NASH FUNCTIONS ON NONCOMPACT NASH MANIFOLDS

MICHEL COSTE AND MASAHIRO SHIOTA (塩田 昌弘)

§1. Introduction

A Nash manifold is a semialgebraic C^{∞} submanifold of a Euclidean space. A Nash function on a Nash manifold is a C^{∞} function with semialgebraic graph. Let M be a Nash manifold. Let \mathcal{N} denote the sheaf of Nash function germs on M. (We write \mathcal{N}_M if we need to emphasize M.) Let \mathcal{O} (or \mathcal{O}_M) denote the sheaf of C^{ω} function germs on M. We call a sheaf of ideals \mathcal{I} of \mathcal{N} finite if there exists a finite open semialgebraic covering $\{U_i\}$ of M such that for each i, $\mathcal{I}|_{U_i}$ is generated by Nash functions on U_i . (See [S] and [C-R-S₂] for elementary properties of sheaves of \mathcal{N} -ideals and \mathcal{N} -modules.) Let $\mathcal{N}(M)$ denote the ring of Nash functions on M and let $\mathcal{O}(M)$ denote the ring of C^{ω} functions on M.

[C-R-S₂] showed that the following three elementary conjectures are equivalent, and [C-R-S₁] gave a positive answer to the conjectures in the case where the manifold of domain M is compact.

Separation conjecture. Let M be a Nash manifold. Let \mathfrak{p} be a prime ideal of $\mathcal{N}(M)$. Then $\mathfrak{p}\mathcal{O}(M)$ is a prime ideal of $\mathcal{O}(M)$.

Global equation conjecture. For the same M as above, every finite sheaf \mathcal{I} of \mathcal{N}_M -ideals is generated by global Nash functions on M.

Extension conjecture. For the same M and \mathcal{I} as above, the following natural homomorphism is surjective:

$$H^0(M, \mathcal{N}) \longrightarrow H^0(M, \mathcal{N}/\mathcal{I}).$$

If these conjectures hold true, then the following conjecture also holds [C-R-S₂].

Factorization conjecture. Given a Nash function f on a Nash manifold M and a C^{ω} factorization $f = f_1 f_2$, there exist Nash functions g_1 and g_2 on M and positive C^{ω} functions φ_1 and φ_2 such that $\varphi_1 \varphi_2 = 1$, $f_1 = \varphi_1 g_1$ and $f_2 = \varphi_2 g_2$.

In the present paper, we prove the conjectures in the noncompact case. It suffices to show the following theorem.

Theorem. Let $M \subset \mathbb{R}^n$ be a noncompact Nash manifold. Let U and V be open semialgebraic subset of M such that $M = U \cup V$. Let \mathcal{I} be a sheaf of \mathcal{N}_M -ideals such that $\mathcal{I}|_U$ and $\mathcal{I}|_V$ are generated by global cross-sections on U and V respectively. Then \mathcal{I} itself is generated by global cross-sections on M.

The following proof of this theorem is completely different to the proof in [C-R- S_1] in the compact case. The proof in [C-R- S_1] is algebraic and based on the Néron

desingularization. On the other hand, the present proof is geometric, and the key is Lemma 1 (Proposition VI.2.8 in [S]) of the next section on extension of Nash functions to a compact domain.

We refer meanings and a history of the conjectures to $[C-R-S_{1,2}]$.

§2. Proof of the theorem

A manifold stands for a manifold without boundary unless otherwise specified. A manifold with corners is, by definition, not a manifold but locally diffeomorphic to an open subset of \mathbf{R}_+^n , where $\mathbf{R}_+ = \{x \in \mathbf{R} : x \geq 0\}$. Let M be a manifold with corners. Int M—the interior of M—is the subset of M where M is locally diffeomorphic to \mathbf{R}^n . ∂M —the boundary of M—is the complement. A manifold with boundary is a manifold with corners such that the boundary is a manifold.

