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ANALYTICITY AND SMOOTHING EFFECT FOR
- THE KORTEWEG DE VRIES EQUATION

PN — (GREERRLA - f_ﬂi) (KEIICHI KATO) |
IMNNETL(BEER « ZICH3E) (TAKAYOSHI OGAWA)

1. INTRODUCTION AND THEOREM

We study the smoothing effect for the following initial-value problem of the Korteweg-
de Vries equation (KdV equation):

g 3., 2y
1) {Btv + O+ 0,(0v?) =0, tazeR,

v(0,z) = ¢(x).

Here the solution u(t,z) : R x R — R denotes the surface displacement of the water
wave. | | |

There are a lot of works for the study of KdV equation ( [4], [5), [6], [8], [10],
[14], [16], [21], [22], [24]). Among others, Kato [14] firstly extract the smoothing
effect for the evolution operator of the linear part of the KdV equation et%2. The
Uniqueness result is obtained by Kruzhkov-Faminskii [21], Ginibre-Y. Tsutsumi [8]
in the subspace of H'. Later on, Kenig-Ponce-Vega [16] extended the Kato type
smoothing effect and they showed that the KdV equation is well-posed in the Sobolev
space H>/*.

Along the elegant method in the series of papers, Bourgain [2] obtained L? well-
posedness of the KdV equation in the periodic boundary condition. His argument
also works for the Cauchy problem (1.1) and the global well-posedness is established.
Furthermore, by refining the method of Bourgain, Kenig-Ponce-Vega [17] [18] proved
some bilinear estimates involving the negative exponent Sobolev space and estab-

lished the local well-posedness for the Cauchy problem in the negative Sobolev space
H?*(R) where (—3/4 < s).
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On the other hand, a highly regular solution has also been studied by several
authors. T.Kato-Masuda [20] obtained a global smooth solution and the analyticity
for any point (¢,z) € R x R. Hayashi-K.Kato [9] obtained the analytic smoothing
effect for the nonlinear Schrédinger equation (see also K.Kato-Taniguchi [13]) and
de Bouard-Hayashi-Kato [7] established the analyticity for KdV equations from the
Gevrey initial data. Those results are basically obtained by using the commutation
and almost commutation operators with the linear KdV equation.

Thanks to the paper [18], we have a time local solution of (1.1) with Dirac’s delta
as the initial data. Our problem in this note is to study the regularity of the solution
with Dirac’s delata as the initial data. In the following, we show that if the initial
data is in some class which contains Dirac’s delta, the solution is real analytic for
t #0.

More precisely, our result is the following:

Theorem 1.1. Let —3/4 < s, b € (1/2,7/12). ’Suppose that the initial data ¢ €
H*(R) and for some Aq > 0, it satisfies

> 22/ (20, - < co.

Then there exists a unique solution v € C((=T,T),H®) N X{ of the KdV equation
(1.1) in a certain time interval (—T,T) and the solution v is time locally well-posed,
i.e. the solution continuously depends on the initial data. Moreover the solution v is
analytic in time and space variables at any point (t,z) € (=1,0) U (0,T) x R, where
we define

1/2

“ / ‘ ,
Ifllxe = ([[ (= €72 4e1fr.e)Pdrde) = V(=) f)mpesnsy

and V(1) = e~ %% is the unitary group of the free KdV evolution.

Remark 1. A typical example of the initial data satisfying the assumption of the
above theorem is the Dirac delta measure, since (28,)*6(z) = (—1)¥6(z). The other
example of the data is p.v.%, where p.v. denotes Cauchy’s principal value. Any
possible linear combination of those distributions with an analytic H® data satisfying
the assumption can be also the initial data. In this sense, Dirac’s delta measure
adding the soliton initial data can be taken as the initial data.
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Remark 2. For a non-smooth initial data, it is known that the global in time
solution has been obtained (see [5], [10]) by the inverse scattering method. Recently
the analyticity for the inverse scattering solution with a weighted initial data was
obtained by Tarama [23]. Since our method is based on the fact that the solution is
in H?®, we don’t know if our result is true globally in time.

By a almost similar argument of Theorem 1.1, one can also show the following
corollary.

Corollary 1.2. Let —3/4 < s, b € (1/2,7/12). Suppose that for some Ay > 0, the
initial data ¢ € H*(R) and satisfies
54

| im0 (K1)
then there exists a unique solution v € C((-T,T),H*) N X} of the KdV equation
(1.1) for a certain time interval (~T,T) and for any t € (=T,0) U (0,T) v(t,-) is
analytic function in space variable and for z € R, v(-,x) is of Gevrey 3 with respect
to time variable.

