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1. Introduction and results
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We will consider the well-posedness of the initial boundary value problem for
the linearized equations of ideal MHD. The original system of equations takes the

following form.

pp(0: + (u, V))p + pdivu =0,

p(8: + (v, V))u = =Vp+ po(V x H) x H,
0:H—-V x (ux H) =0,

(0t + (u,V))s =0 in [0,T] x Q.

The boundary condition is
(v,u) =0 on [0,7] x 0.
The constraint conditions

(v, H)=0 on [0,T] x 69,
divH =0 in [0,7] x Q

(1.1)

(1.2)

(1.3)
(1.4)

are also imposed. Here Q is a bounded domain in R3, T is a positive constant
and v = v(z) = *(v1,vs,vs) denotes the unit outward normal to the boundary
at z € 0Q. Pressure p = p(t,z), velocity u = u(t,z) = *(u1,uz, u3), magnetic
field H = H(t,z) = '(H1,Ha, H3) and entropy s = s(t,z) are unknown functions.
We suppose that density p = p(p,s) is a smooth known function of p > 0 and
s satisfying p > 0,p, = 8p/dp > 0. The magnetic permeability po is a positive

constant.

In order to employ a useful symmetrization of (1.1), we introduce the new un-
known vector valued function U = *(g,'u,* H,s) in place of *(p,} u," H,s), where
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g=p+3 z 1| H|? is the total pressure. We linearize the equations (1.1) about U where
U="%3'3'H,3) € C”’l([O T] x Q) is a solution of (1.1) which satisfies (1.2)-(1.4)
with 7> 0in [0,T] x Q. The concrete form of the linearized equations will be given
later in Section 2.

" Definition. The initial boundary value problem for the linearized equations is
said to be well posed in H'(Q), for an integer { > 1, if the following conditions are
satisfied:

For any initial data Uy € H'(Q) satisfying

(v, Ho) =0 on 09, (1.5)
divHy =0 in Q, (1.6)

and the compatibility conditions of order [ — 1 for the linearized equations and the
boundary condition (1.2), there exists a unique solution U € C([0,T1]; H "(Q)) of
the linearized equations such that it satisfies (1.2), (1.3), (1.4) with T' = T} and
the estimate '

Uy < CllUol e () (1.7)

holds for any t € [0, T1]. Here C and T1(< T') are positive constants independent
of Up. (For 8,U, see, e.g., R. Temam [16], ch. I1.3.)

Let 8Q € C'+3, | > 1, then main results of the present paper are the following
two theorems.

Theorem I. The initial boundary value problem for the linearized equations (2.2)
with (1.2), (1.3), and (1.4) is well posed in H'(S).

Theorem II. Let H %0 on [0,T] x 0. Then the above problem is not well posed
in H(Q) forl> 2.

Theorem I has the following significance. First it release us from troubles with
compatibility conditions, since one of order zero is the boundary condition itself and
also it follows the well posedness in H°(Q) in more precise sense than J. Rauch’s
result (cf. [10]) under the condition of Theorem I. As a special case, where Uis
a static equ1hbr1um defined over ) whose boundary is a magnetic surface, i.e.,
surface where (v, H ) = 0, contained in plasma region, these facts above rnentloned
will be useful to the linearized internal (local) stability second-order system. (See
I. B. Bernstein et al. [1] and J. P. Freidberg [3]. For equilibrium, see R. Temam
[13], [15] and A. Friedman & Y. Liu [4]. For the existence of solutions, see R.
Temam [16], ch. 11.4.)

We note also that we can present estimates based upon (1.7) in Theorem I. By
using them it is able to obtain the well posedness of (1.1)-(1.4) in a function space
whose elements have regularities of order less than that of HL(Q) (I > 8). (For the
latter see T.Yanagisawa & A. Matsumura [18] or P. Secchi [12].) But here we do
not enter into detail.

Theorem II implies that, for any £ with smooth boundary, the regularity loss
of solutions of the linearized problem always arises in H'(Q) (I > 2). The initial
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data are to be taken in a way such that their supports are sufficiently small and
intersects with Q. Obviously Theorem II is also valid in case where the linearized
equations are such that the equation

9. H + (@, V)H — (H,V)u+ H(divu) = a certain terms of lower order

guarantees that (v, H)|aq(t) = 0 for t € [0,T:] whenever (v, Ho)|on = 0 and where
the condition divH = 0 in Q is neglected as usual. (The iteration scheme using
such a linearization was noticed by the second author. See [18].)

Theorem I, which proves the non-existence of “loss of regularity” of solutions in
H'(Q), has been found by us after the completion of the proof of Theorem II (cf.
ns). | |

This paper presents the detailed proof of Theorem I. For the proof of Theorem II
see [8]. :

2. Linearized problem
Using the unknown vector valued function U = *(q,*u,*H, s) we rewrite (1.1) as
follows. -

a(0; + (u,V))g — «(H,8:H + (u,V)H) + divu =0,

p(0y + (v, V))u+Vq— (H,V)H =0, (2.1)
8;H + (v, V)H — (H,V)u + H(divu) — (divH )u =0, '
(0 + (u,V))s =0 in [0,T] x Q.

