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Single Point Singularity and Analyticity for
the Korteweg - de Vries Equation
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1. INTRODUCTION

We study the smoothing effect for the following Korteweg-de Vries equation:

3 2\
an {atv + v +0,(0?) =0, teeR,

v(0,z) = ¢().
Here the solution u(t,z) : R xR — R denotes the surface displacement of the water wave.
There are plenty amount of literature for the study of KdV equation. Concerning the

smoothing effect of the solution, Kato [11] firstly extract the smoothing effect from the
linear part of the KdV equation:

30y — .
(19) {atv—i—azv—O, t,z € R,

v(0,z) = ¢().

Let x(z) be a smooth non decreasing function with x(z) = 0 if z < —2R and x(z) =1
for z > 2R with d,x(z) =1 on —R < ¢ < R. Then a simple computation shows that

(13) & [ xordz + [dafde < C(IEXIIVOI

This inequality combining with the L? conservation law immediately gives the local
smoothing effect for the linear part of the KdV equation:

(1.4) [ looldedt < CRIGE+ [ (o)l

Later on as an extension of the Kato type smoothing estimate , Kenig-Ponce-Vega [13]
obtained the L? version of the homogeneous and inhomogeneous equation of the linear
KdV equation:

(1.5) HDa:etagﬁﬁlngo(R;L?T) < Ol
(16) 1D [ et~ F(s)dsllzzmagy < Ol Fllzgeeiny)
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Using this estimate with some other extension, they showed that the KdV equation is
well-posed in the Sobolev space H**. The Uniqueness result is also obtained by Kurzkov-
Faminski [18], Ginibre-Y. Tsutsumi [6] in the subspace of H'. Since the KdV equation
has infinitely many conserved quantities, if for example L? well-posedness is established
and the dependence of the local existence time T is known by the term of |||z, it is
shown that the global existence of the L? solution is obtained in the large data. Along
the elegant method in the series of papers, Bourgain [2] obtained L? well-posedness of
the KdV equation in the periodic boundary condition. His argument also works for the
Cauchy problem 1.2 and the global well-posedness is established. Furthermore, by refining
the method by Bourgain, Kenig-Ponce-Vega proved some bilinear estimate involving the
negative exponent Sobolev space and established the local well-posedness for the Cauchy
problem in the negative Sobolev space H s(R) where (—3/4 < s). This result is obtained
by the method of Fourier restriction norm as well as the refining estimate for the quadratic
~nonlinear term in the KdV equation. In fact, the polynomial structure of the nonlinear
term has a certain (very subtle) kind of smoothing effect.

On the other hand, very high regularity smoothing effect is also studied by several au-
thors. Hayashi-K.Kato [7] obtained the analyticity for the nonlinear Schrédinger equation
and de Bouard-Hayashi-Kato [5] established the analyticity for KdV equations from the
Gevrey initial data.

Those results are basically obtained by using the commutation and almost commutation
operators with the linear KdV equation.

In this paper, we discuss on the smoothing effect for the initial data has single point
singularity at the origin. Since the solution we treat is in very weak space, we consider the
equation as a corresponding integral equation. Let V(t) = ¢~ be a free KAV evolution
group. Then by the D’hamel principle, the solution of KdV equation 1.2 satisfies the

following equation.
t
o(t) = V(1)é — / V(¢ — )8, (u(t')2dt.
- Jo
Our result is the following:

Theorem 1.1. Let —3/4 < s, b€ (1/2,7/12). Suppose that for some Ag > 0, the initial
data ¢ € H*(R) and satisfies

OOAIC;

> 22 (28.) gl < co.

Then there exist T > 0 and a unique solutionv € C((—T,T), H*)NX; of the KdV equation
(1.2) and the solution is time locally well-posed, i.e. the solution continuously depends on
the initial data. Moreover the solution v is analytic at (t,z) € (—T,0) U (0,T) x R where
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we define

19 = ([~ @€ 1m0k drde) " = V()1 o

and V(t) = ™% is the unitary group of the free KdV evolution.

Remark 1. A typical example of the initial data satisfying the assumption of the above
theorem is the Dirac delta measure, since (29,)"6(z) = (—1)*6(z). The other example
of the data is p.v.ﬁl—c, where p.v. denotes Cauchy’s principal value. Any possible linear
combination of those functions with an analytic, H® data satisfying the assumption can
be also the initial data. In this sense, Dirac’s delta measure adding the soliton initial data
can also be taken as a initial data.

