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1 Introduction

Since Bellman and Zadeh'’s seminal paper [4], a large amount of efforts has been devoted to
the study of decision-making in a fuzzy environemnt ([5],[12],(13],[14],[20]). Bellman and
Zadeh have originated three kinds of systems in fuzzy environment; deterministic, stochastic
and fuzzy systems. Of the three, they give a detailed analysis on both deterministic and
stochastic systems in [4]. Further Iwamoto and Fujita [9] have analyzed stochastic system
by use of the regular (i.e., multiplication-addition) expectation operator.

However, as for the terminology fuzzy system, Bellman and Zadeh only touched it. This |
has motivated further researches. Baldwin and Pilsworth [1] have derived a dynamic pro-
gramming functional equation for a fuzzy system defined by fuzzy automata. Recently
Iwamoto and Sniedovich [10] have proposed a decision process with fuzzy system where
a fuzzy expectation is taken by use of minimum-mazimum operator. Both papers [9],[10]
have applied an invariant imbedding method ([3],[15]).

In this paper, we are concerned with a large class of fuzzy dynamic programs. We
focus our attention on a duality between optimal value functions in the class. In a few
typical environments, we optimize a fuzzy-like expected value of the associatively combined
aggregation (fuzzy variable) of stage-wise memberships.

In §2 we give notations and definitions used in the paper. In §3 we formulate a fuzzy
dyamic program in a general environment. By imposing two additional parameters on as-
sociative aggregations, we derive a parametrized recursive equation for the fuzzy dynamic
program. Further, we show that a substitution of left-identity elements for the two pa-
rameters yields the desired optimum value. This is an invariant imbedding technique (Lee
[15], see also [3]). In §4 we define a dual of fuzzy dyamic program. Two duality theorems
between primal and dual optimal value functions are shown. In §5 we introduce two typical
environments; fuzzy environment and quasi-stochastic environment. Further we illustrate
both maximum-minimum process and minimum-minimum process in fuzzy environment
and multiplicative-multiplicative process in quasi-stochastic environment. Specifying their
dual fuzzy dynamic programs, we verify that the duality relation holds between primal and
dual ones.
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2 Notations and Definitions
Throughout the paper, we use the following notations and definitions. Let a binary relation
©® :[0,1] x [0,1] — [0,1] be associative :

(z0y)©z=20(F0O2) | (1)

The common value is denoted by z®y® 2. We use the multiple notation z;0z2®- - Oz, .
Further we assume that it is commutative : ‘

TOY=yQx. (2)

Any 7 satisfying
forz=z Vzel]]

is called a left-identity element for ©. We say that the binary relation ® is monotone if
y<z = z0y<z®z Vrel1]. (3)

Both commutativity and associativity enable us to define the operator @ for any function
g:V —0,1] as follows :

O g(w) := g(v1) © g(va) © - -- © g(wi)- (4)
veV

where V = {v1,vs,...,vx} is a finite set. Just like the summation
Y g(v) == g(v1) + g(v2) + - -+ + g(v) (5)
vEV

we use similar notations ; Pg(v), @Qg(v)
veV veV
We define the following operations

()ﬁ::{ MR o Opt:{ M.ax

Max min
a:=1—a, f(x) :yzl—f(x) for f: X —[0,1]
a®b:=a®b.

We say that © is the dual binary relation of ©. Thus we see the dual operation preserves
(inherits) commutativity, associativity and monotonicity. Therefore, we define

P 9(v) = g(v)Bg(v2)® - - - Bg(vi)- ' (6)

We say that an ordered pair of binary relations (o, %) is dual if

= *. (7)

<l

We also say that a pair of functions f, F': X — R is dual if
. P

s
~—~

co
S’

that is
f(e)+ F(z)=1 VzelX. (9)
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3 Fuzzy Dynamic Program

A fuzzy dynamic program (FDP) is specified by a six-tuple:

F=<0pt, {1, {A}Y, ({}ls @ &), ({m}y, o), (®,®) >

where the compoments are specified as follows.
(i) Let N be a positive integer; total number of stages. The subscript n ranges 1 < n <
N (or N +1). It specifies the current number of stage. ‘
(ii) Let S, be a nonempty finite set; n-th state space. Its element s, € S, is called an n-th
states. sp is an wnitial state. syy1 is a terminal state. '
(iii) Let A, be a nonempty finite set; n-th action space. Let A,(s,) C A, be a nonempty
subset; n-th feasible action space at state s,. Its element a, € A,(s,) is called an n-th
action at state s,. ‘
(iv) Let vy, : SpxA, — [0, 1] be a membership function of n-th fuzzy set R, on SpxAp, :

Vn(sm an) = UR, (sm an)- (10)

We call v, an n-th membership function. Let € : Syy1 — [0, 1] be a membership function
of terminal fuzzy set T on state space Sy1:

§(svi) = pr(sma)- (11)

We call § a terminal membership function. Let o : [0,1] x [0,1] — [0,1] be an associative
binary relation with a left-identity element A. The relation ® combines assocatively mem-
bership degrees between two adjacent fuzzy sets, objective-membership generator. The
three-tuple ({v,}{,e,&) is called a membership system This system induces the objective
membership of the aggregated fuzzy set Ry * Ry % --- x Ry * T on history (direct) space
H = 51xA1XS9x Agx- - X ANX S

lll‘Rl*Rg*w‘*RN*T(817 ay, 82,042, +,SN,QN, SNH)

= v1(s1,01) @ 1a(s2,a2) @ - - @ Un(sy, an) @ E(Sna)- (12)

Here, the operation * between fuzzy sets corresponds to the binary relation ® between their
memberships:

HKRp*Rpt1 = MR, ® KRy 1 <n< N (RNH = T) KRy = N’T)' (13)

(v) Let pin = pin(Snt1l Sn,an) be an n-th fuzzy transition law from s, onto S,,; depending
on the current action a,. When the system is in state s, on stage n and action a, is
chosen, the next state will become s,;; with membership degree 0 < p,(spy1l8n,a,) <
1. Symbolically we express this kind of transition as follows: s,11 >~ p,(*1sn,a,). Let
o:[0,1] x [0,1] — [0,1] be also associative binary operation with a left-identity element
K, system-membership composer. Combining membership degrees between two adjacent
transitions, it generates a system-membership on the history space H

pa (2|81, a1) 0 pa(ss]se, az) 0 - -+ o un(sSny1lsn, an). (14)
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The pair ({p,}Y, o) is called a fuzzy transition system.

(vi) Let ®,®:[0,1] x [0,1] — [0, 1] be commutative, associative and monotone binary
relations. The operation ® connects objective membership (12) and system-membership
(14), connector. The operation @ integrates in a wide sense all the connected memberships
over the history space, integrator. We call the ordered pair (®, @) an ezpectation-generating
environment. '

(vi) Let Opt denote either Max or min; optimizer. It means that FDP F represents the
fuzzy optimization problem :

Optimize F7[vi(s1,a1) @ v2(s2,a2) @ --- @ un(sy,an) @ E(sn41)]
subject to  ()n Sni1 ™ pn(*lSn,a,) 1<n<N (15)
' (i)n an € Ap(sn) 1<n<N
where F° denotes a fuzzy-like expectation operator on Sy X Sg X -+ X Sy, induced from
the fuzzy transition system ({u,}{, o), a general policy o = {01,09,++-,0n}, and an

initial state s; € S;. Thus we have a “fuzzy-like expected” value of objective membership
function (12)

Folvi(s1,a1) @ a(s9,a2) @ - - @ un(sn, an) @ E(sny1)]
= GB {[vi(s1,01) @ 15(s2,02) @ - -- @ Un (5N, an) @ E(5N41) ] (16)

seSN
®{H1(52|31, ay) o pig(s3|s2,a9) 0+ 0 MN(SN+1|3N, aN)] }

where

a1 = 01(81), ag = 0a(s1,82), -.., ay = on(S1,-..,8N)
3:(82,"',SN+1), SN:SQX---XSN+1.

When the general policy o reduces to the Markov polcy, we write F'™ instead of F°. In
this case, the sequence of actions are chosen as follows :

a; = m(s1), ag =ma(s2), ..., ay = 7n(sSN)-

We note that the Markov policy is not always enough. That is, sometimes there does not
exist an optimal policy in the Markov class ([11]).
Throughout the paper, we use the short notation

Up®Upi10---0Uy @&
for the “fuzzy” variable
Vn(Sn, Qn) ® Vni1(Snt1, Gnr1) @ - @ Un (SN, an) @ §(sn41)

where
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Thus, problem (15) has the following simple form:

Optimize Fo[vy 0150 ---0vy 0]
subject to  (i)n, (ii)n 1<n<N.

