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Constructions of bounded weak approximate
identities for Segal algebras on R"

JerEE RFEENER H EHMIE (Jyunji Inoue )
IIFE R T2 & 18 (B Bt ( Sin-Ei Takahasi )

In this paper we study bounded weak approximate identities for Segal
algebras on R". In particular we show that, if a Segal algebra A on R"
belongs to some familiar class, we can construct bounded weak approx-
imate identities for A of norm 1. This results imply at once that Segal
algebras in this class are BSE-algebras. Examples of Segal algebras which

have no bounded weak approximate identities are also given.

1. Introduction. In the paper of Lahr [2], the bounded weak approximate
identities for commutative Banach algebras were defined and used successfully to
characterize the existence of the unit element in the structure space of a commu-
tative convolution measure algebra. Further, an exarﬁple of a convolution measure
algebra which has bounded weak approximate identities without no bounded (norm)
approximate identities was presented by Jones and Lahr [1].

On the other hand, it was discovered by the second author and Hatori [9] that
the bounded weak approximate identities were also important to decide Whether a
commutative Banach algebra is a BSE-algebra or not. In particular, a Segal algebra

A on G is BSE if and only if A has bounded weak approximate identities.
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In this paper we investigate bounded weak approximate identities for Segal al-

gebras A on R", and get the following results.

Theorem 3 For each 1 < p < 0, SP(R™) has bounded weak approrimate

identitities of norm 1.

Theorem 5 For each 1 < p < 0o, A,(R") has bounded weak approrimate

identities of norm 1.

Theorem 6 Suppose that G is a non-disicrete LCA group, 1 < p < 09,
and v 1s a positive Radon measure on G which has un unbounded discrete part;

> eqV({7}) = co. Then A, (G) has no bounded weak approzimate identities.

2. Preliminaries. Let A be a commutative semisimple Banach algebra with
the maximal ideal space Aa. A net {ex}rea in A is called a bounded weak ap-
proximate identity for A of norm C if (i) sup{|lex][a : A € A}Vz C < oo and (ii)
limy | ¢(aes) — ¢(a) |=0 (¢ € Ba)-

It is easy to see that a net {ex}aca in A is an bounded weak approximate identity

for A if and only if the relation limy ¢(ex) = 1 (¢ € Aa) holds.

Let G be a locally compact abelian group with the dual gourp G, aﬁd let L}Y(G)
and M(G) denote the group algebra and the measure algebra on G, respectively.

A subspace S(@) of L(G) is called a Segal algebra if (i) S(G) is dense in LY(G)
, (ii) S(G) is a Banach space under norm || - ||s() satisfying ||fls@) 2 £l ( fe
S(G)), (iii) S(G) is invariant under the translation; f, € S(G) (f € S (@),a € G),
where fo(z) = f(z —a). (i) Ifallsie) = Ifllse) (f € S(G),a € G), (v) for each
f € S(G), the map a — f, is continuous from G into S(G). | | |

Further, it is known that a Segal algebra S(G) satisfies the following additional

properties: (vi) || * ulls@) < Ifls@llull (f € S(@),n € M(G)), (vi)) S(G) is
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Bancach algebra whose maximal ideal space can be idenitified with G, (viii) S(G)
has a bounded (norm) approximate identity if and only if S(G) equals to the group
algebra L'(G).

Examples ( [8]). (i) Foreach 1 < p < co, we put SP(G) = L(G) N LP(G).

Define norm by

Ifllsn = max{lflls If1}  (F € S*(E).

Then Sp(G) is a Segal algebra.
(ii) Let G be a non-discrete LCA group, and let v be an unbounded positive
Radon measure on Gand1< p < co. We put |
1/p

Aps©) = {1 € LXG) : Il = ([, 1 7 PP atv()) < oo},

where f is the Fourier transform of f. Then A, (G) is a Segal algebra with norm

1l 4y = wax{| flls, I Fllp} (f € Apu(G)).

In particular, when v is the Haar measure meg on G, we simply denote Apm,(G) by
A,(G).

SP(G) and A,(G) are typical and well known example of Segal algebras, which
were studied by several authors ( [3], [4], [5], [6], [7], [8], [10]).

3. Bounded weak approximate identities for Segal algebras

Lemma 1 (Jones and Lahr [1]). Let G be an infinite discrete abelian group.
Then there exists a net {ga} C G \ {0}, such that limy(gr,7) =1 (v € G).

