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NASH FUNCTIONS ON NONCOMPACT NASH MANIFOLDS

MicHEL COSTE AND MASAHIRO SHIOTA
(35 8 & 34)
'§1. INTRODUCTION

A Nash manifold is a semialgebraic C*® submanifold of a Euclidean space. A
Nash function on a Nash manifold is a C* finction with semialgebraic graph. Let
M be a Nash manifold. Let N denote the sheaf of Nash function germs on M.
(We write NV if we need to emphasize M.) Let O (or Oy) denote the sheaf of C¥
function germs on M. We call a sheaf of ideals Z of N finite if there exists a finite
open semialgebraic covering {U;} of M such that for each i, Z|y, is generated by
Nash functions on U;. (See [S] and [C-R-S5] for elementary properties of sheaves
of N-ideals and N-modules.) Let V(M) denote the ring of Nash functions on M
and let O(M) denote the ring of C¥ functions on M.

[C-R-S;] showed that the following three elementary conjectures are equivalent,
and [C-R-S;] gave a positive answer to the conjectures in the case where the man-
ifold of domain M is compact.

Separation conjecture. Let M be a Nash manifold. Let p be a prime ideal of
N(M). Then pO(M) is a prime ideal of O(M).

Global equation conjecture. For the same M as above, every finite sheaf T
of Nur-ideals is generated by global Nash functions on M.

Extension conjecture. For the same M and T as above, the following natural
homomorphism is surjective:

H°(M,N) — H°(M,N/T).

If these conjectures hold true, then the following conjecture also holds [C-R-S].

Factorization conjecture. Given a Nash function f on a Nash manifold M
and a C¥ factorization f = fifa, there exist Nash functions g1 and g on M and
positive C¥ functions @1 and @2 such that p1p2 =1, f1 = ¢191 and fz = p2g2.

In the present paper, we prove the conjecﬁures in the noncompact case. It suffices
to show the fo]lowmg theorem.

Theorem. Let M C R™ be a noncompact Nash manifold. Let U and V be
open semialgebraic subset of M such that M = UUV. Let T be a sheaf of Na-
ideals such that T|y and Z|v are generated by global cross-sections on U and V
respectively. Then T itself is generated by global cross-sections on M.

‘The following proof of this theorem is complétely different to the proof in [C-R-
S1] in the compact case. The proof in [C-R-S;] is algebraic and based on the Néron
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desingularization. On the other hand, the present proof is geometric, and the key
is Lemma 1 (Proposition VI.2.8 in [S]) of the next section on extension of Nash
functions to a compact domain.

We refer meanings and a history of the conjecturés to [C-R-Sy 2)-

- §2. PROOF OF THE THEOREM

A manifold stands for a manifold without boundary unless otherwise specified.
A manifold with corners is, by definition, not a manifold but locally diffeomorphic
to an open subset of R%}, where Ry = {z € R: z > 0}. Let M be a manifold
with corners. Int M —the interior of M—is the subset of M where M is locally
diffeomorphic to R™. dM-—the boundary of M—is the complement. A manifold
with boundary is a manifold with corners such that the boundary is a manifold.

An abstract Nash manifold of dimension m is a C* manifold with a finite system
of coordinate nelghborhoods {t;: U; — R™} such that for each pair 7 and j, -
¥i(U; NU;) is an open semialgebraic subset of R™ and the map

b o7 : (Ui NU;) — o, (Ui NT;)

is a Nash diffeomorphism. A C! Nash manifold is a C* semialgebraic submanifold
of a Euclidean space. An abstract C' Nash manifold is a C' manifold with a
finite system of coordinate neighborhoods of C! semialgebraic class. Note that a
Nash manifold is an abstract Nash manifold, but an abstract Nash manifold is not
necessarily affine, i.e., an abstract Nash manifold cannot be always Nash imbedded
in a Euclidean space (Mazur). On the other hand, a C' Nash manifold is an
abstract C* Nash manifold and, conversely, an abstract C* Nash manifold is affine
(Theorem III.1.1 in [S]).