1(282)* ]l ar- < oo,

Remark 3. Both in Theorem and Corollary, the assumption on the initial data
implies the analyticity and Gevrey 3 regularity except the origin respectively. In this
sense, those results states that the singularity at the origin immediately disappears
after ¢ > 0 or ¢ < 0 up to analyticity.

Remark 4. Some related results are obtained for the linear and nonlinear Schrodinger
equations. For linear variable coefficient case, see Kajitani-Wakabayashi [11] and for
nonlinear case, Chihara [3]. They give a global weighted uniform estimates of the
solution with arbitrary order of derivatives in space variable. Even in our case, we
expect.that the similar uniform bounds are available. |

2. METHOD OF THE PROOF

Our method is based on the following observation. Firstly, we introduce the gen-
erator of the dilation P = 3t0; + 20, for the linear part of the KdV equation. Noting
the commutation relation with the linear KAV operator L = 9; + 02:

(L, P] =3L,
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it follows

(2.1) | LP* = (P + 3)*L,
(2.2) - (P +3)*0, = 0,(P +2)*

for any £ =1,2,---. Applying P = 3td, + =0, to the KdV equation, we have
 OU(P*o) + 82(PFu) = (P +3) Lo = (P + 3)(—0.(0?)
= —0,(P + 2)*v?.
We set v, = P¥v and Bi(v,v) = 8,(P + 2)*v%. Noting that
(P+2)v=(P+2)"'Pv+2(P+2)wv=
(24 = zlj —.—“——zl-fpﬂ
(=)

(23)

WeE see

Bi(v,v) =0,(P + 2)*(v*) = 0, Z (l) (P +2)wP*

:axizlj ( )( )21 ™ Py PRy

& 8 (vkz Uks )

I
]

!
k=ky+ko+k3 ky! k2 k3

The above nonlinear term maintains the bilinear structure like the original KdV
equation, since the Leibniz law can be applicable for the operator P. Now each vy
satisfies the following system of equations;

Ok + OPvg + Br(v,v) = 0, t,z € R,
’Uk(O,:U) - (mar)k¢($)’

Therefore we firstly establish the local well-posedness of the solution to the following

(2.5) k=0,1,2,

infinitely coupled system of KdV equation in a suitable weak space:
k=0,1,2,---.
’Uk(O,IIJ) = ¢k(z)7 ’

By taking ¢y = (z0.)*#(z), the uniqueness and local well-posedness yields that
vy = Pfvforall k =0,1,---.
According to Bourgain [2], we introduce the Fourier restriction space;

Xy ={f € S'(R*); || fllx; < oo},

(2.6) {Gtvk + 8§vk + By (v, U) =0, t,x € R,
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where »
Hfllxs =c [[(r = €)2&P\f (7, &) Pdrde = V(=) fIBpgnsy
It has been proven that the KdV equation is well-posed in the above space X; when

s > —3/4 with b > 1/2. The space where we solve the system (2.6) is infinite sum

of copies of this space. Let f = (fo, f1,"--,fx, -+ ) denotes the infinite series of
distributions and define

'AAO(X:) = {f = (.anfb' e afka' ");fi € le (Z = 0,1,2,"') such tha’t”fHAAo < OO},

“where
00 AIS
1 fllas, = Z llfkllx

The system (2.6) will be shown to be well—posed in the above space if s > —3/4 and
b > 1/2 under the assumption for the initial data

lok||me < CAfk! k=01,

The well-posedness is derived by utilizing the contraction principle argument to the
corresponding system of integral equations:

271) () = BV — 90 [ Vi~ () Balo, 0)(E)dt

The following estimates of linear and nonlinear part due to Bourgain [2] and refined
by Kenig-Ponce-Vega [17] are our essential tools.

Lemma 2.1 ([2],(17],[18]). Let s € R; a,a’ € (0,1/2), b€ (1/2,1)and § < 1. Then
for any k =0,1,2,---, we have

(2.8) : 125 x| x:, < Cg(a—a')/4(l—a')”qgk”Xia’,
(2.9) 1405V (1) dillx; < CE*°|| il
(2.10) [ /0 t V(t—t)F(t)dt || x; < C8Y* || Fllxe,

Lemma 2.2 (121,[17),(18]). Let s > —3/4, bt/ € (1/2,7/12) with b < . Then for
any k,1 =0,1,2,---, we have

(2.11) 10 (Ukvz)HX, »
Proof of Lemma 2.1 and 2.2. See [17] and [18]. O

From Lemma 2.2, it is immediately obtained the bilinear estimate for the nonlin-
earity for the system.
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Corollary 2.3. Let s > —3/4, b,¥ € (1/2,7/12) with b < b'. Then we have
k! ‘
(2.12) |Be(v,9)llx;,_, <C 28— [lvk, [l xz [l oka |l ;.
b'—1 k:k1§2+k3 kl'kQ!kg' 2 b ® b