Remark 2. For a non-smooth initial data, it is known that the global in time solution has
been obtained (see [4], [8]) by the inverse scattering method. Also recently the analyticity
for the inverse scattering solution with a weighted initial data was obtained by Tarama
[20]. However, since our method is based on the fact that the solution is in H*, we don’t
know if our result is true globally in time.

By a almost similar argument of Theorem 1.1, one can also show the following corollary.

Corollary 1.2. Let —3/4 < s, b € (1/2,7/12). Suppose that for some Ao > 0, the initial
data ¢ € H*(R) and satisfies

5 dala0) el <o

then there exist T >0 and a unique solution v € C((=T,T), H*)N Xy of the KdV equation
(1.2) and for any t € (=T,0)U(0,T) v(t,-) is analytic function in space variable and for
z € R, v(:,z) is of Gevery 3 as a time variable function.

Remark 3. Both in Theorem and Cofbllary, the assumption on the initial data implies
the analyticity and Gevrey 3 regularity except the origin respectively. In this sense, those
results are stating that the singularity at the origin immediately dlsappea,r after ¢ > 0 or
t <0 upto analytlcxty

Remark 4. Recently, some related results are obtained for the linear and nonlinear
Schr see Kajitani-Wakabayashi [9] and for nonlinear case, Chihara [3]. They are giving a
global Weighted uniform estimates of the solution with arbitrary order derivative in space
variable. In our case, it is still unknown if the weighted uniform bounds are possible or

not.
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2. METHOD

Our method is based on the following observation. Firstly, we introduce the generator
of the dilation P = 3td, + z0, for the linear part of the KdV equation. Noting the
commutation relation with the linear KdV operator L = 9; + 93 '

[Lb P] = 3La
it follows |
(2.1) . LP* = (P +3)*L,
(2.2) (P +3)*3, = 8,(P + 2)*

for any k = 1,2,---. Applying P = 3td, + 20, to the KdV equation, we have

Oy(P*v) + 83(P*v) = (P +3)*Lv = (P + 3)"(=0u(v?))
= —0,(P + 2)Fv?. '

We set v, = P*v and By(v,v) = 0,(P + 2)¥v?. Then noting that . .

(2.3)

(P+2)v=(P+2)'Pv+2(P+2)" v=

(2.4) _ zl: i i3 piy
‘—0.7 (l _.7)'
We see
k
By (v,v) =0,(P + 2)¥( EZ( )(P+2)’ Py .
=0
k {
_azz Z ( )( )21—-mpmvpk—lv
=0 m=0
S 20 (o)
= — Vi, Vi
k=k1+k2+k3 oty ! P

We remark that the above nonlinear term keeps the bilinear structure like the original
KdV equation. This is because the Leibniz law can be applicable for a operation of P.
Now each v, satisfies the following system of equations;

(25) {Btvk + fovk + Bk(v, 'v) =0, t,z eR,

vk(0, ) = (20:)* ().

Therefore we firstly establish the local well-posedness of the solution to the following
infinitely coupled system of KdV equation in a suitable weak space:

(2.6)

atvk + 821% + Bk(v7 U) = 07 ta S Ra
’l)k(o,l') = gék(.’lt)
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Then taking ¢ = (28,)¥¢(z), the uniqueness and local well-posedness allow us to say
v = Pryforall k=0,1,---

According to Bourgain [2], we introduce the Fourier restriction space as
Xp = {f € S'(R*;|Ifllx; < oo},
where
1F1; = e [[(r = €)™ 17 (7, O)Pdrde = |V (=) ey

The KdV equation is proven to be well-posed in the above space X§ up to s > —3/4
with & > 1/2. The space where we solve the system is infinitely sum of this space. Let
f=(fo, fi,-=+ » fx, -+ ) denotes the infinity series of distributions and define

Af( X)) ={f =(fo, 1, s fro--- ), fi € Xy (6=0,1,2,---) such that||f||la,, < oo},

where
0 Ak
1 laae = 22 T fillx;-
_ k=0
The system will be shown to be well-posed in the above space if s > —3/4 and b > 1/2.
The well-posedness is derived by utilizing the contraction principle argument to the

corresponding system of integral equations:

(2.7) B0uE(t) = WOV (1) = $(0) [ V(E—)r(¥)Balo, 0)(¢)al

The following estimates of linear and nonlinear part due to Bourgain [2] and refined by
Kenig-Ponce-Vega [?] are our essential tools.