For a Nash manifold with corners M, we say that the boundary of M is shrunk if
we replace M with M — (a small closed semialgebraic neighborhood of M — M in
W) We call the replaced manifold with corners a Nash submanifold with shrunk
corners of M.

The index , denotes the stalk of a sheaf at z or the germ of a set or a map at z.

Note. The theorem holds true if the closure M of M in R™ is compact and
contained in a Nash manifold M’ of the same dimension as M and if Z can be
extended to a coherent sheaf Z’ of Ny/-ideals on M’ for the following reason.

It is easy to find a compact Nash manifold with boundary M"” with M C Int M"
and M C M'. Using the double of M", we easily construct a compact Nash man-
ifold M®) and a Nash map p: M®) — M" such that p|,-1(tas m): p 7 (Int M") —
Int M" is a trivial double covering. Let Q be a union of connected components of
p~1(Int M") such that p|q is a diffeomorphism onto Int M”. Let Z(3) denote the
pull back of Z’ by p. Then Z(®) is finite and hence generated by global cross-sections.
Hence Z'|int M~ and then T are generated by global cross—sectlons, because we can
identify Z'|n prv with Z3)|q.

Hence we will imbed M in a Euclidean space so that the image has such prop-
erties. The following lemma, assures it.
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Lemma 1 (Proposition VI.2.8 in [S]). Let M be a noncompact Nash man-
ifold, and let f: M — R™ be a bounded Nash map. Then there ezists a compact
Nash manifold with corners M’ and a Nash diffeomorphism =: Int M'" — M such
that f o can be extended to a Nash map M’ — R™.

Using this lemma, we shall reduce the theorem to the following lemma.

Lemma 2. Let M’ and M" be (not necessarily compact) Nash submanifolds
of R™ without boundary and with corners, respectively, such that M’ is compact.
and contained in a Nash manifold of the same dimension, M" is a compact Nash
manifold with corners and Int M" = Int M" (i.e., M" = (a compact Nash manifold
with corners) — (a closed semialgebraic subset of the boundary)). Let p: M" — R"
be a Nash map such that plinpm s a Nash imbedding into M' and p(OM") is
contained in M’ — M ! Shm'nk the boundary of M"”. Then the abstract Nash
manifold M' Uy, M", defined to be the union of M' and M" pasted by the
Nash dzﬁeommphzsm plxnt mr: It M7 — p(Int M"), is affine.

Proof of the theorem. We can assume that M is bounded in R” because R"
is Nash diffeomorphic to S™— a point. Let the dimension of M be m. By the
separation theorem of Mostowski [M], we have a Nash function 9 on M such that
—2<Y<2,Y>1lon M-V (=U-V),and¥ < —lon M—U (= V—-U). Replace
M with graph . Then we can assume that M —V and M —U have distance. Apply
Lemma 1 to the inclusion map M — R"™. Then we assume, moreover, that M is
a Nash manifold with corners. Let ¢ be a positive Nash function on M such that
o(z) —» 0as M 3z —a point of OM. R :

Let fi,...,fx € HY(U,I|y) and g1,... ,9x € H°(V,I|v) be generators of Z|y
and Z|y respectively. Multiplying small positive Nash functions, we can assume
the generators are all bounded. Note that the restrictions of the both generators
to U NV are generators of 7 lUm/ Hence by 1.6.5 in [S] there exist Nash functions
a;;and B;;on UNV,4,5=1,. k such that for each 1,

(*) ' Zaz 745 and g; = Z’B"‘ ]f_y on UNV.

=1

Shrink U and V keeping the property that M —V and M — U have distance. Then
by Lojasiewicz Inequality, all SOlai,j and (Plﬁi,j are bounded for a positive integer
l. Apply Lemma 1 to fi|lunv, gilunv, (plai,j, golﬂi,j, ¢|lunv and the inclusion map
UNV — R"™. Then there exists a compact Nash manifold with corners X and a
Nash diffeomorphism 7: Int X — UNV such that all the Nash functions on Int X:
fiom, giom, (¢'ai j)om, (¢'B; j)om and por can be extended to X, and ¥~} (M —U)
and #~}(M — V) have distance, where T denotes the extension of (the inclusion
map)on: Int X — R™ to X — R".