An abstract Nash manifold of dimension m is a C^{ω} manifold with a finite system of coordinate neighborhoods $\{\psi_i \colon U_i \to \mathbf{R}^m\}$ such that for each pair i and j, $\psi_i(U_i \cap U_j)$ is an open semialgebraic subset of \mathbf{R}^m and the map

$$\psi_j \circ \psi_i^{-1} \colon \psi_i(U_i \cap U_j) \longrightarrow \psi_j(U_i \cap U_j)$$

is a Nash diffeomorphism. A C^1 Nash manifold is a C^1 semialgebraic submanifold of a Euclidean space. An abstract C^1 Nash manifold is a C^1 manifold with a finite system of coordinate neighborhoods of C^1 semialgebraic class. Note that a Nash manifold is an abstract Nash manifold, but an abstract Nash manifold is not necessarily affine, i.e., an abstract Nash manifold cannot be always Nash imbedded in a Euclidean space (Mazur). On the other hand, a C^1 Nash manifold is an abstract C^1 Nash manifold and, conversely, an abstract C^1 Nash manifold is affine (Theorem III.1.1 in [S]).

For a Nash manifold with corners M, we say that the boundary of M is shrunk if we replace M with M – (a small closed semialgebraic neighborhood of $\overline{\partial M}$ – ∂M in $\overline{\partial M}$). We call the replaced manifold with corners a Nash submanifold with shrunk corners of M.

The index x denotes the stalk of a sheaf at x or the germ of a set or a map at x.

Note. The theorem holds true if the closure \overline{M} of M in \mathbb{R}^n is compact and contained in a Nash manifold M' of the same dimension as M and if \mathcal{I} can be extended to a coherent sheaf \mathcal{I}' of $\mathcal{N}_{M'}$ -ideals on M' for the following reason.

It is easy to find a compact Nash manifold with boundary M'' with $M \subset \operatorname{Int} M''$ and $M'' \subset M'$. Using the double of M'', we easily construct a compact Nash manifold $M^{(3)}$ and a Nash map $\rho \colon M^{(3)} \to M''$ such that $\rho|_{\rho^{-1}(\operatorname{Int} M'')} \colon \rho^{-1}(\operatorname{Int} M'') \to \operatorname{Int} M''$ is a trivial double covering. Let Ω be a union of connected components of $\rho^{-1}(\operatorname{Int} M'')$ such that $\rho|_{\Omega}$ is a diffeomorphism onto $\operatorname{Int} M''$. Let $\mathcal{I}^{(3)}$ denote the pull back of \mathcal{I}' by ρ . Then $\mathcal{I}^{(3)}$ is finite and hence generated by global cross-sections. Hence $\mathcal{I}'|_{\operatorname{Int} M''}$ and then \mathcal{I} are generated by global cross-sections, because we can identify $\mathcal{I}'|_{\operatorname{Int} M''}$ with $\mathcal{I}^{(3)}|_{\Omega}$.

Hence we will imbed M in a Euclidean space so that the image has such properties. The following lemma assures it.

Lemma 1 (Proposition VI.2.8 in [S]). Let M be a noncompact Nash manifold, and let $f: M \to \mathbb{R}^m$ be a bounded Nash map. Then there exists a compact Nash manifold with corners M' and a Nash diffeomorphism $\pi: \operatorname{Int} M' \to M$ such that $f \circ \pi$ can be extended to a Nash map $M' \to \mathbb{R}^m$.

Using this lemma, we shall reduce the theorem to the following lemma.

