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ON A “HAMILTONIAN PATH-INTEGRAL”
DERIVATION OF THE SCHRODINGER EQUATION

Atsusur INOUE (#F %)

Department of Mathematics, Tokyo Institute of Technology

§1. PROBLEM AND RESULT

Problem: Construct a parametrix which exhibits clearly how quantities from
Hamiltonian mechanics are related to quantum mechanics: (“Hamiltonian path-

integral quantization” in L2(R™))

Z@u(t,az) +H(t hi) »(t =0,

(1) i Ot
w(0,z) = u(z)
with )
1 m
H (t z, b;) ~2~Z=: (z 7z, — A;(t, a:)) + V(t, ).
Assumi)tions:

(A) A;(t,x) € C®(R x R™), real-valued and there exists € > 0 such that
02 By(t,2)| < Call +[a) ™ for o] > 1,
102 A5(t,2)| + 020, A;(t,2)| < Ca for Ja] > 1
where

0A;(t,x 0Ai(t,
Bjk(t,x) = éik )_ gij )

(V) V(t,z) € C(R x R™), real-valued and for any compact interval I, there

exists a constant C,; > 0 such that

sup |09V (t,z)| < Cqr for |a| > 2.
tel

Outline-of the strategy of quantization: b'
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(I) Let H(t,z,£) be given (e.g. the complete symbol of H(t, z, —1h0,)). Solve
{ £(8) = O H (1, 2(2), (1)),
£(t) = =0, H(t, x(2), £(t))-

(II) Under Assumptions (A) and (V), construct a phase function S(t,s,z,£)
(Hamilton-Jacobi equation):

(3> {8ts(ta37537§) + H(t,z, 02 S(t, S,CU,E)) _%O’

S(s,s,z,8) =z -&.

Then, D(t,s,z,§) = det(d2 , S(t,s,x,£)) satisfies the continuity equation:

z;€k

{ 0:D(-) + 8: [D(-)0:H(t, %, 0, S(t, s, , £)] =0,
D(s,s,z,€) = 1.

(IIT) Define a Fourier Integral Operator on R™ as
(5) E(t, s)u(z) = cm /;; d¢ DY2(t, s, x,£) h” Semll g
where ¢, = (2rh)~™/2 and

a() = Cm/ dg e ey ().
Rm™
- (IV) This operator gives a good parametrix for (1) on L?(R™), by virtue of
(3) and (4).
For a subdivision A of (s, t), put
Aitg=s<t1 <--- <ty <ty =t, (5(A) = .IIlla.letj '"tj—lla
=L,

b

E(Alt, S)U = E(t, tg_l)E(te_l, tg_z) e E(t1, S).

Main Theorem. Fix T > 0 arbitrarily. Assume (A) and (V). (¢,s) € [T, T)?.
(0) {E(Alt,s)} converges to U(t,s) when §(A) — 0 in L*(R™) s.t. |

I1E(Alt, 5) = U(t, )|l < CS(A).

(1) Ut,s) € B(L2(R™) : L*(R™)).
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(2) U(t, s) is L*(R™)-valued continuous and

U(s,s) =1,
{ U(t,s)U(s,r) = U(t,r).

(3) If u € C$°(R™), U(t, s)u satisfies

) | h 0

;-8—1;[[](1‘), S)U + H(ty z, ;%)U(t’ S)U - O’
o . h o
?~5-S-U(t, s)u — U(t; s)H(S, Z, ';5;)“’ = 0.

§2. FEYNMAN’S HEURISTIC ARGUMENT

Consider the following initial value problem:

2
*) ' { ih—g—iu(m, t) = —%—Au(m,t) + V(z)u(z,t),
u(z,0) = u(x).

Here, the Hamiltonian is given formally as

h? o~ 02
H=-ZA+V()=Ho+V, A:;%—?

Assuming H is essentially selfadjoint in L?(R™), by Stone’s theorem, we have
the solution of (*) as
u(z, t) = (e % u)(z).
On the other hand, by the Lie-Trotter-Kato product formula, we have
k

e~ #H =g lim (e_%%ve’%%Ho) .
k—oo

If the initial data u belongs to S(R™), we get

(e~ *tHoy)(z) = (2miht)™/* / dy @97/ @My (y),

Therefore,
(= +0)(a) = [ dyPlt,2,1)u(0),



with
F(t,z,y) = s-lim(2miht) ~km/2 / / dz® ... dpk=DexSe(@a® 7D, a® )
k—o0

Here, we put (%) = 2, (0 =y,

1 (z0) — -2 ,
(K 0
Sy(z® ..., 2®) E [ DL —V(z¥)

Jj=1
Feynman’s interpretation: Let

Comy = (1() € AC(0,] : R™) | 4(0) = 1,1(t) = z}.