Lemma 2.1. Let s € R, a,a’ € (0,1/2), b € (1/2,1)and § < 1. Then for any k =
0,1,2,---, we have

(2.8) lsellxe, < CEHD g xs
(2.9) sV (#)ellx; < C8/*°|| bkl
t
(2.10) III/’&/O V(t — ') Fi(t)dt'||x; < C8/*7| Fillx;

Lemma 2.2. Let s > —3/4, b, € (1/2,7/12) with b < V' and § < 1. Then for any
k,1=0,1,2,---, we have

(2.11) 192 (uir)|

x;,_, < O8> ||ve|xslorll x;

Proof of Lemma 2.1 and 2.2. See [13]. O

;From Lemma 2.2, it is immediately obtained the bilinear estimate for the nonlinearity
for the system. ‘
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Corollary 2.3. 7?7 Let s > —3/4, b,b' € (1/2,7/12) with b < b’ and 6 < 1. Then, we
have

S k!
(212) [|Bk(v, U)llx;,—l S 051/2 b Z lemn’vk;“}(g”t)ks“X;
k=kytho+ks  1°02:03

Set a map @ : {vi}52, — {vk(t)}52, such that & = ($o, Py,---) and

Bu(94) = ¥V ()on — ¥ [ "Vt — ) Bu(v, v)(t')dt

Then it is shown that ®, : Ay, (H®) — A4, (X?) is a contraction. In fact, by using Lemma
2.1 and Lemma 2.2, we easily see that

00 Ak
1@l 0xg) = 22 7y llowllx;
k=0 *°
= As = Ak . k!
COZ pN9kllzs + 1T Z—IE— >, 2 lk ey oa! o, [|xg |0 [l x5

k=k1+ko+ks
Ak1 Akz Aks
=Colvfla, o) + ClT“Z >, 2 T Tl vk llxg T ol llves Il x;
k=0 k=k1+ko+k3
2w As & Ag = Ag®
<CO||UH-AA0 He) + Ci 1% z 2k =2 k! Z "vkznx Z k! ”Uk3”X
k1—0 k2—0 k3_0
It follows i
190 an, (xp) < CollBllan, ey + Cre* T vl (xs)

and also we have the estimate for the difference
[(vD) — B4, xg) < Cre®T([[0M]|a, (x2) + 0P Nlas, X)) 10D — 0P| 44, (x7)-

Choosing T small enough, the map @ is contraction from

[eo]

Xp=A{f = (oS- )i i € X, 30 201
T

x; < 2Co Mo}

to itself, where My = ||v||4,, (m+). This shows the well-posedness.

-

Then for the original equation with the assumption for the initial data
I(20.) Bl < CARRY Kk =0,1,--,
we show the corresponding solution to (KdV) is obtained with the following estimate
HkaHX < CAFE! k=0,1,--

Now by the localization argument the operator P plays the role of the vector field Py =
3tod; + 200, where (to,z0) € {(=T,0) U (0,T)} x R is any fixed point. Since the Fourier
restriction norm has originally contains the regularity with the characteristic derivative

= (0, + 0%)*, we combine the both derivative L* and p§ (and by the localization
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argument) to derive the regularity. If we set a smooth cut-off a(t,z) whose support are
around the point (%o, 29) with supp a C B,.. Then we firstly derive

Haka”L%I(R2) < CAgk' k= 0, 1, 2, et
Based on this estimate, we forward the step into |

IIaka||H7/2(R2) < OAl;k! k = 0, 17 27 .

Then by the bootstrap argument, we have in step by step that
sup ||aaika||'Ht1 ®2) < CAM Y k+ 1) k1=0,1,2,---,
¢ ,z

and
31t1p |}a8tm(‘9iv]|Ht1yz(Rz) < CAE™(1 4+ m)! {,m=0,1,2,---

This gives the regulafity for the solution.
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