Lemma 2. Let M' and M'' be (not necessarily compact) Nash submanifolds of \mathbf{R}^n without boundary and with corners, respectively, such that $\overline{M'}$ is compact and contained in a Nash manifold of the same dimension, $\overline{M''}$ is a compact Nash manifold with corners and $\operatorname{Int} M'' = \operatorname{Int} \overline{M''}$ (i.e., $M'' = (a \text{ compact Nash manifold with corners}) - (a closed semialgebraic subset of the boundary)). Let <math>p: M'' \to \mathbf{R}^n$ be a Nash map such that $p|_{\operatorname{Int} M''}$ is a Nash imbedding into M' and $p(\partial M'')$ is contained in $\overline{M'} - M'$. Shrink the boundary of M''. Then the abstract Nash manifold $M' \cup_{p|_{\operatorname{Int} M''}} M''$, defined to be the union of M' and M'' pasted by the Nash diffeomorphism $p|_{\operatorname{Int} M''}: \operatorname{Int} M'' \to p(\operatorname{Int} M'')$, is affine.

Proof of the theorem. We can assume that M is bounded in \mathbf{R}^n because \mathbf{R}^n is Nash diffeomorphic to S^n- a point. Let the dimension of M be m. By the separation theorem of Mostowski [M], we have a Nash function ψ on M such that $-2 \le \psi \le 2$, $\psi > 1$ on M - V (= U - V), and $\psi < -1$ on M - U (= V - U). Replace M with graph ψ . Then we can assume that M - V and M - U have distance. Apply Lemma 1 to the inclusion map $M \to \mathbf{R}^n$. Then we assume, moreover, that \overline{M} is a Nash manifold with corners. Let φ be a positive Nash function on M such that $\varphi(x) \to 0$ as $M \ni x \to a$ point of ∂M .

Let $f_1, \ldots, f_k \in H^0(U, \mathcal{I}|_U)$ and $g_1, \ldots, g_k \in H^0(V, \mathcal{I}|_V)$ be generators of $\mathcal{I}|_U$ and $\mathcal{I}|_V$ respectively. Multiplying small positive Nash functions, we can assume the generators are all bounded. Note that the restrictions of the both generators to $U \cap V$ are generators of $\mathcal{I}|_{U \cap V}$. Hence by I.6.5 in [S] there exist Nash functions $\alpha_{i,j}$ and $\beta_{i,j}$ on $U \cap V$, $i,j=1,\ldots,k$, such that for each i,

(*)
$$f_i = \sum_{j=1}^k \alpha_{i,j} g_j \quad \text{and} \quad g_i = \sum_{j=1}^k \beta_{i,j} f_j \quad \text{on} \quad U \cap V.$$

Shrink U and V keeping the property that M-V and M-U have distance. Then by Lojasiewicz Inequality, all $\varphi^l\alpha_{i,j}$ and $\varphi^l\beta_{i,j}$ are bounded for a positive integer l. Apply Lemma 1 to $f_i|_{U\cap V}, g_i|_{U\cap V}, \varphi^l\alpha_{i,j}, \varphi^l\beta_{i,j}, \varphi|_{U\cap V}$ and the inclusion map $U\cap V\to \mathbf{R}^n$. Then there exists a compact Nash manifold with corners X and a Nash diffeomorphism $\pi\colon \operatorname{Int} X\to U\cap V$ such that all the Nash functions on $\operatorname{Int} X\colon f_i\circ\pi, g_i\circ\pi, (\varphi^l\alpha_{i,j})\circ\pi, (\varphi^l\beta_{i,j})\circ\pi$ and $\varphi\circ\pi$ can be extended to X, and $\overline{\pi}^{-1}(M-U)$ and $\overline{\pi}^{-1}(M-V)$ have distance, where $\overline{\pi}$ denotes the extension of (the inclusion map) $\circ\pi\colon \operatorname{Int} X\to \mathbf{R}^n$ to $X\to \mathbf{R}^n$.

First we modify the inclusion map of M into \mathbb{R}^n so that \mathcal{I} can be extended to $\overline{M} - (\overline{M} - \overline{U}) - (\overline{M} - \overline{V})$. We can assume that the abstract Nash manifold with corners $M \cup_{\pi} (X - \overline{\partial X} \cap \overline{\pi}^{-1}(M))$ is affine for the following reason. Set

$$M' = M$$
, $M'' = X - \overline{\partial X \cap \overline{\pi}^{-1}(M)}$ and $p = \overline{\pi}|_{M''}$.

