The Optimal Stopping Problem for Fuzzy Random Sequences

北九州大学経済学部吉田祐治(Yuji YOSHIDA)千葉大学理学部安田正實(Masami YASUDA)千葉大学理学部中神潤一(Jun-ichi NAKAGAMI)千葉大学教育学部蔵野正美(Masami KURANO)

1. Introduction and notations

Fuzzy random variables was first studied by Puri and Ralescu [7] and have been studied by many authors. Stojaković [9] discussed fuzzy conditional expectation and Puri and Ralescu [8] studied fuzzy martingales. This paper discusses optimal stopping problems of a sequence of fuzzy random variables.

Let (Ω, \mathcal{M}, P) be a probability space, \mathcal{M} is a σ -field and P is a probability measure. Let \mathbf{R} be the set of all real numbers and let \mathbf{N} be the set of all nonnegative integers. \mathcal{B} denotes the Borel σ -field of \mathbf{R} and \mathcal{I} denotes the set of all bounded closed sub-intervals of \mathbf{R} . A fuzzy set \tilde{a} is called a fuzzy number if the membership function $\tilde{a}: \mathbf{R} \mapsto [0,1]$ is normal, upper-semicontinuous, convex and has a compact support. \mathcal{R} denotes the set of all fuzzy numbers. We write the α -cut $(\alpha \in [0,1])$ of a fuzzy number $\tilde{a} \in \mathcal{R}$ by

$$\tilde{a}_{\alpha} := [\tilde{a}_{\alpha}^-, \tilde{a}_{\alpha}^+], \quad \alpha \in [0, 1].$$

A map $\tilde{X}:\Omega\mapsto\mathcal{R}$ is called a fuzzy random variable if

$$\{(\omega, x) \mid \tilde{X}(\omega)(x) \ge \alpha\} = \{(\omega, x) \mid x \in \tilde{X}_{\alpha}(\omega)\} \in \mathcal{M} \times \mathcal{B} \text{ for all } \alpha \in [0, 1],$$
 (1.2)

where $\tilde{X}_{\alpha}(\omega) = [\tilde{X}_{\alpha}^{-}(\omega), \tilde{X}_{\alpha}^{+}(\omega)] := \{x \in \mathbf{R} \mid \tilde{X}(\omega)(x) \geq \alpha\} (\in \mathcal{I}) \text{ is } \alpha\text{-cut of fuzzy numbers } \tilde{X}(\omega) \text{ for } \omega \in \Omega.$

Lemma 1.1 ([10, Theorems 2.1 and 2.2]). For a map $\tilde{X}: \Omega \mapsto \mathcal{R}$, the following (i) and (ii) are equivalent:

- (i) \tilde{X} is a fuzzy random variable.
- (ii) The maps $\omega \mapsto \tilde{X}_{\alpha}^{-}(\omega)$ and $\omega \mapsto \tilde{X}_{\alpha}^{+}(\omega)$ are measurable for all $\alpha \in [0,1]$.

A fuzzy random variable \tilde{X} is called integrably bounded if $\omega \mapsto \tilde{X}_{\alpha}^{-}(\omega)$ and $\omega \mapsto \tilde{X}_{\alpha}^{+}(\omega)$ are integrable for all $\alpha \in [0,1]$. For an integrably bounded fuzzy random variable \tilde{X} , we define closed intervals

$$E(\tilde{X})_{\alpha} = \left[\int_{\Omega} \tilde{X}_{\alpha}^{-}(\omega) \, \mathrm{d}P(\omega), \int_{\Omega} \tilde{X}_{\alpha}^{+}(\omega) \, \mathrm{d}P(\omega) \right], \quad \alpha \in [0, 1].$$
 (1.3)

Then the map $\alpha \mapsto E(\tilde{X})_{\alpha}$ is left-continuous by the dominated convergence theorem. Therefore, the expectation $E(\tilde{X})$ is a fuzzy number defined by

$$E(\tilde{X})(x) := \sup_{\alpha \in [0,1]} \min \left\{ \alpha, 1_{E(\tilde{X})_{\alpha}}(x) \right\} \quad \text{for } x \in \mathbf{R}.$$
 (1.4)

For an integrably bounded fuzzy random variable \tilde{X} and a sub- σ -field $\mathcal{N}(\subset \mathcal{M})$, the conditional expectation $E(\tilde{X}|\mathcal{N})$ is defined as follows: For $\alpha \in [0,1]$, there exist unique classical conditional expectations $E(\tilde{X}_{\alpha}^{-}|\mathcal{N})$ and $E(\tilde{X}_{\alpha}^{+}|\mathcal{N})$ such that

$$\int_{\Lambda} E(\tilde{X}_{\alpha}^{-}|\mathcal{N})(\omega) \, dP(\omega) = \int_{\Lambda} \tilde{X}_{\alpha}^{-}(\omega) \, dP(\omega) \quad \text{for all } \Lambda \in \mathcal{N},$$
(1.5)

and

$$\int_{\Lambda} E(\tilde{X}_{\alpha}^{+}|\mathcal{N})(\omega) \, \mathrm{d}P(\omega) = \int_{\Lambda} \tilde{X}_{\alpha}^{+}(\omega) \, \mathrm{d}P(\omega) \quad \text{for all } \Lambda \in \mathcal{N}.$$
 (1.6)