First we modify the inclusion map of M into R™ so that Z can be extended to

— (M -U)— (M —=V). We can assume that the abstract Nash manifold with
corners M U, (X — 80X N7~ 1(M)) is affine for the following reason. Set

M =M, M”=X~—3Xﬂ—7f—-1(M) and p=T|pm~.
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Then the assumptions in Lemma 2 are satisfied. Hence if we let ‘M" be a Nash
submanifold with shrunk corners of M”, then M’ Uplyy o M" is affine. Shrink
U and V a little so that (the shrunk U) N (the shrunk V') and (M — the original
U) N (M — the original V) have distance, and (M~ the shrunk U) and (M- the
shrunk V) have distance. Then the new M U, (X — 8X N7 }(M)) coincides with
M Uy, M" for some M”, and hence it is affine.

Set My = MU, (X —8X N7 1(M)), let M; be contained in R™, and regard M
as a submanifold of M;. Then My = M — (M —U) — (M — V), and it is a Nash
manifold with corners. Set ‘

U1 =UU8M1 and Vvl =VU3M1.

Then we have M, = U; UV, and U; and V) are open in M;. Since f;om, giom
and g o can be extended to X, we have Nash function extensions f; ; of f; to Ut,
giiof gitoVi,i=1,...,k and ¢; of ¢ to M;. Hence we have sheaf extensions
I{ and Iy of T to M; such that IV |y, is generated by f11,... , f1k,and IVIV1 is
generated by g1,1,... ,91,k- By () and by the fact that (p'oy; J) o and (¢ ﬁ”) o
can be extended to X say, a1,;,; and By ; ; respectively, we have

(plll'{JCIY and <pl11¥ CI{J.

Let M; C R™ be a Nash manifold of dimension m such that M; C M, and any
connected component of M, touches M;. Here also we can assume M, is a compact
Nash manifold with corners. Set

Uz = U1 U (Mz —_ Ml) and Vg =“/1 U (Mz - M1)

Then we have My = Uz U V3, and U, and V; are open in M,. Choose M, so small
that fi1, 914, @1,4,5, B1,i,; and ¢ can be extended to Uz, Vo, Ua N Va, Uz N V3 and
M respectively. Let f2;, g2, @2,i 5, B2,i,; and o2 denote the respective extensions.
Then there exist sheaves IJ and I of Njy,-ideals such that ZY |y, = IV, ¥ |ar, =
1Y, I¥\u, is generated by fa1,..., fak, ZY|v, is generated by ga1,... , g2,k and

0hIY ¢ 7Y and ©hZY c IV,

Second, we want to extend IZU to My —V,. Apply Lemma 1 to fa1,..., f2,k;
¢2|u, and the inclusion map U — R™. Then we have a compact Nash manifold
with corners Y and a Nash diffeomorphism 7: IntY — U, such that each fy;07
and @,07 can be extended to Y, and 77} (M, —Us;) and 7! (M — ;) have distance,
where 7T is defined by 7 as 7. Let M3 denote the following abstract Nash manifold
with corners:

M2 Tt v (Int YU

(a small open semialgebraic neighborhood of 9Y N 'r*l(Uz — V) in 8Y)).
Then by the same reason as above, M3 is affine, and we can assume My C M3z C R™.

Set
U3=U2U(M3—M2) and V3 =V;.



Then we have

My =V, VzCU3, M3;=U3UVs and UsNVs=U,nNVs,

and Uz and V3 are open in M3. Since feioT and @3 o7 are extended to Y, f2,i and
2 can be extended to Nash functions f3:0on Uz and @3 on M3. Let ZY denote the
sheaf of My,-ideals on Us (not on M3) generated by f3,1y00, f3 k.