Then the assumptions in Lemma 2 are satisfied. Hence if we let \tilde{M}'' be a Nash submanifold with shrunk corners of M'', then $M' \cup_{p|_{\operatorname{Int} M''}} \tilde{M}''$ is affine. Shrink U and V a little so that (the shrunk U) \cap (the shrunk V) and (M- the original U) \cap (M- the original V) have distance, and (M- the shrunk U) and (M- the shrunk V) have distance. Then the new $M \cup_{\pi} (X - \overline{\partial X} \cap \overline{\pi}^{-1}(\overline{M}))$ coincides with $M' \cup_{p|_{\operatorname{Int} M''}} \tilde{M}''$ for some \tilde{M}'' , and hence it is affine.

Set $M_1 = M \cup_{\pi} (X - \overline{\partial X} \cap \overline{\pi}^{-1}(M))$, let M_1 be contained in \mathbb{R}^n , and regard M as a submanifold of M_1 . Then $M_1 = \overline{M} - (\overline{M} - \overline{U}) - (\overline{M} - \overline{V})$, and it is a Nash manifold with corners. Set

$$U_1 = U \cup \partial M_1$$
 and $V_1 = V \cup \partial M_1$.

Then we have $M_1 = U_1 \cup V_1$, and U_1 and V_1 are open in M_1 . Since $f_i \circ \pi$, $g_i \circ \pi$ and $\varphi \circ \pi$ can be extended to X, we have Nash function extensions $f_{1,i}$ of f_i to U_1 , $g_{1,i}$ of g_i to V_1 , $i = 1, \ldots, k$ and φ_1 of φ to M_1 . Hence we have sheaf extensions \mathcal{I}_1^U and \mathcal{I}_1^V of \mathcal{I} to M_1 such that $\mathcal{I}_1^U|_{U_1}$ is generated by $f_{1,1}, \ldots, f_{1,k}$, and $\mathcal{I}_1^V|_{V_1}$ is generated by $g_{1,1}, \ldots, g_{1,k}$. By (*) and by the fact that $(\varphi^l \alpha_{i,j}) \circ \pi$ and $(\varphi^l \beta_{i,j}) \circ \pi$ can be extended to X, say, $\alpha_{1,i,j}$ and $\beta_{1,i,j}$ respectively, we have

$$\varphi_1^l \mathcal{I}_1^U \subset \mathcal{I}_1^V \quad \text{and} \quad \varphi_1^l \mathcal{I}_1^V \subset \mathcal{I}_1^U.$$

Let $M_2 \subset \mathbf{R}^n$ be a Nash manifold of dimension m such that $M_1 \subset M_2$ and any connected component of M_2 touches M_1 . Here also we can assume $\overline{M_2}$ is a compact Nash manifold with corners. Set

$$U_2 = U_1 \cup (M_2 - M_1)$$
 and $V_2 = V_1 \cup (M_2 - M_1)$.

Then we have $M_2=U_2\cup V_2$, and U_2 and V_2 are open in M_2 . Choose M_2 so small that $f_{1,i}, g_{1,i}, \alpha_{1,i,j}, \beta_{1,i,j}$ and φ_1 can be extended to $U_2, V_2, U_2\cap V_2, U_2\cap V_2$ and M_2 respectively. Let $f_{2,i}, g_{2,i}, \alpha_{2,i,j}, \beta_{2,i,j}$ and φ_2 denote the respective extensions. Then there exist sheaves \mathcal{I}_2^U and \mathcal{I}_2^V of \mathcal{N}_{M_2} -ideals such that $\mathcal{I}_2^U|_{M_1}=\mathcal{I}_1^U, \mathcal{I}_2^V|_{M_1}=\mathcal{I}_1^V, \mathcal{I}_2^U|_{U_2}$ is generated by $f_{2,1},\ldots,f_{2,k}$, $f_{2,k},\mathcal{I}_2^V|_{V_2}$ is generated by $f_{2,1},\ldots,f_{2,k}$ and

$$\varphi_2^l \mathcal{I}_2^U \subset \mathcal{I}_2^V$$
 and $\varphi_2^l \mathcal{I}_2^V \subset \mathcal{I}_2^U$.