Then we can easily check the maps $\alpha \mapsto E(\tilde{X}_{\alpha}^{-}|\mathcal{N})(\omega)$ and $\alpha \mapsto E(\tilde{X}_{\alpha}^{+}|\mathcal{N})(\omega)$ are left-continuous by the monotone convergence theorem. Therefore, we define

$$E(\tilde{X}_{\alpha}|\mathcal{N})(\omega) := [E(\tilde{X}_{\alpha}^{-}|\mathcal{N})(\omega), E(\tilde{X}_{\alpha}^{+}|\mathcal{N})(\omega)] \quad \text{for } \omega \in \Omega.$$
(1.7)

and we give a conditional expectation by a fuzzy random variable

$$E(\tilde{X}|\mathcal{N})(\omega)(x) := \sup_{\alpha \in [0,1]} \min \left\{ \alpha, 1_{E(\tilde{X}_{\alpha}|\mathcal{N})(\omega)}(x) \right\} \quad \text{for } x \in \mathbf{R}.$$
 (1.8)

2. An optimal stopping problem

Let $\{\tilde{X}_n\}_{n\in\mathbb{N}}$ be a sequence of fuzzy random variables. \mathcal{M}_n $(n\in\mathbb{N})$ denotes the smallest σ -field on Ω generated by $\{\tilde{X}_{k,\alpha}^-, \tilde{X}_{k,\alpha}^+ \mid k = 0, 1, 2, \cdots, n; \alpha \in [0,1] \}$, and \mathcal{M}_{∞} denotes the smallest σ -field generated by $\bigcup_{n\in\mathbb{N}} \mathcal{M}_n$. A map $\tau: \Omega \mapsto \mathbb{N} \cup \{\infty\}$ is called a stopping time if

$$\{\tau = n\} \in \mathcal{M}_n \text{ for all } n \in \mathbf{N}.$$
 (2.1)

Lemma 2.1. For a finite stopping time τ , we define

$$\tilde{X}_{\tau}(\omega) := \tilde{X}_{n}(\omega), \quad \omega \in \{\tau = n\} \quad \text{for } n \in \mathbb{N}.$$
 (2.2)

Then, \tilde{X}_{τ} is a fuzzy random variable.

Let $g: \mathcal{I} \to \mathbf{R}$ be a weighting function, which is continuous and monotone (see Fortemps and Roubens [3]). Using this g, the scalarization of the fuzzy reward will be done by

$$G_{\tau}(\omega) := \begin{cases} \int_{0}^{1} g(\tilde{X}_{\tau,\alpha}(\omega)) \, d\alpha, & \text{if } \tau(\omega) < \infty \\ \limsup_{n \to \infty} \int_{0}^{1} g(\tilde{X}_{n,\alpha}(\omega)) \, d\alpha & \text{if } \tau(\omega) = \infty. \end{cases}$$
 (2.3)

Note that $g(\tilde{X}_{\tau,\alpha}(\omega)) \in \mathbf{R}$ and the map $\alpha \mapsto g(\tilde{X}_{\tau,\alpha}(\omega))$ is left-continuous on (0,1], so that the right-hand integral of (2.3) is well-defined. From the linearity of the weighting function g, we define

$$E(G_{\tau}) := E\left(\int_{0}^{1} g(\tilde{X}_{\tau,\alpha}(\cdot)) \, d\alpha\right) = \int_{0}^{1} g(E(\tilde{X}_{\tau})_{\alpha}) \, d\alpha \quad \text{for stopping times } \tau. \tag{2.4}$$

Definition 2.1. A stopping time τ^* is called optimal if $E(G_{\tau^*}) \geq E(G_{\tau})$ for all stopping times τ .

Define

$$Z_n(\omega) := \underset{\tau : \tau \ge n}{\text{ess sup}} E(G_\tau | \mathcal{M}_n) = \underset{\tau : \tau \ge n}{\text{ess sup}} E\left(\int_0^1 g(\tilde{X}_{\tau,\alpha}(\cdot)) \, \mathrm{d}\alpha | \mathcal{M}_n\right), \tag{2.5}$$

for $\omega \in \Omega$, $n \in \mathbb{N}$.