Third, as the above extension of M; to M, and then to Ms, we obtain a Nash
manifold My of dimension m, open semialgebraic subsets U, and V; of My, Nash

functions fy4; on Uy, g4 on Vg, 4 = 1,...,k and ¢4 on My, and sheaves ¢ of
Ny,-ideals and I} of Ny,-ideals such that

M cC My, M;=UsUVy,
UsNM=U, VanM=V,
faglu = fi,  gaslv =gi, alm =,
(xx) 0ilf CI/, @Iy CI{ on UynVi,

. If is generated by f41,..., fak, and 7Y is generated by 94,1y, Ja k-
Finally, we define a sheaf Z4 of N)y,-ideals so that for each z € My,

I {h € Nz: ohph € IY. for some I'} ifzelU,
4z — ’
* {heNy: Qi h e TY, forsome '}  ifz € Vi

By (*x), I4 is a well-defined coherent sheaf, and by the fact that  is positive, it is
an extension of 7. Hence the theorem follows from the note. O

Proof of Lemma 2. Let dim M’ = m. Regard M’ Uy, M" as an abstract
C! Nash manifold with corners which is of class C% around its boundary By
Theorem III.1.1 in [S], there exists its C* Nash imbedding into a Euclidean space,
say, R™ . By the proof of Theorem I11.1.1, the imbedding map can be of class C%
around the boundary. Hence the image can be of class C* around the boundary. By
~ Theorem III.1.3, ibid., and its proof, the image is modified to be a Nash manifold
with corners through a C! Nash diffeomorphism of class C* around the boundary.
Consequently, we have a Nash manifold with corners M; C R™ and a C! Nash
diffeomorphism p: My — M’ Uy, ., M" of class C* around dM;. Here by the
same arguments as before, we can assume M; is compact and contained in a Nash
manifold M, of dimension m. It suffices to approximate p by a Nash map in the C*!
topology, because a strong C*' Nash approximation of a C! Nash diffeomorphism in
the C? topology is a diffeomorphism by Lemma, I1.1.7, ibid. (See Chapter II, ibid.,
for the topology.) Define a C! Nash map £: M; — R™ by

{7 o pm ()
“lpop on piMY).

Then £(M;) C M/, £ is of class C¥ around M7, and £ |1nt a1, is a C! diffeomorphism
onto M’. ,



Shrink M;. Then there exists a strong Nash approximation & of £ in the C*
topology such that ¢ = § on OM; and & (Int M) = M’ for the following reason.

Let M’ C R™ be a Nash manifold that contains M’ and is of dimension m.
Shrink M;. Then by Lemma 3 below, there exists a Nash function ¢ on M; with
zero set = OM;. Let U be a small open semialgebraic neighborhood of M7 in M,
where @|ynn, and €|yan, can be extended as a Nash function and a Nash map to
M’ respectively. Set Mz = M; U U, and let @: M3 — R and €: M3 — M’ denote
the respective extensions. Apply Theorem II.5.2 in [S] to @, &, M3 and M’. Then
there exists a Nash approximation §’ Ms — M’ of € in the C? topology such that
¢ = ¢ on ¢1(0) and &' (Ms) = €(Ms). If we set & = & |m, then ¢ is a Nash
approximation of £ in the C! topology and satisfies the required conditions.

Moreover, &'|mtar, can be a Nash diffeomorphism onto M’ for the following
reason. -

First we prove that &’ IInt M, can be an immersion. For each i =1,... ,n, let v;
denote the Nash vector field on M; such that for each z € M7, ‘

5 ,
( 3 ) = Uiz + (& vector normal to the tangent space of M; at z).
Ti/ 2 , _

For a C' map x = (x1,--- ,Xn): M1 — R™, let a(x) denote the sum of the squares
of the minors of degree m of the n x n matrix whose (3, j)-element is v;x;. Then
X|int M, 1s an immersion if and only if a(x) is positive on Int M;. It follows from
Lojasiewicz Inequality and the property a(¢) > 0 on Int M; that «(¢’) > 0 on
Int M7 if we choose £ so that £ — € is the product of ' and a C! Nash map close
to the zero map in the C'! topology for a large integer ! and for the above . Hence
&'|1nt M, can be an immersion. o }

Second, we see that &'|mtar, can be injective. For a map x: M; — R7, let
B(x): My x M; — R™ be defined by

