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Pareto optima in multi—person
cooperative stopping problem

ERIKE - HEE KIE R (Yoshio Ohtsubo)

Abstract. We consider multi-person cooperative stopping problem of Dynkin’s type.
We are interested in Pareto optimal stopping times. By the method of scalarization we
find e-Pareto optimal stopping times for each player.

1. Introduction. 7 :

Let (2, F, P) be a probability space and (F,).en an increasing family of sub-o-fields of
F, where N = {0,1,2,...} is a discrete time space.

Foreach i,k =1,2,---,p,let (Y¢(n) : n € N) be a random sequence defined on (Q, F, P)
such that ¥{(n) is F,~measurable and sup,y (Y¢(n))" and (Yi(n))~ are integrable, where
rt = max(z,0) and z~ = max(—=z,0). Y} means a reward for ith palyer when kth palyer
stops. . .

For each n € N, we denote by A, the class of 7 = (71,7, ...,7,) such that each 7; (i =
1,2,...,p) is an (F,)-stopping time and n < min; 7; < oo almost surely. '

Now we consider game-theoretically the following coopetative stopping problem. There
are p players and each player ¢ (¢ = 1,2,...,p) chooses stopping time 7; such that 7 =
(11,72, ..., Tp) € Ag. We define measurable sets B(7;) by

B(r,71) = {71 = min7;},
k- .

B(T,Tk) == {Tk = m.inTi} — U B(T,Ti) = {Tk = II]_inT,' < ,I;nl‘:ian]'}v 2 < k < p-
t =1 ¢ ISE=

Then the :th player (¢ = 1,2, ...,p) gets the reward

p

Xi(r) = 3 i () (rym).-
k=1
When p = 2, we have
Xi(m,72) = }"11(7’1)](71575) + }/21.(7'2)](72<7.1),

and
Xa(m1,72) = Y2(11) Iy <m) + Y3 (T2) Iy,

which is well known two—person Dynkin’s problem, and when p = 3, we have

Xi(11, 72, 7'3) = }/11(7-1)1(7'1ST2,7'3) + Y21(7-2)I(Tz<‘rl <) T Y:’,1(7-3)I(T3<71,T2)>
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and so on. As special cases we can find the following: the first is a case that (Y}) does not
depend upon player ¢, that is, Y} = Y, (say) for every ¢ = 1,2,---,p. Then we have

)= L W s (= X)),

- that is, every player gets the same reward, and hence this problem‘ is reduced to classical
optimal stopping except for finding optimal stopping (71,72, -,7,) as going into details in
section 2. The second is one that (Y}c) is independent to whether which player stops, that
is, Y =Y (say) for every k =1,2,--+,p. Then we have

P ) .
Z Tk)IB(TTk) = Y’(mkin'rk).

This is a multi-objective stopping problem, which has been investigated in Ohtsubo[1997].
The aim of the ith player is to maximize the expected gain E[X;(7y, 72, ..., 7,)] with respect
to 7;, cooperating with other players if necessary. However, the stopping time chosen by
one of them generally depends upon one decided by other, even if they cooperate. Thus
we will use the concept of Pareto optimality as in the usual cooperative game of the game
theory or the multi-objective problem of mathematical programming.
We define a conditional expectéd reward by

Gz (7'1,7'2, -5 T ) E[X (Tl,Tz, ) ! ‘Fn]

for each player ¢ (¢ =1,2,...,p).
For n € N and € 2 0, we say that (7f,75,...,7;) in A, is e-Pareto optimal at n if there

is no (71, 72,...,7,) in A, such that
G (T1, Tay ooy Tp) > G: (5,75, ... Tvs) + €.

For the sake of s1mphc1ty, without further comments we assume that all mequahtles and

equalities between random variables hold in the sense of “almost surely”.

2. Special models.
In this section, we consider the first special case given in ‘the introduction and we give
fundamental results for properties of shadow (virtural) optimum, which is useful in the next

section. We first define shadow optimum o' for the reward X;(ry,7s,...,7,) as follows:

of =  esssup Gi(ﬁ,i’rz',...,Tp)’, neN,i=1,2....p
(71,72,00,7p)EAR
In multi-objective programming, the shadow optima are also called “ideal or utopia point”.
Now, to obtain constructive property of the shadow optima, we generally cons1der an
- optimal stopping problem so as to maximize the expected reward

Gn(Tl7T2""’Tp) = [X(Tl’TZ’”WTP)l‘f.N}



186

with respect to (71,72 s Tp) € Ay, where

: P
X(Tyy s Tp) = Z Yk(Tk)IB(Tka)

k=1

and (Y) satisfies the same conditions as (Y}). We notice that this is the first special case
in section 1. The optimal value process B = (B, )nen is defined by

B,= esssup Gnp(m1,72,...,7p), NEN.