Lemma 2.2. Define

$$\sigma^*(\omega) := \inf \{ n \mid G_n(\omega) = Z_n(\omega) \}, \quad \omega \in \Omega,$$

where the infimum of the empty set is understood to be $+\infty$. If $\sigma^* < \infty$, then σ^* is an optimal stopping time for Definition 2.1.

3. A fuzzy stopping problem

Definition 3.1. A fuzzy stopping time is a map $\tilde{\tau}: \mathbb{N} \times \Omega \mapsto [0,1]$ satisfying the following (i) – (iii):

- (i) For each $n \in \mathbb{N}$, $\tilde{\tau}(n,\cdot)$ is \mathcal{M}_n -measurable.
- (ii) For each $\omega \in \Omega$, $n \mapsto \tilde{\tau}(n,\omega)$ is non-increasing.
- (iii) For each $\omega \in \Omega$, there exists an integer n_0 such that $\tilde{\tau}(n,\omega) = 0$ for all $n \geq n_0$.

In the grade of membership of stopping times, '0' and '1' represent 'stop' and 'continue' respectively. The following lemmas imply the properties of fuzzy stopping times.

Lemma 3.1.

(i) Let $\tilde{\tau}$ be a fuzzy stopping time. Define a map $\tilde{\tau}_{\alpha}: \Omega \mapsto \mathbf{N}$ by

$$\tilde{\tau}_{\alpha}(\omega) = \inf\{n \in \mathbb{N} \mid \tilde{\tau}(n,\omega) < \alpha\} \quad (\omega \in \Omega) \quad \text{for } \alpha \in (0,1],$$
 (3.1)

where the infimum of the empty set is understood to be $+\infty$. Then, we have:

- (a) $\{\tilde{\tau}_{\alpha} \leq n\} \in \mathcal{M}_n \ (n \in \mathbb{N});$
- (b) $\tilde{\tau}_{\alpha}(\omega) \leq \tilde{\tau}_{\alpha'}(\omega)$ $(\omega \in \Omega)$ if $\alpha \geq \alpha'$;
- (c) $\lim_{\alpha'\uparrow\alpha} \tilde{\tau}_{\alpha'}(\omega) = \tilde{\tau}_{\alpha}(\omega) \quad (\omega \in \Omega) \quad \text{if } \alpha > 0;$
- (d) $\tilde{\tau}_0(\omega) := \lim_{\alpha \downarrow 0} \tilde{\tau}_{\alpha}(\omega) < \infty \quad (\omega \in \Omega).$

(ii) Let $\{\tilde{\tau}_{\alpha}\}_{{\alpha}\in[0,1]}$ be maps $\tilde{\tau}_{\alpha}:\Omega\mapsto\mathbf{N}$ satisfying the above (a) – (d). Define a map $\tilde{\tau}:\mathbf{N}\times\Omega\mapsto[0,1]$ by

$$\tilde{\tau}(n,\omega) := \sup_{\alpha \in [0,1]} \{ \alpha \wedge 1_{\{\tilde{\tau}_{\alpha} > n\}}(\omega) \}, \quad n \in \mathbb{N}, \ \omega \in \Omega.$$
 (3.2)

Then $\tilde{\tau}$ is a fuzzy stopping time.

Let $g: \mathcal{I} \to \mathbf{R}$ be a weighting function (see [3]). For a fuzzy stopping time $\tilde{\tau}(n, \omega)$, the scalarization of the fuzzy reward will be done by

$$G_{\tilde{\tau}}(\omega) := \int_0^1 g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\omega)) \, \mathrm{d}\alpha, \quad \omega \in \Omega,$$
(3.3)

where $\tilde{\tau}_{\alpha}$ is defined by (3.1). Note that $g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\omega)) \in \mathbf{R}$ and the map $\alpha \mapsto g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\omega))$ is left-continuous on (0,1], so that the integral of (3.3) is well-defined. From the linearity of the weighting function g, we define

$$E(G_{\tilde{\tau}}) := E\left(\int_0^1 g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\cdot)) \, d\alpha\right) = \int_0^1 g(E(\tilde{X}_{\tilde{\tau}_{\alpha}})_{\alpha}) \, d\alpha \tag{3.4}$$

for fuzzy stopping times $\tilde{\tau}$.

Definition 3.2.

- (i) Let $\alpha \in [0,1]$. A stopping time τ^* is called α -optimal if $g(E(\tilde{X}_{\tau^*})_{\alpha}) \geq g(E(\tilde{X}_{\tau})_{\alpha})$ for all stopping times τ .
- (ii) A fuzzy stopping time $\tilde{\tau}^*$ is called optimal if $E(G_{\tilde{\tau}^*}) \geq E(G_{\tilde{\tau}})$ for all fuzzy stopping times $\tilde{\tau}$.