Now, let us define for any given 1 <n < N and s, € S, the subproblem :

V¥ (s,) := Opt Foluge---ouyel|()m (i)m n<m<N| (17)

where optimization is taken for all general policies ¢ = {04, Ont1, ..., O }. We remark that
general policy o satisfies

On i Sp = Any Ongt: Sn X Spy1 — Ans1y ooy ON Sy X oo X Sy — Ay
together with the feasibility
Om(Sny -y Sm) € An(Sm) (Sny--+,Sm) € Sp X -+ X Sy, n<m < N.

Then we are concerned with a derivation of recursive equation between the value vV ~"1(s)

and the function vV="(.).
We have two conceivable “formal candidates”:

v (s) = Opt @[ (n(s,a) @ V7" (2)) ® piu(t]s, a) ] (18)
se€S, n=12---,N (19)
and
vV (s) = Opt[va(s,a) @ @(UN_"(t) ® pn(t]s,a) )] (20)
where
WO(s) =&(s) s € Sna (21)

Here optimizations are taken for all a in Ay(s) :

Opt = Opt
a a€An(s)

and the wide integrations for all ¢ in S,4; :

i t€Sn+1
These two simplified notations are also used throughout the paper.
In general, neither (18) nor (20) holds. It is too general to derive such recursive equations.
To do so, we take concrete forms for binary relations e, o, ®, @. In the last section we
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specify fuzzy environment where minimum-minimum process enjoys the validity of these
two equations. '

In this section, we rather apply an invariant imbedding technique ([3],[15]). We imbed
problem (15) into a family of two-parameter problems. Let us consider for any given
sn € S, and A, k € [0,1] the optimization problem :

WV (5,5 N, k) = Opt F[Aevpe---ouy | ()m (i)m n< m < N| (22)

where the fuzzy-like expetation operator F with an augmented Markov policy
7 = {Tn, Tnt1, -, T} and a starting system-membership degree & is defined as follows:
Fridev,e---evyel|(i)m, (i)m n<m<N]

= @D {[)®Va(5n,an) ® Vn1(Sn11,ans1) @ - @ Un(sh,an) @ E(svra) ] (23)
s€SN-n+1 ‘

®[ ko r (St 1|Sns ) © P i1 (SnralSnt, Qn41) 00 pn(sn+1lsw, an)|}-

Here we note that

an = Tp(An, Kny Sn), Qi1 = Tnt1( A1, Fntl, Sat1), - AN = TN (AN, KNy SN)
A=A Antt = An @ Un(Sny @)y --oy ANg1 = AN ® vn(Sn,an)
Kp = K, Kn4l = Kp O un(sn+1|sn, Qn), -y Knt1 = Kn © in(Sn41lsn, an)
8= (Sn41,° "+, SN+1), SN = G XS

Then, the substitution of two left-identity elements yields an optimal value
N (s N R) =0V T (s) s €S, 1Sn< N (24)

(This fact is justified by considering a correspondence between the class of all general poli-
cies and the class of the augmented Markov ones. Since we are concerned with recusiveness
and duality for optimal value functions, we do not discuss the justification. For the details,

see [11]).
At the same time, we have the following recursive equation for the value
uN-"+1(s: \, k) and the three-variable function u™™"(-; -, -) :

THEOREM 3.1 (Two-parametric Recursive Equation)
N (55 0\ k) = Opt @D wN Tt A e (s, a), K o pa(tls, @) (25)
¢t

seS, MNkel0,] n=12---,N
W(s; k) =[Neé(s)]®k  s€Svn  ANk€[01]. (26)

Here is a separation problem whether the identity
uN T (s M, k) = e oV ()] ®@ Kk (27)

holds or not. According to the commuatativity, associativity and others in e,0,® and @,
this problem is also solved in the following sections.