(m ,n,;..,Tp)GAn :

For n€ N and € = 0, we say that a pair (75,75,...,75) in Ay is (5,ﬂ)—opti’mal at n if

Bn S Gu(r,75,...,75) &
Define other process (Xn) by X, = maxy Yi(n).

LEMMA 2.1.

(i) The process B = (B,) satisfies the recursive relation:

B = max(Xn,E[ﬂnﬂ | Fu]), neN.

(ii) B is the smallest supermartingale dominating the process (X,).

(iii) limsup,, B, = limsup, X,.

PROOF. The lemma is easily proved as in the classical optimal stopping problem’ (cf.
Chow, Robbins and Siegmund [2] or Neveu [8]). O '

From this lemma it is easy to see that the process  coincides with an optimal value
process = (fB,) in an optimal stopping problem with a reward .X~'n of time n, i. e.

B, = esssup E[X,|F.)

n<r<oo .

Hence g = B is constructive by the method of the backward induction as in Chow and et.

al. [2].

For each n€ Nand ¢ 2 0, define stopping times 'rf(n) =7f(n,B) (1=12,---,p) by

ré(n) = inf{k 2 nlBy < Yi(k) + ¢, X = Yi(k)},

where inf(#) = +co.
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THEOREM 2.1. Let n€ N be arbitrary.
(i) For each > 0, 7°(n) = (75 (n), 75(n),... ,T;(ﬁ)) is (&, B)-optimal at n.

(ii) The stopping time min; 77(n) is a.s. finite, (17(n),73(n),...,75(n)) is (0, B)-optimal
at n. ‘ '

PROOF. When ¢ is positive, it follows from Lemma 2.1 (iii) that the stopping time
min; 7(n) is a:s. finite. Thus, for € 2 0, it suffices to show that inequality A, =

Gp(mi(n),75(n)y-..,75(n)) +¢ holds foreach n€ N. Frorn Lemma 2.1 (i) and the optional
sampling theorem, we have

4

Bn = E[ﬁfe(n)me(n)/\ Argm) | Fu] = Z re(n) B (re(n),re(n)) | Fnl-

Since B S Yi(m)+e on {ri(n) = m}, so on B(r*(n), 7((n)), we have inequality

Bu £ B[ Ve(rf () In(retuyntiny | Fol + € S Ga(r(n), 75(), .., 75(n) +6. O

3. Scalarization and Pareto optima. .
In this section we find Pareto optimal times by the method of the well-known scalariza-

tion. , .
Let S denote the set of vectors A = (Ay, Ay, ..., ;) in R? satisfying A > 0 and 3_; \; = 1.

For given 7 = (71,72,...,7p) € Ay and A = (A, Ag,--+,A;) in S, we define sequences of
random variables by :

T )\) Z/\X(T)—-—Z/\ ZYk(Tk IB(TTk)_Z'Xk Tk, )IB(T‘rk),

i=1 =1 k=1
 where .
X nka Z)\Yk nk) ‘TLkGN,k‘=1,2,‘.-.,p,
and let
(1;A) = Z NG (1) = E[X (r; V)| F).

Then a maximum value process is deﬁned by |

Vi(A)=  esssup Gu(r,72,...,7;A), ne€N.

(T1,7210sTp)EAR

We also define stopping times for the process V(A) = (V,())) as follows:

ri(n) = inf{k 2 n | i(}) £ Xi(k;2) +e, Xa(A) = Xi(k; M)}
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forne N ande 2 0, where X,(\) = max; Xx(n; ). The following theorems are immediate
- results of Lemmas 2.1 and Theorem 2.1.
THEOREM 3.1. Let X in S be arbitrary.

(i) The process V(X) = (Vo(A)) satisfies the recursive relation:

Vo(A) = max(Xa(V), B[Vars(A) | Fl), mEN.

(i) V(X) is the smallest supermartingale dominating (X,(\)).

(iii) limsup, V,()) = limsup, X,(}).

THEOREM 3.2. Let n€N and A € S be arbitrary.
(i) For each e > 0, (Tf(n),rg(n), ..., 7E(n)) is (e, V(X)) -optimal at n.