Lemma 2 Let {z1,...,2n} be a finite subset of R, and let ¢ > 0 be arbitrary.
Then there ea:z'éts a sequence {ni,ng,...} of natural numbers such that n, < ny < ...

and | ™% —1|<e (1<j<m, k=1,2,..).
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Proof. By Lemma 1, there exists a net of non-zero integers {nx}xca, such that
ei™? — 1 for each z € R. Since e — ‘1 for each z € R, we can assume that all
n, are positive integers. In this case, we have ny — co. In fact if not, then there
exists a subnet {ny} of {n,} which converges to some integer nq # 0, hence e™* = 1
for each £ € R, a contradiction. Then the elementary convergence argument implies

the desired result. Q.E.D.

Theorem 3 For each 1 < p < 0o, SP(R"™) has weak approximate identitities
of norm 1.

Proof. First we prove the case n = 1. Let ¢ > 0 and a finite subset F' =
{&1,€2, ..y Emo } Of R be arbitrary. Then we can fined M > 0 and a natural number

ng such that

Fg['—MaM]) ' (1)
nop(§) — 1| < /2 (€ € (=M, M), | )

where A?E is Fourier transform of the characteristic function Xg of the interval

E = [E_n—la’ ﬁa] Further, by Lemma 2, we can choose positive integers Ny, Na, ..., Ny,

such that
(E——Nk)ﬂ(E—Ng):(Z)(1§k<£§n0), | (3)
N e .
I esz@ —1 l_<_ m J= 1,...mg, k= 1,...,np. (4)

Put e = e F,é: = S, Xe_nN;, then it follows from (2) and (3) that
J J _ .

<2+5
- 2n

I‘;%E(EJ) (.] = 1727°",m0)’ (5)

llell seery = 1. (6)

Further, by (2), (4) and (5), we have

l6€) =11 = |3 Bom (&) -1
k=1
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= ¢k Bg(€;) — no X (£5) + noX (&) — 1‘
k=1
< i ek _ 1”2,5(5,-) + |noXa(€;) — 1‘

k=1

e 24 € € ¢
—»:—-——f———_— ‘:1,2,...7 . 7
"y o T2 2 t3 ¢ U mo) (M)

Let A := {e(F,¢e) : F C R (finite set), € > 0} , and define partial order in A by

(F1,e1) < (Fy,e9) if and only if F; C F5, and &3 < €.

Then it is obvious by (6) and (7) that {e(F,€)}(#e)cn is a bounded weak approximate
identity for SP(R) of norm 1.

Now, let us consider the general case; n > 1. Let ¢ > 0 and a finite subset
F = {&,...,&me} of R™ be arbitrary, where §; = (§;1,...,§;n) for j = 1,...,my.
Set Fy = {145y &mox} for k=1,...,n. As we have proved above, we can choose

er € LY(R) k=1,2,...,n such that

max{|lexl[1, [lexllp} <1, [&(&p) — 1< e/n (G=1,...,mq).

We define e,y € L'(R™) by

ere (1, ,:z:n)) = iI ek(:ck)‘ ((zq,...,zn) € R™).

Then we have

n T oon
max{|le(re |1, lewmellp} = max{] lexlls, I llexlls} < 1,
k=1 k=1

and
k-1

k
leFe (&) —1] < [Té&e) — T] &) | + | E0(&50) — 1|
=1 =1

S é;(gj,k) -1 |S € (.7 = 1"")m0)'

n
1>
k=2
n
> |
k=1

Therefore we can constract a bouded weak approximate identity {er.)}(Fe)ca
for SP(R™) of norm 1, where A = {(F, €) : F C R*(finite set),e > 0} is a directed

set with the partial order defined in the same way as in the case n = 1. Q.E.D.
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Lemma 4 For each 1 < p < 0o, we have
Ai(R™) C Ap(R™) and || fllapzm) < 1 fllasemy (f € Ar(R™)).

Proof. Let f € Aj(R") and 1 < p < co. We consider the two cases: v
O Ml S UFll Set g = pfp. Then [|gllee < llglh = 1 and hence [|g]}5 <
4ll1 < 1. Therefore ||g||a,@&m) = lgllayr (= 1) and so || flla,rmy = ||.f ]| 4y (am)-

(@) Ifll: > £l Set g= £ Then 1= |3l > [lgll and hence [lg]la,(m) = 1.
Also since ||g]le < |lgll1 < 1, it follows that ||§||g < |lglls =1 and so ||Q||Ap(Rn) <1.

