+2)

|(n+2)A — n

[PA(V)] = IAIA% — AL
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Hence, if [A| > 1, then [Py(A)/A] > 1. From
n{n+1)(n+2)

|PA(2)] = CEEy— 12" (n+2)2* — (n+ 1)(A+ 1)z +n)|
nn+1)n+2), ., )
0t Dafn (o + 20l =+ DA+ 1] A,

it follows that if [2/A| > 1 and |A| > 1, then |Py(2)/2] > 1. Hence, we verify that
if M > 0 is sufficiently large, then X is attracted to oo. Thus, the example satisfies
the condition of Theorem 3.4.

Finally, we give an example with a parabolic fixed point.

Example 3.

(4.2) : Pz) == — (A + A H22 + 2

Q|
N | =

We have :
Pi(2) = (z =Nz =27, BR(0)=1,

and P5(0) = 0. Hence, z = 0 is a parabolic fixed point and z = A\, A\™! are critical
points of Py(z). We see that if M > 0 is sufficiently large, then P}(\) — oo as
n — 00. On the other hand, a parabolic component contains a critical point (cf. [CG]
III. Theorem 2.3). Therefore, z = A~! is attracted to z = 0 and it is contained the
parabolic component for z = 0. Thus, the example also satisfies the condition of
Theorem 3.4.
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