(ii) The stopping time min; 72(n) is a. s. finite, (1{(n),75(n),...,7,(n)) is (0, V(A))-

optimal at n.
The general lemma below is a well-known result in multi-objective problem.

LEMMA 3.1. LetneN,e 2 0 and X € S be asz'trary. If(Tf(n),Tf(n), ooy Th(n)) in Ay

€

satisfies inequality V,(A) £ G, (15(n),m5(n),...,75(n); A)+e, then (75(n), 75(n),...,75(n))

1s e—Pareto optimal at n.

PROOF. We suppose that the pair (7{(n),75(n),...,75(n)) is not e-Pareto optimal.
There then exists (11,72, ...,7,) in A, such that G%(r1,7s,...,7p) > G4(r£(n), 75(n),. ..,

75(n)) +¢ for every i =1,2,...,p. Thus we have
, N |
Gol(T1, 725 T3 A) = D NG (11,725, Tp)
1=1
p .
> Y NG (), 75(n), . 75 (m)) +

1=1

= Gn(1i(n),75(n),. .. ,T;(n); A)+e, -

so that V() > Gn(7{(n),75(n),...,75(n); A) + ¢, Which is a contradiction. Hence (75(n),
75(n),...,7;(n)) is e-Pareto optimal. O

Theorem 3.2 and Lemma 3.1 immediately imply the following theorem.
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THEOREM 3.3. LetneNand A€ S b«e arbitrary.

(i) For each ¢> 0, (1(n),75(n),..., p( n)) is e—Pareto optimal at n.

(i) If the stopping time Imnz TO(TL) is a.s. finite, (10(n),79(n),...,79(n)) is 0-Pareto
optzmal at n. : Lo C -

4. Monotone Case and Applications
For the scalarized reward process (X,())) defined in Section 2 where A € S, we define
subsets of
An(N) = {Xa() 2 EXn(WIF]}, n€N

and define a stopping time |
oi(A) = inf{k 2 n|Xk(A) Z E[Xpp1 (V)| Fel, Xx(2) = (k; AN} n€EN,
that is, '
ot (A\)(w) = inf{k = nlw € A ( ), Xx(X) = -(k-A)} weQneN

where inf ¢ = +o00. o' ()) is called one—step Iook—ahead (OLA) or myopic rule.
For each ) in S we introduce the following condition :

CONDITION M(A). For every n € N, An(N) C‘An+1()\) and lim, ., P(A4,(})) = 1.

When the condition M(A) is satisfied for a given A € S, the scalarized stopping- problem

corresponding A is in a well known monotone case.

- THEOREM 4.1.  Suppose that Condition M(X) is sdtisﬁed for a given XA in S. Then
for each n € N o}()\) is a. s. equal to 2(n) and min; ot (X) is a.s. finite, and henéé
(o (X),0%(N), -+ +,08(X)) is 0-Pareto optimal at n. '

n 'Y n

PROOF The first and second part : ¢ (\) = 7°(n) and min; 0% ()) < oo a.s. are proved
similarly to Chow et al. [2]. Hence Theorem 3.3 1mphes that (a} ()\) o2(N),---,08(X)) is

rUn

0-Pareto optimal atn. O

Next we consider applications for monotone case. First in the speaal model dlscussed in
section 2, where Y(n) = Yi(n),n € N,1,k=1,2,. ,p, let

Yi(n) = max W) —¢c,, né€N, |
0<m<n o ‘
where (WF)2_ be a sequenceof independent and identically distributed random variables

with finite mean for each k, and (cn) .o 1s any strictly 1ncreasmg sequence of p031t1ve
constants Then we have '

Xop1 — Xn = = max Yk(n + 1) max Yi(n) = (max Wry —ma)t —bay
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where

By the way analogous as in Chow et al.[2, p.56], it follows that if bn+1‘ 2 b, foralln € N,
that is, (¢,) is convex with regard to n, then A, C A, for any n € N and

lim P(A,) = P(o < 00) =1,

n—00

where

A= (X, 2 BlEaalRD),
o =inf{n 2 0%, 2 Elfunal ) = infln 2 Om, 2 7,)
and v 1s the unique solution of the equation |
E[(mng,f — 1) ] =b,, n E N.

Hence condition M()) is satisfied, since X,, = X, ()) for all A € S. We define stopping
times by

a’fL = inf{k ; n[Xk g E[Xk+1|fk]7xk = Yz(k)}

= inf{k = n|my 2 7, Xx = Yi(k)}.

Then from Theorem 4.1 an OLA rule (01,02, - -, 0?) is 0-Pareto optimal at n.
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