For any path v € O;,w,y, Sy(x® ... () is regarded as the Riemann sum for the
classical action Si(7), i.e.

t |
5:0) = [ L), r)dr = Jim Si(a®,...,20),
0 —00
where
L(v,%) = —’Y ~V(v) € C*(TR™)

When k — oo, the ‘limit’ of the measure dz() ... dz(*=1 is denoted by

dey =[] dv(r)

o<t

and considered as the ‘measure’ on the path space C; ;. (See S.A. Albeverio & R.J.
Hoegh-Krohn [1}).

Feynman’s conclusion:

F(t, x, y) = / deyen 0 L(’y(‘r),’y('r))d'r

Ctzy

On the other hand, it is proved unfortunately that there exists no non-trivial

‘Feynman measure’ on oo-dimensional spaces.

Problem 1. Give a meaning to

/ dpey € 13 LA,

15
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A partial solution of this problem is presented by Fujiwara [12], when |02V (z)| <|}
C, for |a| > 2.

Problem 2. As a Hamiltonian counter part of above, how do we define
// dpzdpé e'ih—l J ¢ H(z(r),&(r))dr ?
See, Inoue [17].
Method of characteristics as quantization

On the region 2 in R™*!, we consider the following initial value problem:
0 “ 0
Fu(t:) + > a4t q)a—(J_U(t, q) = b(t, q)u(t, @) + f(¢,9),

u(t, q) = u(q).
Corresponding characteristics are given by
d
% (t) = a;(t, (1)),
Qj(z) = ﬂj (J =1,---,m).
When this is solved nicely, we denote them as
q(t) = q(t,t;9) = (@1(t),-- ,gm(t)) € R™.

Following theorem is well-known.

Theorem. Let a; € C'(Q: R) and b, f € C(Q : R). For any point (t,q) € Q, we
asume that u is C! in a neighbourhood of q.

Then, in a neighbourgood of (t,q), there exists uniquely a solution u(t,q).
More precisely, putting

t s
Ut g) = '+ 72 { / dse” 'L PO p(s g) +_u(g)} :
I3

solution is represented by

u(t, q) =U(t,y(t £ 7)) |
where B(t,q) = b(t,q(t,t; g)), F(t,q) = f(t,q(t,t;q)) and ¢ = y(t,t;q) is a inverse
function defined from q = q(t,t; q).

We apply above theorem to the simplest case:

., 0 h o
lhﬁu(ta Q) - a; 8_qu(t, q) + bqu(ty Q),

u(0,9) = u(q).
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From the right-hand side of above, we define a Hamiltonian as follows (more pre-
cisely, Weyl symbol should be considered):

. 5 -
Higp) = (a3 5 +ba)e 7 = ap 0o

The classical mechanics associated to that Hamiltonian is given by

4(t) = Hp = a,
{p(t) I (gggg) B (%)
which is readily solved as
q(s) =q+as, p(s)=p-—bs
From above theorem, putting t = 0, we get readily that
U(t,g) — g(g)e—ih‘l(b6t+2‘1abt2)'
As the inverse function of § = q(t, q) is given byg = y(t,q) = 7 — at, we get

u(t, D) = Ut @)lgmy,) = (@ — at)e™ (A2 1ab),
Another point of view: Put
t
So(t,q,p) = / ds [4(s)p(s) — H(q(s),p(s))] = —bqt — 27 abt?,
0

S(t,3,p) = ¢p + So(t: & P)lg=y(t,7) = Tp — apt — bgt + 27" abt?.
S(t,q,p) satisfies the Hamilton-Jacobi equation.

O o\ s~

S(0,q,p) = qp.
On the other hand, the van Vleck determinant is

828(t,9,p)

5760 1.

D(t,q,p) =

This quantity satisfies the continuity equation:

0 1 OH ,_ 0S
{ —a—t-D + 555(1?1%) =0 where Hy, = E?—(q, B_(I)’
D(0,q,p) = 1. '
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As an interpretation of Feynman’s idea, we regard that the transition from
classical to quantum is to study the following quantity or the one represented by
this (the term “quantization” is not so well-defined mathematically):

u(t,q) = (2rh) "}/ / dp DY/*(t,3, p)e™ D q(p).
R
That is, in our case at hand, we should study the quantity defined by

u(t,q) = (2xk) '/ / dp et 541D (p)
R

= (2mh) ™ / dpdg e (BETD-aR)y(q) = u(g — at)e (TP abe),
Rz T T T

[Problem] Can we extend the above argument to a system of PDE? For
example, Dirac, Weyl or Pauli equations, quantum mechanical equations with spin.
See, Inoue [17-19] and Inoue & Maeda [21].