Here we put po = 1, for simplicity and @ = p,/p. Then we linearize (2.1) about
a solution U € C'*+1([0,7] x Q) to (2.1) with (1.2)—(1.4). The resulting equations
are the following.

a0, + (o, V))g—a(H,8:H + (u,V)H) + divu = [,

P(0, + (5, V))ju+ Vo — (H,V)H = b, ey
O H + (u,V)H — (H,V)u + H(divu) = I3, ’
(0 + (7, V))s = 4 in [0,7] x Q.

We observe that the terms of lower order I;, i =1,... ,4, are linear combinations

of the components of U with coefficients depending smoothly on the components
of U and their derivatives of the first order with respect to  and ¢. In particular,
we have

I3 = _(u, V)H + (H,V)u — H(diva)

and @ = «(g, H,5), etc. We obtain (2.2)3 by subtracting u(divH) + u(divH) from
the third equations of the linearizetion of (2.1). For simplicity of the description
we omit s in (2.2) without loss of generality, although we can not do so if we are
discussing the theory of stability. Note that unknowns in the principle part of
(2.2)1~(2.2)3 and one of (2.2)4 are independent of each other and in addition only
derivatives tangential to 9Q appears in (2.2)4. In the following, we set U and U
to be *(g,'u,*H) and *(g, *@, *H), respectively, which may be all real vector valued
functions. '
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Adding (2.2); x (=H) to (2.2)s, we get the followmg system which is a symme-
tization of (2.2).

(0, + (&, V))q — &(H, 0. H + (%, VVH) + dive = 1,

7(8: + (@, V))u+ Vg — (H,V)H =1y, (2.3)
0 H + (v, V)H — (H,V)u — aH{(0; + (g, V))g — (H,8:H + (7, V)H)} '
=l3—LH A in [0,7] x Q.

We write equations of our problem in the following form.

—_ 3 — —
A@)U + S AU +BOWU =0  in[0,T]x L,

ji=1
MU=0 on [0,T] x 04, (2.4)
NU=0 ' on [0,T] x 09, '
div H=0 _ in [0,7] x €,
U(0,z) = Up(z) for z € Q,

where 0; =0/0:;, j =1,2,3,

(& |00 0| —aH -aH, -—aHs )
0 p 0 0 0 0 0
0 07 0 0 0 0
ao@=|_0 007 oo o |,
-aH, 0 0 0 l+aH, aHH; @HH3
—— PR — —) — —
—aH, 0 0 0 aH{H- ‘1+5H5 aH.Hj
\ —6?73 0 0 O aﬁl—ﬁ;; _a_-ﬁgﬁ;; 1+ a_ﬁ;; )
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(0; ty 000\

0 0 0] 00O

3 v |0 0 0| 000
A0) = vjA;(0) = 0 0 0] 00 0] ondQ,

i=1 010 00 00O

, 00 0] 000

\o [0 0 0] 00 0)

all elements are equal to zero except

M = that the (2,2),(2,3),(2,4) entries are equal to ‘v,

all elements are equal to zero except
that the (5,5),(5,6),(5,7) entries are equal to ‘v,

and B(U)= B(U,8,U,8;U;1<j <3).
The resulting system (2.4)1, (2.4)2 and (2.4)4 is a symmetric hyperbolic system
with characteristic boundary of constant multiplicity in the sense of J. Rauch [10].

N =
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Note that Aq(U) is positive definite, although Aq(U') # I. The boundary condition
(2.4), is maximal nonnegative. Actually, the boundary matrix A, = Z?:l viAj
is of a constant rank 2 on 9Q and Ker A, C Ker M on 9Q which is maximal
nonnegative subset of A,. Now we give a lemma which will be useful in the proofs

of theorems.

Lemma 2.1.

(i) LetT be a solutione C'*1([0,T]xQ) of (1.1)~(1.4). Then the assumption in
Theorem II, i.e., H # 0 on [0, T) x 9%, implies that H 0 on {t=0}x08Q.

(i) Assume that U € C*t1([0,T] x Q) satisfies (1.2), (1.3) and p > 0 in [0,T] X
Q. This implies that U satisfies neither (1.1) nor (1.4). Then, if (1.5) holds
for U(0) the solution U(t) of (2.4); that belongs to € C([0,T1], H*(Q)) of
(2.4); satisfies (1.3) in [0,T1] x 0Q.

(iii) Let U € C'*1([0,T] x Q) satisfy (1.2)~(1.4). Then, if (1.6) holds for U(0),
the solution U(t) of (2.4)1 that belongs to U(t) € C([0,T1]; H'(Q)) also
satisfies (1.4), i.e., (2.4)4, tn [0,T1] x Q.

Proof. Under the condition in the assertion (1), we have:
0.H + (a,V)H — (H,V)u— Hdivi =0  on [0,T] x 9.

Since (1, V) is a differential operator on 0, H may be regarded as a solution to
the symmetric hyperbolic system of equations defined on the surface manifold 9.