Define a sequence of subsets $\{\Lambda_n\}_{n=0}^{\infty}$ of Ω by

$$\Lambda_n := \{ \omega \in \Omega \mid g(\tilde{X}_{n,\alpha})(\omega) \ge E(g(\tilde{X}_{n+1,\alpha})|\mathcal{M}_n)(\omega) \}, \quad n \in \mathbb{N}$$

Assumption A (Monotone case).

$$\Lambda_0 \subset \Lambda_1 \subset \Lambda_2 \subset \Lambda_3 \subset \cdots$$
 and $\bigcup_{n=0}^{\infty} \Lambda_n = \Omega$.

In order to characterize α -optimal stopping times, let

$$\gamma_n^{\alpha} := \underset{\tilde{\tau} : \tilde{\tau}_{\alpha} > n}{\operatorname{ess sup}} E(g(\tilde{X}_{\tilde{\tau}_{\alpha}, \alpha}) | \mathcal{M}_n) \quad \text{for } n \in \mathbb{N}.$$
(3.5)

And we define a map $\tilde{\sigma}_{\alpha}^*: \Omega \mapsto \mathbf{N}$ by

$$\tilde{\sigma}_{\alpha}^{*}(\omega) := \inf \left\{ n \mid g(\tilde{X}_{n,\alpha})(\omega) = \gamma_{n}^{\alpha}(\omega) \right\}$$
(3.6)

for $\omega \in \Omega$ and $\alpha \in [0,1]$, where the infimum of the empty set is understood to be $+\infty$. Then, the next lemma is given by Chow et al. [2].

Lemma 3.2 ([2, Theorems 4.1 and 4.5]). Suppose Assumption A holds. Then, the following (i) and (ii) hold:

- (i) $\gamma_n^{\alpha}(\omega) = \max\{g(\tilde{X}_{n,\alpha})(\omega), \gamma_{n+1}^{\alpha}(\omega)\}$ a.a. $\omega \in \Omega$ for $n \in \mathbb{N}$.
- (ii) Let $\alpha \in [0,1]$. If $\tilde{\sigma}_{\alpha}^* < \infty$ a.s., then $\tilde{\sigma}_{\alpha}^*$ is α -optimal and $E(\gamma_0^{\alpha}) = E(g(\tilde{X}_{\tilde{\sigma}_{\alpha}^*,\alpha}))$.

In order to construct an optimal fuzzy stopping time from α -optimal stopping times $\{\tilde{\sigma}_{\alpha}^*\}_{\alpha\in[0,1]}$, we need a regularity condition.

Assumption B (Regularity of fuzzy stopping times). A fuzzy stopping time $\tilde{\sigma}^*$ is called regular if the map $\alpha \mapsto \tilde{\sigma}_{\alpha}^*(\omega)$ is non-increasing for each $\omega \in \Omega$.

Under Assumption B, we can assume the left-continuity of the map $\alpha \mapsto \tilde{\sigma}_{\alpha}^{*}(\omega)$ and we can define a map $\tilde{\sigma}^{*}: \mathbf{N} \times \Omega \mapsto [0,1]$ by

$$\tilde{\sigma}^*(n,\omega) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{\{\tilde{\sigma}^*_{\alpha} > n\}}(\omega)\}, \quad n \in \mathbf{N}, \ \omega \in \Omega.$$
(3.7)

Theorem 3.1. Suppose Assumptions A and B hold. Then $\tilde{\sigma}^*$ is an optimal fuzzy stopping time.

References

- [1] G.Birkhoff, Lattice theory, Amer. Math. Soc., Coll. Pub., 25 (1940).
- [2] Y.S.Chow, H.Robbins and D.Siegmund, The theory of optimal stopping: Great expectations (Houghton Mifflin Company, New York, 1971).
- [3] P.Fortemps and M.Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems 82 (1996) 319-330.
- [4] Y.Kadota, M.Kurano and M.Yasuda, Utility-Optimal Stopping in a Denumerable Markov Chain, Bull. Infor. Cyber. Res. Ass. Stat. Sci., Kyushu University 28 (1996) 15-21.
- [5] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, An approach to stopping problems of a dynamic fuzzy system, preprint.
- [6] J.Neveu, Discrete-Parameter Martingales (North-Holland, New York, 1975).
- [7] M.L.Puri and D.A.Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986)
- [8] M.L.Puri and D.A.Ralescu, Convergence theorem for fuzzy martingales, J. Math. Anal. Appl. 160 (1991) 107-122.

- [9] M.Stojaković, Fuzzy conditional expectation, Fuzzy Sets and Systems 52 (1992) 53-60.
- [10] G.Wang and Y.Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems 51 (1992) 161-178.
- [11] L.A.Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.