Thus we obtain ||g”Ap(Rn) < |lgll ay(rmy, Which implies that || flja,rr) < || f|lay&n)-
Q.E.D.

Theorem 5 For each 1 < p < .oo, Ap(R™) has bounded weak approrimate
identities of norm 1.

Proof. By Lemma 4, it suffices to prove only for p = 1.

First we prove the case n = 1. Consider any finite set F' = {£1,...,&m,} of R and
any € > 0. Set u = X|_1/2,1/2) * X_1/2,1/2) and let ¢ be the Fourier inverse transform
of u. Then ¢ = u and ||@||; = ||lull; = 1. Choose § > 0 such that 1 — u(£) < ¢ for
all £ € [-6,8] , and take a natural number ng such that |§%! <6(j=1,..,mp).
Furthermore, take a sufficiently large number Ly > 0 such that |2/C?_n0,,‘lo] &) < e
for all | £ |[> Lg. Also, by Lemma 2, we can choose a finite set {NVi,..., Npo}
of natural numbers such that Ly < Ny, Ly < Njj1 — N; (5 = ‘1,...,n0 — 1) and
| e%iNe — 1 |< £ (j=1,..,mo;k=1,...,n0). Set

= ._]:.. S 6Nk + 6—Nk

== d = !
g 22 5 and  T(Fe) = px Pk g,

where 6y, is an unit point mass at Ng, and ¢n, () = nod(nez) (= € R). Obviéusly
we have 8;(§) = e (z € R), il§) = g TiZa(e7™ + V) and o (§) =
u(;fa) (& € R). We shall show that

InEellarm <1+€ and |é(§) —1l<e (§=1,...,my).
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To do this, note that

77(/1?,\5)(5) = ﬁ(€)2$no (§) =U ( § )47110 Z (e—szk + ezéNk)( —iEN; + eile)’

k,l=1

for each € € R. Hence we have

liEe il < Z (e”’gN" + Nk (7N - Mg
4”0 k=1
1
— 1 [E E X[ —no,n0) (ElNk +£2Ng)
ng k#l £1,£2=2+1

+ Z( X{—no,no) (—2Nk) + X—no no) (2Nk) + 4n0>]

1
< an—% (4(728 —ng)€ + 2nge + 4n0) <l+e.

Also [[1ealn < 1121 6nolls < Il = 1, 50 we have ey, < 1+e. Moreover,

| (&) =11 = \ﬂ(ﬁj)QU(g) —'1l

< 1~ 11 +jate (s 1))
< zm<£j>—1|+\u(,§—’>—11

< 29— e~ %Nk _ ] €GNk _ ]
< 21n(5+8>+8—e
= “ony °\4 ' 4) 277

forall j=1,....m

Let A = {(F,¢) : F C R (finite set), & > 0} be the directed set introduced in
the proof of Theorem 3. For each A 3 (F,¢), set e(Fe) = -1—115/317( Fe/2)- Then we have
le@ellaym <1 and

| O~ 1= T rgleEn© ~ 1-¢/2| < s <€ (€€ )

Therefore we see that {6(F,s)}(F,e)eA is a bounded weak approximate identity for

A;1(R) of norm 1.
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Now let us consider the general case; n > 1. In this case, we can constract
bounded weak approximate identities for A;(R") of norm 1 from bounded weak
approximate identities for A;(R) of norm 1 by the same way as in theorem 3 above,

and the proof is complete. Q.E.D.

Although, as we have seen, SP(R") and A,(R") have weak approximate identities,
it is not true that every Segal algebra on R™ has weak approximate identities, as
the next theorem shows.

Theorem 6 Suppose that G is a non-disicrete LCA group, 1 < p < o0,
and v is a posiltive Radon measure on G which has un unbounded discrete part;

>, cav({7}) = co. Then A, (G) has no bounded weak approximate identities.

Proof. Suppose, on the contrary, that there exists a bounded weak approximate
identity {ex}xea for A, ,(G). Since v has an unbounded discrete part, we can choose
an infinite sequence {7,} of elemtnts of G such that 3%, v({¥.}) = co. Then by

the definition of the norm of ||ex|| 4, (), We get

o0

' . 1/p
sup lenl .00 2 sgp(z | P rnb) (8)

n=1

But the right side of the inequality (8) is infinite since 3, v({¥.}) = co and
limyex(y) = 1 (y € G). This contradict to the assumption that {ex}xea has a
bounded norm. Q.E.D.
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