This proves the conclusion of (i).
Next, for a solution U € C([0,T1]; H%(Q)) of (2.4),, i.e., (2.3), it holds that

8:(H,v) + (T, V)(H,v) + diva(H,v) = {(v, V)(@,v)}(H,v) =0  on [0,T] x 82,
since (H — (H,v)v, V) is tangential to [0,T] x 9 and for example
(@ V)H,v) = (@, V)(H,v) - (@ V)v, H)

3 9,
= (u, V)(H,v) - Z»(ﬂi,H'——) on [0,7] x 0%Q.

j
;0%
ij=1 0z;0z;

Here ¢ € C'*2 is a definition function of 8Q and *v = (ga% VIVel?, i =1,2,3,)
in a neighborhood of a point on 9. Therefore the local uniqueness of the solution
(H,v) of the above equation proves the assertion of (ii).

To prove (iii), we observe that (2.2)3 implies

OH-Vx(@xH -Vx((uxH)+udivE =0 in [0,7] x Q.
Hence we see that in the sense of distribution

0divH + (4, V)divH +divi-divE =0  in [0,T] x ,
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where divHl € C([0, T, L3(Q)) and @ € C*([0, T1]x Q). Setting £ = u(t, z), z(t ) =
a at t = 0, we obtain a trajectory tlanstLmatlon z(t,«) whose Jacobian de-

Dz(t,a)|

terminant >0forte [O,T \]. Using molifier and the transformation

z(i,a), we see that first divH = 0 on {z(t,a);a € Q° t € [0,T1]}, where
= {z|dist(cr, 8Q) > 6}. By letting § — 0, we get the assertion of (iii). [J

Here we remark that the argument in proof of Lemma 2.1 (ii) does not apply
to the case where U € C([0,T1]; H*(2)). The reason is that (H, V)(u,v)|sq and
(H,v)divu|sn are not always meaningful.
~ Taking account of the finiteness of the speed of propagation for the solutlon we
use a suitable finite partition of unity {¢«} of Q where Yo #a = 1 and diffeomor-
phisms. Then we are reduced to the problem in the half space. We fix p € 9Q
arbitrarily. We assume that dQ € C'*3. Then there exists a C'*2-admissible
boundary coordinate system (y(z)) which maps p to the origin. We have

1 0 0
p:P(y):(ax’)() tmp:(g G )on{y1=0}, 25

P = (é;,;) at the origin,
where the G is a certain 2 x 2 matrix (cf. p301 of [6]).

Let us denote the inverse map of y(z) by . Then the known and unknown functions
are changed as follows: for z = ¥(y)

t,y) = Plut,z), H(t,y) =P H(t,z), qty)= 4t 2),
Pt y) = pt, ), a(t,y) = P-lau(t, ), H(t,y) =P 1H(t,2),
a(t,y) =3(t,2), a(ty)=at =), pty) =07 z2).
Our problem in Theorem I is reduced to find the solutions to the following localized
system of equations. For 77 << 1,

~

~ S 3. ~ =~ L e~ S~ .
Ao, T + Y. A;(0)8;U + BU)U =0 in [0,T1] x {y; > 0},
T oj=1

MU=0 on [0,T1] x {g1 =0},  (26)
NU=0 , on [0,T1] x {y1 = 0},
U(0) = ¢oUo for a certain « in {y, > 0},

where

- 1 ~ == ‘ —
P=Py) = ( P(y) B )) , (Ao(D))(t,y) = “P(y)(Ao(U))(t, ¥ (y))P(9),
Yy

&GN =P (}:(A, N, ¢(y)>( )(w( )))p(w,j:l,?,s.
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From (2.5), we see that

~ _ all elements are equal to zero except .

M=-MP = that the (2,2) entry is equal to 1, (27)

~ __ all elements are equal to zero excepﬁ

N'=-NP = {hat the (5,5) entry is equal to 1, (2.8)

(@ |0 0 0] G )

0 p 0 0 0 0
o~ 0 0 &, 0 0 0 ; ,
=0 |0 " 0o 0 0| onfm=0} (29
0 0 0
G3,1 0 0 0 G3z3
\ 0 0 O )

where the G; ; are i X j matrices,

all elements are equal to zero except (2.10)

A (U) = that the (1,2) and (2,1) entries are equal to 1 on {y; = 0}.

The concrete form of (2.6); is as follows.

)

5(6:7 + (8, V,)7 - ('"PPH, 0. H + (4, V,)H)} + divi
P'PP(0 i + (4, Vy )U) + Vy§ - tpP(H, V, ) H = T
PPO.H + (&, V,) H — (H,Vy)i - (2.11)
+EH{~0:G — (i, V)7 + (‘"PPH, 0. H + (4, v, )} =15,

in [0,71] x {y1 > 0},

R
—

where Z-, i = 1,2,3, denote terms of lower order. Here we use the relations such
that for £ = ¥(y)

V. =PV, (%, Ve) = (1, Vy), u= Pz,
(@, Vz)H =P,V )H IP’{(u v,)P-1}PH,
(Vg,u) = (Vy,u)—-( (*V,'P~1), Pu), etc.

The resulting system (2.11) is again a symmetric hyperbolic system having the
same properties as (2.4).