B(x)(z1,x2) = x(z1) — x(z2) for (z1,z2) € M1 X M;.
Let A denote the diagohal of My x M;. Then X|mt m, is injective if and only if
(%) BOATH0)=A in IntM; xInt My,

the zero set of B(§) contains A and is contained in OM; x My U A, and the
rank of the Jacobian matrix of 5(£) at each point of Int A equals m. Note that
dim A = m. Let [ be a large integer and let v: M; x M; — R"™ be a C' Nash map
which vanishes on A and is close to the zero map in the C! topology. Then by
Lojasiewicz Inequality, it is easy to see that the zero set of the map

My x My 3 (z1,22) — B(€)(z1,22) + (¢*(z1) + 9021(532))7(331,3:“2) eR"

coincides with the zero set of 8(€). Choose & so that & — € is the product of ¢*
and a C! Nash map close to the zero map in the C! topology for a much larger
integer I". Then B({’) is of the above form. Hence ¢’ has the property (x). Thus
&' |1t M, can be injective. :
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. By the above two facts, &'|int M, can be a diffeomorphism onto M’ because
(5 §')(x) converges to 0 € R™ as a point = in Int M; converges to a point of
My — Int M;.

Define a Nash map p’: Int My — M’ Uy, M" to be &. Choose ¢’ so that
the map &' —&: My — R™ is the product of ¢! and a C* Nash map M; — R™ for a
sufficiently large integer ! (Theorem I1.5.2, ibid.). Then by Lojasiewicz Inequality
we can extend p’ to a semialgebraic homeomorphism p': M; — M’ Uplgo per M
which equals p on M. Clearly p'|mns ar, is a Nash diffeomorphism onto M’. Hence
Lemma 2 follows if we can choose § so that ¢’ is a Nash diffeomorphism around
OM;. For that it suffices to prove the following assertion.

Let 7 be the semialgebraic homeomorphism of My such that pom = p'. Then
we can choose &' so that 7 is a Nash diffeomorphism around OM;.

1t follows from pom = p’ that £ o = £, Since 7 is unique and since 7 = id on
OM;, the problem is local at dM;. Hence we can reduce the above assertion to the
next one.

We can choose &' so that for each z € OM, there exists a Nash dzﬁeomomhzsm
germ T of Miz such that & o1 = &L.

We can assume M; C R™ and M’ C R™ since the problem is local. Let J
denote the Jacobian of £. Then we precisely state the above assertion as follows,
which is due to [T].

There ezxists such T if for each x € OM;y, & — &2 z's the product of J2¢, and a
Nash map germ.

Such &’ exists by the above construction of & if we have a Nash function J' on
M such that J'~1(0) C 8M;, and for each z € My, J. is the product of J, and
a Nash function germ. Let J denote the finite sheaf of Ny, -ideals defined to be
JNy, around OM; and Ny, outside of dM;. Then by Lemma 3, J hag finite
generators if we shrink 0M;. The sum of the squares of the generators fulﬁlls the
requirements for J'.

It remains to show the last assertion. We assume My = M’ = R™ for simplicity
of notation. Let g: R™ — R™ be the Nash map germ such that { — §o = JEwog.
By the Taylor expansion formula we have

0 e ' m
folo +1) =60 + 12 + Yy figE ) T ¥ = ym) ERT,
T =

for some Nash map germs f; ;: R*™ — R™, where 3‘—95 denotes the Jacobian matrix.
Substitute y with Jo(z)y. Then

Galz+ () ~ () = D) T2 + ) 3 v fialey)

7.7""1

for some Nash map germs fi’,j. Hence we need only find a Nash map germ y =
y(z): R™ — R™ such that y(0) =0 and

To(@)y(z) T2 (@) + Fe ) 32 wleh (o)) = B@on(a)e)



Multiply this equality by the cofactor matrix of (:c) Then it is equivalent to

(@) + D @)y () f(z,y(2) = po(2)d (@),

1,j=1

where a.nd g' are some Nash map germs. By the implicit function theorem the
. last equahty is solved. [

Lemma 3. Let M C R" be a Nash manifold with corners. Let T be a finite
sheaf of Npr-ideals on M such that I, = Ny for © € Int M. Shrink OM. Then
Global equation conjecture and Extension conjecture for this T hold true.