4 Dual Fuzzy Dynamic Program
Given a (primal) fuzzy dynamic program (FDP)

F =< Opt, {Sn}iVHv {An}iv: ({Vn}ivw o, {), ({Nn}{v) °), (®®) >,

we define its dual FDP G by the following six-tuple:

G =<Opt, (S H™, {41, (7, 8 8), (mh, 0), (8,8) >

Thus G represents the fuzzy optimization problem :

Optimize F7[Ti(s1,a1) §75(s2,a2) ® - $Ux (5N, an) E(sn11) |
subject to (i), Spp1 ¥ Fn(*lsn,an) 1<n<N
(ii)n an € An(s,) 1<n<N

where the “fuzzy-like expected” value is in turn

Fi[’/_l(sl, a1)®5(sg,az)® - - - 7_171?(3N,GN)7§(8N+1)]
= D {[7(s1,01)9T5(s2,09) ® -+ - $Ux(sy, an) $E(sn1) ]
seSN __

®[ i1 (s2]s1,a1) O i2(s3|82,02) T - - - SN (SN41]Snyan) ]}

We consider two corresponding families of subproblems. One has no parameter:

VN-mH(g) = _UISEFU[Wi'“?WiEI(i);n’ (ii)m n<m< N

Sp € Sp.
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(30)

where the optimization in (30) is taken for all general policies {¢}. The other is two-

parametric:

—_ ’

UN-™(s- )\ k) = Opt Fl[Asv e ---svyel (i), (i)m n<m<N|] (31)

Sn € Sny Ak €10,1].

We note that the optimization in (31) is taken for all augmented Markov policies {r}. Then

we have the recursive equation for two-parametric subproblems:
COROLLARY 4.1 (Recursive Equation)
UM (5, k) = OptED UV (4 AS (s, a), KO Tm(tls, a))
¢ ¢

seS, MNke€el0,]] n=12---,N
Ul(s; \ k) = [\®E(s)|[®x  s€Sny1 MNe€[0,1].

Further we have the following dual relations between F and G:
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THEOREM 4.1 (Duality Theorem 1) The pair of optimal membership functions
{v"}V* for F and optimal membership functions {V*}{'* for G is dual:

vMs)+V™s)=1 Vs€ S, 1<n<N+1 | (34)

that s
Vi=v" 1<n<N+1 (35)

THEOREM 4.2 (Duality Theorem 2) The pair of optimal membership functions

{ur 3+ for F and optimal membership functions {U"}' 1! for G is dual in the following

sense: , ‘
Ur(s; N\ k) =u™(s; \,E) Vs€ S, Mkel0,1], 1<n<N+1L (36)

5 Fuzzy and Quasi-Stochastic Environments

In this section we consider two typical environments. One is fuzzy environment (® :=
A, @ := V). The fuzzy environment has the minimum connector and the mazimum
integrator. The other is quasi-stochastic environment (® := x, @ := U), where alUb =
(a 4+ b) A 1. The quasi-stochastic environment has the multiplicative connector and the
bounded-additive integrator. We illustrate two primal fuzzy dynamic programs in fuzzy
environment and a primal fuzzy dynamic program in quasi-stochastic one. We give their
dual fuzzy dynamic programs. ‘

Let X, U be two nonempty finite sets throughout this section. We take both sets X, Uas
state space and action space, respectively:

S, =X, A,=A=U.

5.1 Maxi-mini Process in Fuzzy Environment

As a primal primal FDP, we consider the mazimum objective (¢ := V) and the minimum
system (o := A) in fuzzy environment : '

F=<Max, {S:1H, {4}, ({wad?, V) €), (bl A)y (A V) >
Then F represents the fuzzy maximization problem:

Maximize F°[vy(z1,u1) V va(ze,us) V -+ Vun(zn, un) V E(TN11) ]
subject to (i)n ZTpp1 = pn(*lZn,un) 1<n <N (37)
(i)a uw €U 1<n<N.

Note that the fuzzy-expected value becomes

\ { vz, w) V va(@e,u9) V- Von (e, un) V §(Tn1) ] (38)

xzeXN
A (@alTr, wi) A pa(zs|za, ug) A A pn(ensiley, un) |}
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where
N
x=(Tg, ", Tny1)s X" = Xx---xX.