We construct a contraction map via the integral equations. Set a map ® : {vx}32, —

{vk(t)}2, such that & = (@4, ®,,---) and

Bi(d6) = WV ()8 — ¥ [ V(E—1)br(t) Balv, )(¢)dt

We show that @ : Ay, (H®) — Aa, (X}) is contraction. \
In fact, by using Lemma 2.1 and Lemma 2.2, we easily see that for any & > 0,

@k (vi)llx; <Colldrllme + C1T#|[Bi(v,v)llx;, _,

(2.13) oK
_<_00”¢k| Hs + ClT” k=k1§2+k3 2% m”@kz HX; “’Uk3| X

By taking a sum in k,

00 Ak

I“‘I’|||AA1(X§) Z L! ”kaXE
oo A 00 Ak k!
<Cy kzz:o F”@c”}{s + CyT* kz:% _l—cTO k:h% " 9k %..W”vk2 ||X§ H'Uks ng
A AR A

Coll@llan ey +C:T* 3> 3o 27

k=0 k=k; +k2+k3

Tl Tl —llvellxs 7 ™ llvks | x;

o0 A o0 A 3
<Col|p|lan, ey + C1T* Z gkt 20 , Z II k|l xs D —k—“—,llvkallx;-
k1=0 ky! kg—O ka=0 "v3°

Hence we have

12 (0)llan, xp) < Collllany ey + Cre* T ol (xp)

and also we have the estimate for the difference

19(v) = B(®)lan, xg) < Cre T (ol crp) + W8lan, ccp) o = Tl (xp)-

Choosing T small enough, the map ® is contraction from

00 k

A
Xr={f = (fo, fr,)i fi € X3, 30 27 fellxg <2CoMo}

to itself, where Mo = ||4|| 4, (zr¢)- A similar argument in [1] gives us the uniqueness
of the system of the solution. This shows the proof of well-posedness.
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Hence under the assumption for the initial function
(z0:)e¢|lws < CA*K! k=0,1,---,
the corresponding solution to (KdV) satisfies the estimate

(2.14) || P*v|

x; SCAGK! k=0,1,---.

Multiplying ¢ to the both sides of the first equation of (2.5), we have
1 1
(2.15) tvy = —-§ka + §:c8mvk + tBi(v,v),

from which we gain the regularity of v with (2.14).

For a fixed point (¢, z9) € (0,T) x R, we show that v is analytic near (to, o). Let
a(t,z) € CP(R?) be a cut-off function near (¢, z0) such that suppa C [to — €, +
g] x [zo — €13,z — €'/3]. First we show that

(2.16)  NlaP*oll e mey < CoARR! R =0,1,2,---,
for some positive constants C; and A,. This is shown by using the following lemma:

Lemma 2.4. Let P = 3t0, + 20, be the generator of the dilation and D,, be an
operator defined by Fi (|| + |€]) Frz-

(1) For a freezing point (to, zo), we suppose that g € X]_; with supp g C By (to, o)
and td2g, P*g € X[_,. Then for b € (0,1] and r € (—0,0], we have

217) I Dee)®glle@ar®y) < Clllgllxy_, + 1t03gllxp_, + 1P%gllxp .},

where the constant C' depends on (to,zo) and €.
(2) If g € H*~3(R?) with supp g C Ba:(to, x0) and t02g, P3>g € H*3(R?). Then we
have '

(218) (D) gllr2mey < Cllgllmn-s(ee) + 110291 s @2) + 1P°gllu-s(e2) }
where the constant C' depends on (to,z0) and €.
From (2.16) and (2.15) we can show that
(2.19) laP 0|72 (gey < C3ASK! k= 0,1,2,---,
for some positive constants C's and Aj. (2.19) gives us immediately that

(2'20) lsup ”PkUllHl(xg—el/3,a:0+sl/3) S C3A§k'?
tefto—e,to+e]
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for k =0,1,2,---. From this estimate (2.20) and (2.15) we have with some positive
constants Cy and Ay,

(221) te[tos-—lieo+s] ”(tl/sax)lpkv”Hl(.'l:o—51/3,:z:o+sl/3) < C4Aft+k(l + k)"

for m,k =0,1,2,---. This is shown by induction with réspect to [. From (2.21) and
(2.15) we have with some positive constants Cs and As,

(222) sup Haznaiv”Hl(:z:o—sl/s,zo+el/3) < C5A15n+l(m + l)')
t€[to—e,to+e]
for m,1=0,1,2,---, which shows that v is real analytic in (t,:;c) near (g, Zo).
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