Proof. We can assume M — M is a point. Let ¢ be the function on M which
measures distance from M — M, and let € be a small positive number. Then ¢ is of
class Nash on ¢~(]0,€]) and C? regular on (Int M) N¢~2(]0,¢]) and on (each face
of dM) N¢~1(]0,€]). Hence M; = ¢~ !([e,0[) is a compact Nash manifold with
corners. Set ‘

My;=M—{z€dM: o(z)<e} and M;z=¢ (e, ),

which are Nash manifolds with corners. By the semialgebraic version of Thom’s
First Isotopy Lemma [C-Ss], we have a semialgebraic map 7: ¢~1(]0,¢]) — o~ 1(e)
such that 7 = id on ¢~!(¢) and (7, ¢)] Mane-1(j0,¢]) is a Nash diffeomorphism onto
(M; No~1(e)) x ]0,e]. Using T we easily construct a C! Nash diffeomorphism
m: M3 — M, which is the identity on a small semialgebraic neighborhood of 8M3
in Ms.

From the note it follows that there exists a Nash function on M3 with zero set =
OMs3, and I}y, is generated by global cross-sections. We show that Z|yz, also is
generated by global cross-sections. For that it suffices to find a Nash approximation
n': M3 — M; of 7 in the C?! topology such that 7' = id on M3 and the pull back
of Z|p, by 7’ equals Z|py,.

Let 1 be a global cross-section of Iy, with zero set = 9M3. By Theorem I1.5.2
n [S] there exists a Nash approximation 7’ of 7 such that the map 7/ —7: M3 — R?
is the product of 9 and a C* Nash map a: M3 — R™ of class C¥ around OM5. We
need only prove that for each a € dM3 and for each f € N,, f is contained in Z, if
and only if f o} is in Z,. (Note that 7'(a) = a.) As the problem is local, we can
assume M C R™ and a = 0, where m = dim M. In general, for a Nash function
germ g at 0 in R™ there exists a Nash function germ A at 0 in R™ x R™ x R such
that

g(z + zy) = g(z) + zh(z,y,2) for (z,y,2) a.roﬁnd 0Oin R™ xR™ x R.
Hence we have
fomy(z) = fz +o(z)ao(z)) = f(z) + Yo(2) f1(z, (), Yo(z))

for some Nash function germ f; at 0 in R™ x R™ x R. Therefore, f € Iy if and
only if foni €Zy. O
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Remark. Global equation and Extension conjectures hold true for any real
closed field R which contains R. '

We prove this in the same way as in the proof of the implication (i)=-(ii) of
Theorem 2.4 in [C-S;]. For semialgebraic subsets X and Y of R™ and for a semi-’

algebraic map f: X — Y, let Xg, Yr and fr: Xp — Yr denote the extensions to
Rof X, Y and f respectively.

Proof of Global equation conjecture. It suffices to prove the theorem for
a (not necessarily noncompact) Nash manifold M in R™. Let dim M = m. By
- Theorem 2.4 in [C-S;], we can assume there exists a Nash manifold MR c R™ such
that M is diffeomorphic to ME. Hence let M = ME. Moreover, by its proof we
can assume U = UR and V = VE for some open semialgebraic sets UR and VR
of M®. Let fi,..., fx € HO(U,Z|y) and ¢1,... ,gx € H°(V,Z|v) be generators of
Ily and I|y respectively. Lety; ;: UNV — R and 6:;;: UNV = R, 4,7=1,...,k
be Nash functions such that for each i,

)

k k
(%) | fi=) 159 and gi=)Y &i;f; on UNV.

=1 =1

- Let f: M — R be a Nash function. Then we have a presentation

graph f = | J {z € B™': (z,0) =0, p1(z,0) > 0,... ,pu(z,a) > 0},

finite

where ¢ and ¢; are polynomials with coefficients in Z and a is a p-uple of elements
of R. For b € RP, set

Xy = U {z € R ©o(z,b) =0, ¢1(z,b) > O,..‘. ,o1(z,b) > 0}.

finite

Then, as noted in the proof of Theorem 2.4 in [C-S;], the set of b such that X is
~ a Nash manifold of dimension m is semialgebraic in RP. Moreover, by the same
reason as in the proof, the set B C RP of b such that X} is the graph of a Nash
function on M® is semialgebraic. Note that X, ¢ MR x R. Set X = UpepXp X b.