In the following we always assume that U and Tf_é satisfy the assumption of
Lemma 2.1 (ii). By virtue of Lemma 2.1 (iii), we consider solutions omitting (1.4)
and (1.6) in the localized problem of Section 3.

3. Proof of Theorem I
First we show the existence of approximate systems and approximate initial data
which satisfy the compatibility conditions of order 4.
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Assuming that 8Q € C*, we consider the approximate problem: for T} << 1
and for sufficiently small § > 0 |

~ 5 o~ 3 ~ = ~ ~ b~
A6, 00 + Y A;(T)8; 00 + BT =0 in [0,Ti] x {w > 0},

MU =0 | on [0,Ty] x {;1 =0}, (3.1)
NU =0_ - on [0,Th] x {y1 =0},
Ué0) = f° ‘ with compact support on {y; > 0}.

Here U enjoys the following properties: Let p be a point on 02 and let y =
¥~!(z) € C® be an admissible coordinate system defined on a boundary patch
with center p. For some ro > 0 we set B(0) = {y; dist(0,y) < 7o and y; > 0} C R3.
Then there exist maps ¥® € C'! defined over the half ball B(0) satisfying the
following properties. , _
(i) Q%(p) = ¥*(B(0)) has an admissible boundary coordinate system ('w‘s)-1
.. 21
(i) (¥°) (p) =0
(iii) % — ¢ in C3(B(0)) as 6§ — 0 (cf. C. Morrey [6]).

| ~5 | —
Furthermore, let U be vector valued functions € C*°([0,T1] x B(0)) such that

T}- —T in602([0,T1] x B(0)) as § — 0, (3_'2)
MU = NT =0 on [0,T1] x (B(0)N{y1 = 0}).

s |
Then setting P¢ = (%%l—) we define U~ € C19([0,T1] x Q%(p)) as follows: for

z = ¥%(y) —U_a'(t, z) = 'Paﬁé (t,y).
We write R3 = {y; > 0} hereafter.
Lemma 3 1. There ezist f~‘s having the following properties:
(i) f° e HYRY).
(i) f" — $oUy in HY(R3) as & — 0 and supp f¢ CC a neighborhood of
supp ¢ CC B(0), where A CC B means that AC I%U(ﬁﬂ{yl =0}) and
(AN{y: = 0}) cC (BN{y = 0}).

(iii) F% satisfies the compatibility condition of order 4 for (3.1)1 and (3.1)2.
(iv) Nf*=0 on {y, =0}

Here and hereafter we assume that for some «
suppoo CC % (B(0)).

Proof In Lemma A 1let € = 6 and let { = 1. Furthermore let f qbo,Uo and let

U = U where U satisfies (3.2) and belongs to C’lo([O T1] x B(0)). By this lemma
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we see f" which satisfies the compatibility condition of order 0 for (3.1)1, (3.1)2
and also the condition Nf® = 0 on {y; = 0}. For fixed ¢, setting { =1, m = 4,

— ™~

f U —(76 and then applying i,emma A.2 we obtain (77’)5. Finally we choose

a su1table subsequence {(fﬁﬁ') « )} a

Combining Lemmas 2.1 (ii), 3.1 and Lemmas A.3, A.5 (i) we have the following
lemma.

Lemma 3.2. The tnitial boundary value problem (3 1) has a unique solution Ue
in C([0, T1]; H*(R3)).

Proof. For afixed § << 1, let [, f, U in Lemma A.3 be 5, f5 in Lemma 3.1 and ﬁa
in (3.2), respectively. Then from Lemma A.3 we have a sequence {f*s ‘} C H‘LS(]R3 )
such that :
(i) f% — f* in H5(R3) as e — 0 and suppf®* CC B(0).

(i) f%* satisfies the compatibility conditions of order 4 with respect to (A.9).

By [11], the corresponding problem to (A.9) with initial data f* replaced by foe
above has a unique solution U%¢ € C([0, T1]; H*(R3.)).

Here we remark that U%¢ has a uniformly finite speed of propagation for any

positive §, € provided §, e << land t < T} << 1.
Moreover by Lemma A.5 we obtain the estimate (A.12) for the solution Uoe

with | = 5.
Therefore {U/%*} is a bounded sequence in ﬂ?___o Ci([0,T); H™ ](IR ) for a fixed
6. Then for any ¢, ¢/ € [0,7}] and a positive constant Cj independent of e
|16 U= (¢) - U“(t)HLﬂ(m3)<C<slt"t|y 0<j<4

Furthermore the adjoint space of H:™(R3) contains L?(R3) densely, since the
natural identity mapping: Hy~ "(IR3) — L?*(R3) is injective and the image in
L%(R3) is dense there. Hence by the Ascoli~Arzéla theorem we see that for a

subsequence {U%¢'} and for some U*
HU — dHU° in Cu([0,Th]; H3F(R3)), ase’ —0, 0<j<4,
from which we obtain
U° € CL([0, Tu); H2(R3)) € C([0, T); H*(RY)).