In this subsection, we imbed problem (37) into a family of one-parameter problems. Let
us consider for any given s, € S, and A € [0, 1] the optimization problem :

w503 0) = Opt FT AV v, V- Vun VE| (m, (i)m n<m<N]  ~(39)

where the fuzzy-like expetation operator F™ with a one-dimensionally augmented Markov
policy 7 = {7y, Tn+1, .., *n}. Then the corresponding one-parametric recursive equation
holds:

THEOREM 5.1 (One-parametric Recursive Equation)

uN (z;A) = 1\7{1635( \/ [’U’N*n(% AV vp(z,u)) A Nn(y'mv u)} (40)
yeX
n=12---,N
w(z;\) = AV E(z) A€0,1], z€ X. (41)

Proof Note that V is distributive over A. Then the proof is the same as for the two-
parametric recursive equation. O

On the other hand, its dual FDP ,
¢ =<min, {S; 1", {4}, [T}, A &), (), V), (V,A) >
represents the fuzzy minimization problem:
minimize F7[77(z1,u1) A Ta(z2,u2) A+ - AUN(Zw, un) A &(Tni1)]
subject to  (I)n Tnp1 2 (1 zp,u,) 1<n <N (42)
(i) uo€U 1<n<N
where the objective function is

N {7i(@1, w) ATa(20,u9) A -+ A VR (zN, un) A &(zns)] (43)
2€XN V[ (z2|z, w) V B2(z3|T2, u) V - - - V BN (TN 41 2N, un) ]}

The dual FDP G admits the following one-parametric recursive equation:

COROLLARY 5.1

N ) = mip A (VYA T ) VRG] (44
eX
’ n=12,---,N
U>z; ) =AAE(r)  x2z€X  Xe(01] (45)

We see that the duality relation
Uz A) =u™(z;)) Ve eX, Ae€[0,1], 1<n<N+1 (46)
holds between F and G.
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- 5.2 Bellman and Zadeh’s Fuzzy System

Recently Iwamoto and Sniedovich ([10]) have proposed a sequential decision process with
fuzzy dynamics, which is viewed as a FDP

H = < Max, {Sn}i\[Hv {An}{vv '({Vn}iva A, €), ({Nn}ivv N)y (A, V) >

We see that H is the mini-mini process in fuzzy environment. It has the minimum objective
(e := A) and the minimum system (o := A). This process represents the fuzzy maxmization
problem: ‘

Maximize F™[vy(x1,u1) A va(Ze,u2) A -+ Avn(Zn, un) A E(@N41) ]
subject to  ()n Zpg1 = pn(*l Tp,un) 1<n <N (47)
(i) uwe€U 1<n<N.

We remark that it suffices to restrict the fuzzy-like expected value to the class of all the
regular (nonaugmented) Markov policies {7} ([10]) :

V { vz, u) Ava(mg,ug) A Avn(zn, un) A&(Tn1)] (48)

zeXN
Al pa(@2lzr, ur) A po(@s|ze, ua) A -+ A pv(@nilen, un) | }

where

Uy = 7T1(£L'1), U9y = 7T2($2), ey, U = WN(.CEN).

The corresponding non-parametric recursive equation holds:

COROLLARY 5.2 (Non-parametric Recursive Equation [10])

VN ) = Max V[l u) A 077 () A iyl ) (49)
n=12---,N
(z) = &(2) x € X. (50),

Note that Eq (49) has the regular expression :

VT (z) = Max[va(z, u) A\ (0N ) A pa(yle,w)) ] (51)

uelU yex

On the other hand, its dual FDP K has the following six-tuple:
Then K represents the fuzzy minimization problem:

minimize F7™[71(z1,u) V 7a(z2,u2) V -+ - V UN(TN, uN) VE(xni1)]
subject to (o Tnt1 = Fn(*lZn,un) 1<n<N (52)
' (i), u, €U 1<n<N.



This objective value for Markov policy = is

A {7i(z,w) V722, u9) V -+ -V 7N (2N, un) V E(@n+1)] |

VIFL(z2]z1, wi) V Ba(z3|z9, u2) V - - - V EN (N1 ]2n, un) | }-

The corresponding non-parametric recursive equation holds:

COROLLARY 5.3

VT () = min A [7alz,u) v (VF(y) V n(yle, )]

n=12---,N
VO(z) = &(2) r € X.