§3. COMPOSITION FORMULAS.

Now, we put

R2m

x+z

,E)u(e'),
F(a,9)u(®) = cm /R daz, )¢ =00,

Theorem. For suitablly given a(z,&), ¢(z,§), H(z,§), we have the following:
(1) There exists cp=cr,(z,n) € C°(R?*™) s.t.
HY (z,DF)F(a,¢) = F(cL,¢) with |
. 1
e = Ha— ih{0g H - 8,0+ 5 (02,6, H + 02, 0,9 0, H)a} +7u.
Here, H = H(z,0:9), ¢ = ¢(z,n) and rp, =rr(z,n),
hz
TL ((L', 77) = _?agkng(m, awgb(x: "7)) 39257%0,(3:, T,)
(2) There exists cg = cgr(z,&) € C®(R?*™) s.t.
F(a,$)H" (z,D7) = F(cr, ¢) with
. 1
cr =aH — zh{agja Oz, H + -éa(agmH + 3§j£k¢ . aﬁkij)} +rR.
Here, H = H(a£¢($’€)’5)7 CR = CR($>§)7 a= a(m,g) and ¢ = ¢($,€),
rr(z,6) = 4 (2,06 + 15 (@,6).
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§4. PROPERTIES OF PARAMETRIX

Proposition. Assume (A), (V) and |t —s| < é;. Then, for any & € C§°(R™), there
exists a constant C such that

IE(E, s)ull < Cllull-

Proposition. (1) For each u € L*(R™), we have

slim E(t,sju=u in L*R™).
|t—s|—0 _

(2) If we set E(s,s) = I, then the correspondence (s,t) — E(t, s)u gives a strongly

continuous function with values in L*(R™).

Proposition. Let u € Cg°(R™).

L9 B(t, s)ule) = —H™ (5, D) E(t, )u(x) + G(t, s)u(z)

i 0t
IG(2, s)ull < CR?|t — s||ull.

Proof.  Using the Hamilton-Jacobi and the continuity equations with the
product formula, we get

h . I
g(#tﬁ”h 'Sy p) = ;("') —pH
‘= —[amplitude part of the “symbol” of (Y (t,z,D.)E(t,s))] — L.
T = —%Ax,u(’t,s,x,é), p=upu(---)and S=S(---), H=H(z,0;5(t,s,x,§)).
10208 rL(t, 8,2,£)| < Cogh?|t — s|.
Use Calderon-Vaillancourt’s theorem. [
Proposition. Let |||ul|l1 = ||[{z)u|| + ||0zull.
g%E(t, s)u(z) = E(t, s)HY (s,x, Dy)u(z) + G(t, s)u(z),
IG(, s)ull < CR2[t — s|[][ulllx

Remark. The above estimate is crucial why we can’t proceed as in the

Lagarngian formalism. But in case A;(t,z) = a;;(t)z;, we have

IG(t, s)ull < CR2|t = s]l|ul].

Proceeding as in Fujiwara, we have
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Propositon.
(**) I(E(t, 8)E(s,7) — E(t,r))ull < Ch(lt = s|* + |s — r[*)l[[ulllz,
(**%) I(E(s, t)* E(s,7) — E(t,r))ull < Ch(lt — s|* +|s = r[*) Ju].

Corollary. From (***), we have

IE(t, s)|| < M=ol

§5. ComPoOSITION OF FIOS

Let |t — s| + |s — r| be sufficiently small. We want to calculate the quantity
|E(t,s)E(s,r)u — E(t,)u|| directly without using the adjoint operation.

Lemma. For any z,&, there exists a unique solution (X, ZE) of

{Xj = 0, S(t,s,z,Z),
Ej = 3xj5(8,1", X,é)

0207 (X5 — 25)] < Cayp(1+ o] + [g) 71D+,
16202 (B; — £)| < Cayp(1 + |z] + |y 71o+oD+,

Put X = X(t,s,7,2,€), E=E(t,s,72,€) and

®(t,s,r,z,8) =S, s,z,8) - XE+ S(s, 7, X, §).