Also the equations correspondmg, to (A. 9) imply that U¢ is a solution of (3.1); with
MU?® =0 on [0,Ty] x OR3 and Ué(()) F%. The proof of Lemma is now complete
in view of Lemma 2.1 (11) O

Here in order to give a simple proof of Lemma 3.2 we use U’ and ($%)~! with
regularities of higher order than we need.

In the following lemma we denote L2-norm and L2-inner product by || - || and
( , ), respectively, if not stated otherwise. Furthermore in the remainder of this

section, we write simply A A (U) and A, = A (U ), ©=0,1,2,3.
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Lemma 3.3. The solution U® of the problem (3. 1) satisfies the following two es-
timates:

& Ol ey < CHUé(O)HHl(mi) fort € [0,T1], (3.3)
(A50:0°,0,0°)(t) - (A50,0°,0,0°)(¢')
t
< O U@ (@), 0:54(0) - (@ @), 08 )]+ C [ 115Ilae
ij ‘ t!

for t,t' € [0, T1]. (3.4)

Here the wF?’s, are certain linear combinations of the components of U® whose
coefficients are uniform bounded in C([0,T1] X ﬁi) with respect to & and ),
is a certain finite sum (see the discussion following (3.7) below). C s a positive
constant independent of 6 and unknown functions.

Proof. We omit simply the indices 6 and tilde in the proof.
First we prove (3.4). Since

(A1 U, 0:U)(t) — (AebrU,01U)(1')
/ / B (AoalU 81U)(T y)dydT (35)

we have from (3. 1) that for a constant C > 0 depending only on U, P and their
derivatives up to the second order

The right hand side of (3.5)

JRY o1
- Using (3 1)2, (3.1)3, and (2.5), we see from the correspondlng, form to (2.11) that

a1‘1|y1—0 = 121ly1.—.0, . . _
dlully,_o = [:_Ol{atq + Ug02q + Uzl3q — (t_]P]PH)gatHz - (t]PHDH);gatH;g (3 7
—(t]PPH)g(ﬂzaz -i- E363)H2 — (t]P]PH)g(ﬂgaz + "17383)}[3} . '
‘ —0qug = O3us + Il]lzn:d . fort € [O,Tl].
Note that U € C3and P€ C3 on a neighborhood of supp U. The first term on the
right hand side of (3.6) can be estimated by '

t : .
/ / (A10,U,0,U)(7,0,y")dy'dr
rJomy
) _
= 2/ /  (31q,51U1)(T,0,y’)dy'dT
t JOm3 | :
) t
<[ [, o' orwh)ayar|+
1] t! ]Ei )

t t
/ 61(wi, asw] )dyd'r -+
t JB

t
/ N ('wi , Bg‘wj)dydr
t! m;’;

al(w';, w! )dydr ) (3.8)

3
By

+
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The first terni in the parenthesis for fixed 4, j on the right hand side of (3.8) equals
to '

/ 9 (v, alw’)dydr-{-/ (81111 5 w) — (9, v 01w’))dydr

where 8, w*, is written as a sum of the derivatives of components of U with respect
to space variables. Therefore this term is bounded by

(w0), 000 (0) = (), B ()1 + € [ 101 any.

The second term there equals to

t et . .
// (alwi,agwj)dydt—// (Oaw', L' ))dydt
t! ]Ei"_ . t! mi : -
t
2
< C/t: ||U.||H1(m1)d7'.

Therefore evaluating also the third and forth terms there in a similar way, we have
the following: for a constant C > 0 depending only on U, P and their derivatives
up to the second order

The right hand side of (3.8)

< CZ I(wi(t),ale(t)) - (wi(t’),ale ") + C./u ”U“fql(mi)dt' (3.9)

Thus applying the standard energy method to other terms of (3.6) and taking

account of (3.2) we have our assertion (3.4).
Finally we show (3. 3) Let ¢ = 0 in (3.4). Then by the positive definiteness of
Ag we obtaln

1@ < CUT@IE + IO NIU O]l + 18U )]
+ [0l 18,0(7) ).
0

We use L?-estimates for U(t) and the tangential derivatives ;U (¢), ¢ = 2,3, here.
Then applying the Gronwall lemma, we get finally

U@ < CIUO)IEn-
Thus the estimate (3.3) is established. O

Proof of Theorem I. From the remark in the proof of Lemma 3.2 we have

suppU°®(t) cc B(0) fort < Ti << 1,
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since suppﬁ cC suppga cC B(0). For this reason we always assume in the
following that T << 1.
" Then from (3.3) we have that for any ¢, t' € [0,71] and for a positive constant
C independent of §
NU°(t) - Ul < Clt = ¥'l,

since {U®} is a bounded sequence in C([0,T1]; H'(R3)). Furthermore the facts that
suppU‘s(t) C a compact set for any 8, t € [0,71] and that the adjoint space of H!
contains L?(R3) densely imply also by the Ascoli-Arzéla theorem the following:
there exist a subsequence {U & } and U such that

0 -0 in  Co(0,Tu); H*(R) [ C(0, Tu]; LA(RY)) as 8" — 0. (3.10)
Now, let

3 .
1T @)1 ayy = (AT, D)) + 3 (4085, 8;U)(1)-
: =
Then || - “Hl(mi) is equiv‘aient to || - ”Hl(mi) To show U € C([0, T1); H'(R3 ))
suffices to prove
~ ~ ; )
W)@y = WUl msy ast—1t.