By Theorem 2.4 there exists a finite semialgebraic stratification B = UB?® of
B into Nash manifolds such that for each i, X* = X N R"*! x B* is a Nash
manifold and that there is a Nash diffeomorphism &*: MR x B* — X' com-
patible with the projection onto B*. For (z,b) € M® x Bt & (z,b) is of the
form (€%(z,b),&5(z,b),b) € M® x R x B'. Then it is easy to see that the map
MR x B 3 (z,b) — (£i(z,b),b) € MR x B is a diffeomorphism. Hence we can as-
sume £ is the identity map of M® and we have a Nash function A*: MR x B* - R
such that for each b € B, the graph of the function h*(-,b): M® — R coincides
with X,. '

Note that there exists ¢ such that a € Bk, i.e., f = h%(-,a).

Consequently, there exist Nash manifolds A and C over R, Nash maps [ =
(Fi,...  Fx): URx A - RF, G = (Gy,...,Gk): VR x A — RF, Nash functions
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Iij: (URNVR)x C — R and AVEE URNVRYxC - R, i,j=1,...,k and
points @ € Agr and ¢ € Cg such that '

FR(')a)z(fla'-'yfk); GR(’,G)=(917~--,gk),
F-;,jR(',C) = Yi,j and Ai,jR('y C) = (5,;,]'.
Replace A, C, a and ¢ with A x C, A x C, (a,c) and (a,c) respectively. Then

we can assume A = C and a = c. Moreover, we can choose 4, F, G, I';; and A, ;
so that for each 1,

k k
(%) Fi=) Ti;G; and Gi=)» Aj;F; on (URNVR)x A
j=1 j=1
by the same reason as above, because it is possible to express by a formula of the
first order theory of real closed field the fact that the equality (*x) holds.

By (*x) there exists a sheaf of Vi ry 4-ideals J on M® x A such that J|yrxa
and J|yrxa are generated by Fi,...,Fy and Gi,...,Gj respectively. By the
theorem we have a finite number of generators H; of J. Then it is easy to see that
H;r(-,a) generate Z. O

Proof of Extension conjecture. It is sufficient to prove the following asser-
tion. ‘

Let M C R™ be a Nash manifold. Let U and V be open semialgebraic subsets
of M such that M = UUYV. Let I be a sheaf of Nys-ideals generated by a finite
number of global Nash functions. Let f: U — R and g: V — R be Nash functions
such that f — g is a cross-section of I|ynv. Then there ezists a Nash function
h: M — R such that hly — f and h|y — g are cross-sections of I|y and I|v
respectively. '

Let ;,7=1,...,[, be generators of Z. We have

!

f_QZZ'YiSDi on.UNV

1=1 '
for some Nash functions v;: U NV — R. Then, as in the preceding proof of
Global equation conjecture, we can assume M = ME, U = UR and V = Vg
for some Nash manifold M® over R and open semialgebraic subsets U® and VR
of M® and we obtain a Nash manifold A over R, a point a of Ag and Nash
functions F: UR x A - R, G: VR xA—-R, ®: MR xA—-R,i=1,...,[,and
I;: (URNVRYxA—-R,i=1,...,[, such that

l v
F-G=) Ti® on (URNVF)xA4,
i=1
Fr(va)=f, Gr(,a)=g, %ir(,a)=¢i and [ir(,a) ="

Let J be the sheaf of My ry 4-ideals on M® x A generated by ®;. Then, since

Extension conjecture holds true for R, there exists a Nash function H: MR xA — R
“such that H|yry4 — F and H|yry 4 — G are cross-sections of J|yry 4 and Z|yrya

respectively. Clearly A = Hg(-,a) fulfills the requirements. O

Problem. Open problems are Global extension and Eztension conjectures for a
general real closed field. :
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