Lemma. As we calculate easily

(9 gt 0
5:9' ()Sar9m7§)_ 3

< %@(t,s,r,m,f) — _H(t,z,0,8(t, 5,7, 3,£)),

9
\ Or

q)(t7 §T,T, f) = H(Ta a{‘b(t> s, xaé‘)’g)a

we get
(I)(ta S, 7’, myg) = S(t’ 'I‘, CL',&)



Remark. ®(t,s,r,x,£) is called a #-product of S(¢t,s,z,§) and S(s,7,z, f)
and which is denoted by S(t, s,z )#S(s, 1, ).

Now, we have, as an oscillatory integral,

B, 5)B(s,ryu(w) = 5 [ dndyds ult,s,2,mis, 1,0,
| : x gih” (S(hemm)~yntS(sry.6) g¢),
Using the change of variables
y=X+9, n=E+1,
we have
E(t,s)E(s,r)u(z) — E(t,r)u(z) = cm /Rm dé b(t, s, , :v,f)em—ls(t””’x’g)ﬁ(g)
with

bty 5,7, 0,6) = [ [ didgn(t,s,2,Z + (e, X 3,0

X eih_l(R(tisﬂ‘az,&ag,ﬁ)'—gﬁ)] — /J‘(t7 rr’ :L', g),
S(ta S, T, 77) = yn + S(S7Tay’£) - S(tar, m>€) = —'gﬁ + R(ta s, T, :I),f, gv ﬁ)
Propositon. [Taniguchi [29]]

18202b(t, 5,7, 2, £)| < Cayp(|t — sI* + s — 7).

In spite of the estimate (**), we have

Corollary.

IE(t, 8)E(s,r)u — E(t,r)ull < O(It = s* +|s — r[*)l|ul].

§6. THE COMPARISON WITH TWO FORMALISMS

Theorem. [Lagrangian formulation] A parametrix of the initial value problem (1)
is given by |

E(t,s)u(z) = 6m/dy/](t,s,x,y)em_lg(t’s’x’y)u(y).
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Em = (2miR)~™/2 = e~ ™4 S(t,s) = S(t, s, x,y) satisfies
8:S(t,s) + H(t,x,0,5(t,s)) =0,
{ tim (¢ - 98(t,9) = gl - oI,
and f(t, s) = i(t, s, z,y) satisfies
Osi(t, s) + Oz, fi(t, s) He, (t,, 0 .S (t, ) + 2u(t s) ng (t,z,8:5(t, s)) =0,

lim (¢ - )™ 2f(t,s) = 1.
—8

Corollary.
8,5(t,s) — H(s,y,—0,5(t,s)) =0, |
Bafilt, 5) — By ilt, ) He, (5,4, 0,8 (¢, 5))
_ Lo, S)aikagk(s,y, —8,3(t, 5)) = 0.

Here, we put

23 1/2
ity ,,3) = [aer (5L 20N

0z ;0yx
Proposition. _
%E(t, s)u +H(t, z, DM E(t, s)u = GL(t, s)u,
IGLt, s)ull < CR?|t — slllull. -
Proposition.

—88—813“(75, s)u — E(t, s)]HI(s,y,DZ)u = Gr(t, s)u,
IGR(, s)ull < CR2[t — s]||ul].

Proof. By the integration by parts under the oscillatory integral sign, we

have

/dy ﬁ(t, 8,x’y)eiﬁ”lg(t,S;x,y)H(s’y,DZ’)u(y)

/dy (————— + A;(s, y)) - V(s,y)] (&t s,z Ly)eth” S(t”’y)) u(y).

From these propositions, we have
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Proposition.

1E(t, $)E(s,m) — E(t,r)]| < Ch(lt = sI” + |s —r[?),
1B(s,8)* E(s,r) — Et,r)|| < Ch(|t — 5|2 + |s —7[2).

The difference.

(1) AW (t,z, D" is derived from H(t,z,£) using the Fourier transformation,
while H(¢, z, Dﬁ) is used as a given operator without considering from where it
stemms.

(2) In the Lagrangian formulation, the time reversing and taking the adjoint

are rather nicely related.

To show this, we have

Proposition. Under Assumptions (A) and (V), we have

S'(t,s,a:,y) = —S’(s,t, Y, T).

Therefore, we have

Corollary.

™2h(s, t, Y, T).

ﬂ(t) S,xay) = ﬁ(ta s,y,:n) = (_1)
Now, we have

Proposition. Under these circumstance, we have

E(t,s)* = E(s,1t).

Though in the Hamiltonian formulation, this relation does not seem to hold

in general, we have

Proposition.

IE(t, s)* — E(s,8)|| < C|t — 5|2
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