It follows form the energy inequalities that

I(AOU U)(t) (AgU U)(t’)| — 0,
(K08, T, 8;0)(t) — (Aodi T, 8;0) ()| — 0, j=2,3, ast—t.

To show that
(00T, 0:0)(t) — (A0d1TU,0:0) ()| — 0 ast — 1, (3.11)

first let ¢t > t’. Regarding ﬁ(t ) as initial data at /, as in Lemma 3.1 we approximate
them by % (¢') such that T®(¢') — U(t') in H*(R}) as § — 0. Then by Lemma 3.2
we have the solution U®(t) to the problem (3.1) with initial data U°(t') at t'.
Obviously we have

lim inf (A%0,0°, 8,0°)(t) < (A0, U, 0.U)(2).

§—0

Therefore from (3.4), (3.10) we see
(Zoalfj, 81 ﬁ)(t) - (Zoalﬁa 61 ﬁ)(t/)
< lim inf (A28, 0%, 8. T°)(t) — (A56,T°,0,U°)(t')}

< lim inf {CZI("” (), &7 (1)) — (@°(t'), L@ (¥ ))I+C/ 10 112 a8

= GZK t) 8, (1)) — (F(t'), 02 (¢))| + C(t — t').
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Using the reversibility in time of our problem (2.6) we may regard U(t) as initial
data at t and solve the problem (3.1) for ¢’ < t and for approximate initial data at ¢.
Using the same argument as above we obtain the analogous estimate with respect
to the absolute value of the left hand side of the above inequality. Therefore we
have (3.11) since U € C, ([0, T1]; H*(R3)) N C([0,T1]; L*(R%)). Thus we see that
U e ¢([0,Ty); Hl(]R )). Finally using (3.1) and (3.10), by certain limit processes
we obtain that U is the uniqueness solution of (2.6). The proof of Theorem I is
complete. O

Appendix
Here we summarize Lemmas referred in previous sections and give outlines of
those simple proofs for reader’s convenience and for completlon of our paper.

Throughout Appendix we assume that for somel >1U, U € C'+([0, T1] x R3 )
and P, P* € C'+!(R%) such that U — U CHY([0,Ty) x R3), P — P in

C”+1(IIR3 ), if not stated otherWISe Moreover we assume previously that MU =
MU =0 and NU NU =0 on [0,T] x dR3. In the proof of followmg lemmas

we drop the tilde over letters and denote simply A; (U) B(U) and A; (U ) B(U )
by A;, B and A, B® which involve smoothly also entries of P and P with their

derivatives of the ﬁrst order, respectively.

A.1 Compatibility condition

Recall the compatibility conditions of order [ — 1 defined as follows: given the
system (2.4), boundary condition MU = 0 on [0,T] x 9Q and initial condition
U(0,z) = f(z) for z € Q, we define f(P), p > 1 successively by formally taking
derivatives of order up to p — 1 of the system with respect to the time variable,
solving for 97U and evaluating at ¢t = 0. Thus f®) is written as a sum of the
derivatives (with respect to the space variable) of f of order at most p. We set
f(9 = f. Then the compatibility conditions of order ! — 1 are that Mf®) =0 on
00, 0<p<li-1.

Then the initial data f are said to satisfy the compatibility conditions of order
I — 1 for the equations (2.4); and (2.4),.

Lemma A.l. Let f belong to HY(R3) which satisfies the following conditions (i)
and (ii):

1) f enjoys the compatz'bz'lityvconditz'ons of order | — 1 for (A.1) corresponding
to (2.6):

~ =~ 3 ~ e o~ =~
(08,0 2 ()57 + BO)T =0 in [0,7] x BE, "

MU=0 - on [0,T] x OR3.

(i) Nf=0 on dR3.
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Then there ezist f¢ € H'(R3) such that

(1) fe — f in H’(]Rs) as € — 0, supp f¢ CC a neighborhood of supp f and
- supp f‘E are contained in a compact set fore < 1.
(i) Each f¢ satisfies the compatzbzlzty conditions of order | —1 for (A.2):

~ = ~ 3~ e ~ ~ =€
AT )o.Us + 3 A;(U )oU° + B(U ¢ =0 in [0,7] x B, (A.2)
2 :

MU =0 | on [0,T] x ORZ.