We have the regular expressibn for Eq (54) as follows :

VI (o) = min[ma(z,w) V. A (VYY) V Ea(yle, w) ).

We see that the dual relation
Vr=9" 1<n<N+1

is valid for ‘H and K.

5.3 Multi-multi Process in Quasi-Stochastic Environment
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We consider the multiplicative-multiplicative process in quasi-stochastic environment. It
has multiplicative objective (e := x) and the multiplicative system (o := x). This process

is representeted by FDP

F =< Max, {S:H7, (AR, (Y, %, €), (%), (x,L) >,

where
alb=(a+b)Al, albUc=(a+b+c)Al

Note that U is not distributive over x. The F represents the quasi-stochastic maximization

problem:

Maximize F7[vy(21,u1)va(xa, ug) -+ - vn (T, un)€(zna1)]
subject to  (1)n ZTpp1 = pn(*lzp,u,) 1< N
)y uwe€U 1<n<AN.

'The expected value for general policy o is

L_l {[vi(z1, ua)va(m2, u2) - - vn (TN, un)E(ZN41) |

zeXN
X (o), wn ) pa (3|, up) - - v (@n ot Ty, un) ] -



We note that ,
L] f@) = (O fF@) AL=(f(ur) + flva) +- -+ fwp)) Al
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(60)
veV veEV
where V' = {v1,v,...,v}. Then the corresponding two-parametric recursive equation
holds: :
COROLLARY 5.4
w2 k) = Max || [ (y; Avn (@, ), mpn(yle, u)) (61)
: “ yeX
n=12,---,N
w0 (z;\) = X(2)k ANk €01, zeX. (62)
In general, neither the non—parametric recursive equation
vV (2) = Max | | [va(z, w)o™” ”(y)un(ylfc, u)] (63)
uel yex
nor the corresponding regular expression
oV () = Max|va(a, u) || (0" (9)n(vl, )] (64)
yeX
holds.
On the other hand, the dual FDP G has the following six-tuple:
¢ =<min, {S:}7, {41, ({(mh, X 8), (mh, X), ) >
where
axb=a+b—ab
aNb=alb=(a+b—-1)VO
aNbNec=alUbUc=(a+b+c—2)VO0.
Then the G represents the fuzzy minimization problem:
minimize F°[77(z1, u)XT(22, u2)X - - XUN (TN, un) XE(Tn11) ]
subject to  ()n ZTnt1 = Ea(*l Zn,un) 1<n<N ' (65)
(i), u, €U 1<n<N.
This objective value for general policy o is
LI {7521, w)X75(25, 1) X - - KON (2, un) XE(@n11)] (66)
=€ XN ><[Ml(-”«“2|$1aul)Xﬂz(%lemuz)x - XAN(@N]TN, un) |
Here we rematk that »
[_|g( =D g(v)—k) V0= (g(v:) + g(va) + -+ g(vks1) — k) VO (67)
vEV veV 2 . .
where k + 1 is the cardinal number of the finite set V' = {vy,vq, ..., Vk+1}

The corresponding two-parametric recursive equation holds:
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COROLLARY 5.5

UM (@A k) = min || [UN (4 AXTn(e, w), kX Elylz, w) ] (68)
u yex
n:v1,2,...’N
U(z; \ k) = AXE(2) XK ANk €[0,1], z€X. (69)

We also see the dual relation
Ur(s; 0 k) =u™(s;\E) YAK€E0,1], s€S,, 1<n<N+1 (70)

is still valid for F and G.

Concluding Remarks on Stochastic Environment

In this paper we have proposed gquasi-stochastic environment by taking the multiplicative
connector (® := x) and the bounded-additive integrator (& := L), where alib = (a+b)A1.
In the same way we can define stochastic environment by taking the multiplicative connector
(® := x) and the (regular) additive integrator (& := +). Further we impose that the
stochastic environment takes a Markov transition system ({u,}?, o) :

0:= X
Zﬂn(yh‘,u) =1 Y(z,u) e XxU, n=1,2,---,N

yeX

However the addition + does not map [0, 1] x [0, 1] into [0, 1]. This is the main reason why
we have developped a duality not in the stochastic environment but in the quasi-stochastic
one.
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