(ili) Nfe =0 on ORS for anye.
Proof. First we find ¢¢ € H'(R3}) such that ¢ — f in H'(R3) as ¢ — 0,
supp ¢¢ is compact and Ng° = 0 on OR3. Using the same notation as in [11] we
shall prove the existence of vector valued functions h¢ which satisfy the following
relations:

he € H'(RY),
he — 0 mH(lR)
MB:h® = MBgg® ondR3, 1<p<i-1,

where Bj :~I,
€€ ¢ . . (A.3)
Byg® = ((A5)" A7) dhg" + Z ¢ p—i0lg*(= (99)P)),
here Cy ,_; 1s a differential operater of order at most p — i

1nvolv1ng only the dlfferentlatlon Oy, and Oy,,
Nht =0 on 3]R3

Then setting f* = ’ge — h*, we have the desired f¢. To construct such A%, we rewrite
(A.3)3 as follows:

Mhs :Mgs » - on 8R3, (A 4)
M(ASPOPhs = MBEgs — MK;  on dR3, 1<p<i-1, '
where .
Af = (A5 Z . ,a‘hs.
Here we notice from (2.7), (2.9) and (2:10) that
M= M? MA§ = AjM, Ker EﬁﬂRange 23:{0}, (A.5)

Ker A5 = Ker A5 C Ker M on R3..

Now let 2’ be an arbitrary point in OR3. Let C(z’) be a sum of circles each of
which contains only non-zero eigenvalue of Aj. Define T¢(z') by

1 1

A— A5)"ld)\ on OR3, (A6
271’1. C( :) /\p( ) on ( )

T: = Ti(2') =
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which is a real matrix-valued function on 61121 since Af, + = 0,1, and the eigen-
values of 2{ are all real. Then by the definition it follows that

TE = PRange as Tg = (Ai)pT: = T;(Ai)p on 3112:3_ ' (A7)

Finally we define the boundary values bS, of h® to be found, inductively as

follows:
by = Mg¢,
b = T (MBSgt — Poo 23 C%,_ib) on OB, 1< <i-1. Y
p T Tp 9 Range Aii:() p,p—1t"i ; p=

Then by the same way as in the proof of Lemma 3.3 in [11] we see conversely
that there exists A such that b5 = T he on alRi, 0 < p <!l-—1. Thus we have
that the resulting h® satisfies (A 3) Because from (A.5) it is seen that K; =

Pye 2: K5 +PRaLnge A K5, Range AS O Range M on 9R3, from which (A.7) y1elds
that b, € Range A‘e and that (A4.3)3 is valid. Next by the fact that NM =0

we see that (A4.3)4 is valid. Furthermore by (A.6), the smoothness of U, U, the
constancy of rank A; and the compatibility conditions with respect to Uy we obtaln
that b5 — 0 in H'~1~3(8R}) as e — 0,0 < p < I — 1, from which it follows (4.3),
and (A.3)s. This completes the proof of Lemma A.1. OO

Corollary A.1. Let f satisfy (1) and fu=0on R3 instead of (ii) in the assump-
tion of Lemma A.1. Then there are f‘ € HI(IR?;_) satisfy

(iv) (f)ar =0 in RS
with both (i) and (i1) in conclusion of Lemma A.1.

Proof. As in the proof of Lemma A.1, but setting (¢°)x = 0 in-R3 instead of that
Ng® =0 on 0R}, we define b and b5 as follows:

by = My*,
by = PrangeasT; (M B;g° — PRange A,I\.‘) on IR3, 1<p<I-—1
Since
__ all elements are equal to zero except 3
PRangeas = that the (1,1) and (2,2) entries are equal to 1 on IRy,
) ) q
we have

(A5) " AS Prangeas = (A5) 71 A5, M Prangeas =M on OR3.

Therefore the b; defined above has the same properties as in Lemma A.1, except
that b; € RangeAf on 8R3, 0 < p < I—1, from which it follows that (b;)n = 0
on JR3, 0 < p <1-1. Accordingly from the proof of Lemma 3.3 in [11], we see
that (A)y =0onR3. O
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Lemma A.2. Let m > 1 be integer. Let initial data fe HI(IR") satisfy the com-

patibility conditions oforderl 1 for (A.1). Here we assume that 7 € CcH+2m+1([0, T]x
IRS) Then there exist f‘ having the following properties:

() F* € HHm(®3).

(ii) fe— f in H'(R3) ase — 0 and supp f€ CC a neighborhood of supp f.

(ii1) Each fE satisfies the compatzbzlzty conditions of order (I—1)+m with respect

to (A 2).
(iv) Nfe=0 on {y; =0}, if Nf=0 on{y =0}.
v) (F)m =0 in R3, if fir = 0 there.

Proof. Here we may consider only the case where fy = 01in R3.
Let ¢¢ € H'+?™(R}) such that ¢°* — f in H'(R}) ase — 0 and (¢°)g =
0 in IR?*_. Then we shall show the existence of h® such that

h€ € HFT™(RY), A —0 1nH(IR ),
MB,h* = MB,g° ondR}, 1<p<(I-1)+m,
(A)g =0 inR3.

Using regularity of higher order of U’ and ¢ than that in Lemma A.1, by the same
way as in this lemma and in Corollary A.1, we obtain b; such that

b € B3 (ORS), 0<p < (I— 1) +m,
(b5)r =0 on OR3 |
b5 — 0 in H'P"3(9RZ), 0<p<I-1.

Then by a certain refinement of the proof of Lemma 3.3 in {11] and by using the
b; above mentioned we construct A directly as follows:

h* e H'H™(R3), (h)g=0 inR}, A* —0 in H'(R3)

and 87h® =b; on R}, 0<p<(I-1)+m.
Therefore setting f¢ = ¢ — h® we see the assertion of Lemma A.2. O ‘

‘Now we consider, as in [10], the non—characteristic initial boundary value prob-
lem for €, 0 < € << 1, whose boundary condition is maximal nonnegative:

ol ~ 3~ = ~ ~ = ~ ~ =~ '
Ao 0% + 3 A;(0)0;U° — eAg(U)0,U° + BU)U* =0 in [0, T3] x RY,
j=1

MU =0 on [0,Ti] x 6R3, ~ - (A9)
Ue(0,y) = fe ' with compact support in H_Ri.

Then we have
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Lemma A.3. Let f € H'(R3) satisfy compatibility conditions for (A.9) with €=
0. Then there are fe such that
(i) f* e H'(RY).
(i) f‘ — f in H’(IR?_) as € — 0 and suppf‘ CC a netghborhood of suppf
(iii) Fach fe satisfies the compatibility conditions of order | — 1 for (A.9).

Proof. Here we shall construct A¢ in the analogous way in the proof of Lemma A.1.
Since the boundary matrix of (A.9) is A; — €Ap, we must solve the following

equations:

=M,
(A — eI)POPhe = (MBg* + Pyo, 7,K5) — K5 ondR}, 1<p<(I-1)

Here we set

I
||

Ay —el = (A — PRangeA ) — Pxerd, 1+ Az

and

BTy =T 8y

Then form jl ~i2 = jz -i——l it follows that M B, = 0 on BIR?,_. Thus we reduce our
equations to the following:

=MfF, |
A,00h¢ = (MBig® + Py, 2 KS) —K: ondR}, 1<p<(I-1),

which we can solve as the same way in the proof of Lemma A.1. [

A.2. H.-space

We recall the definition of H,—space and outline of the proof of the estimate
(A.10) described below, which is an extension of that with respect to H;;n—space
(see Theorem 10 in [10]). Here we may restrict only to the case where Q = R3.
Given integer | > 1 the function space H ’(IER?,_) defined as the set of functions
u € L*(R3) with the following property: 0Fdfu € L*(R}) if |a| + 2k < I, where
0% = (0(21)01)*105293°. Here o(x1) is the monotone increasing function such
that a(z‘l) € C*(|o, oo)) and o(z;) = z; for 0 < z; < 3, = 1 for 2; > 1. Then
the H!-norm is

”U“?{l_(mi)z Z llocor U||2.

[a]+2k<!

Note that O can be replaced by o(z)*'97'052035° because the corresponding
norms are equivalent to each other.
Now from (A.9) we have the following a-priori estimate
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Lemma A .4.
(i) For regular solution Us € C([O T1); H(R3)) to (A.9)

2 NET @)llgi-sa) <CZII<‘>"UE Ollyisagy  fort€DTL (A10)

j=0
where C' is a positive constant depending T, but independent of € and
U¢(0). Here we assume that supp U® C [0,T1] x S(0,70), 0 < T1 << 1,
0< o << 1.

(ii) Let U be constant vector and set P = I. Then for regular solution U €
c([o, oo) H'(R3)) to (A.9)

Z||3’U€(t)||g'-1(ms < Ce‘rtZ“aJUE (O)llzt-1 a3 (A.11)

j=0

for allt > 0, where C, v are sufficiently large positive number, but inde-
pendent of € and U*¢(0). :

- Outline of the proof. Using an certain orthogonal matrix-valued function 7" smoothly
depending on U and P we can reduce our equations to the form such that

3
QVE+> AjOiVE—ediV + BV =0. (A2
ji=1

Here o R N
A; ='TA; PA; A T, §=0,1,2,3, VS ='TAZU*

[EAEAR
A

1 1

and- if we set

then A1 is nonsingular and AIH = _/—1—{ = A{HI = 0 over [0 1] x (0IR'3 N S(0,7)).

Furthermore we may choose the above T and a constant real matrix M as follows:
MV =0 if and only if MA, 2TV = 0 there for any vector V.

Thus we may regard 611&1 as characterjstic of constant multiplicity with respect
to A; and M. In such a situation we have the following a-priori estimate:

Zna:ve t)“H' iz < I\.ZHaJVE(o li-iaz) fort€[0,T],  (A13)
=0 J

where V‘(t) is the regular solution to (A.1‘2) with boundary condition: MV¢ =0
on OR3, and K is a positive constant independent of €. (For the proof of (A.13)
see, e.g., [2] and [10] or [9].)

Finally, under assumption (ii), from (A.13) without regard to supp V¢ we obtain
the desired estimate. O
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