Second, we want to extend \mathcal{I}_2^U to $\overline{M_2-V_2}$. Apply Lemma 1 to $f_{2,1},\ldots,f_{2,k}$, $\varphi_2|_{U_2}$ and the inclusion map $U_2\to \mathbf{R}^n$. Then we have a compact Nash manifold with corners Y and a Nash diffeomorphism $\tau\colon \operatorname{Int} Y\to U_2$ such that each $f_{2,i}\circ \tau$ and $\varphi_2\circ \tau$ can be extended to Y, and $\overline{\tau}^{-1}(M_2-U_2)$ and $\overline{\tau}^{-1}(M_2-V_2)$ have distance, where $\overline{\tau}$ is defined by τ as $\overline{\pi}$. Let M_3 denote the following abstract Nash manifold with corners:

$$M_2 \cup_{\tau|_{\operatorname{Int} Y}} (\operatorname{Int} Y \cup$$

(a small open semialgebraic neighborhood of $\partial Y \cap \overline{\tau^{-1}(U_2 - V_2)}$ in ∂Y)).

Then by the same reason as above, M_3 is affine, and we can assume $M_2 \subset M_3 \subset \mathbf{R}^n$. Set

$$U_3 = U_2 \cup (M_3 - M_2)$$
 and $V_3 = V_2$.

Then we have

$$\overline{M_2 - V_2} \subset U_3$$
, $M_3 = U_3 \cup V_3$ and $U_3 \cap V_3 = U_2 \cap V_2$,

and U_3 and V_3 are open in M_3 . Since $f_{2,i} \circ \tau$ and $\varphi_2 \circ \tau$ are extended to Y, $f_{2,i}$ and φ_2 can be extended to Nash functions $f_{3,i}$ on U_3 and φ_3 on M_3 . Let \mathcal{I}_3^U denote the sheaf of \mathcal{N}_{U_3} -ideals on U_3 (not on M_3) generated by $f_{3,1}, \ldots, f_{3,k}$.

Third, as the above extension of M_1 to M_2 and then to M_3 , we obtain a Nash manifold M_4 of dimension m, open semialgebraic subsets U_4 and V_4 of M_4 , Nash functions $f_{4,i}$ on U_4 , $g_{4,i}$ on V_4 , $i=1,\ldots,k$ and φ_4 on M_4 , and sheaves \mathcal{I}_4^U of \mathcal{N}_{U_4} -ideals and \mathcal{I}_4^V of \mathcal{N}_{V_4} -ideals such that

$$\overline{M} \subset M_4, \quad M_4 = U_4 \cup V_4, \\ U_4 \cap M = U, \quad V_4 \cap M = V, \\ f_{4,i}|_U = f_i, \quad g_{4,i}|_V = g_i, \quad \varphi_4|_M = \varphi, \\ \varphi_4^l \mathcal{I}_4^U \subset \mathcal{I}_4^V, \quad \varphi_4^l \mathcal{I}_4^V \subset \mathcal{I}_4^U \quad \text{on} \quad U_4 \cap V_4,$$

 \mathcal{I}_4^U is generated by $f_{4,1},\ldots,f_{4,k}$, and \mathcal{I}_4^V is generated by $g_{4,1},\ldots,g_{4,k}$. Finally, we define a sheaf \mathcal{I}_4 of \mathcal{N}_{M_4} -ideals so that for each $x\in M_4$,

$$\mathcal{I}_{4x} = \begin{cases} \{h \in \mathcal{N}_x \colon \varphi_{4x}^{l'} h \in \mathcal{I}_{4x}^{U} \text{ for some } l'\} & \text{if } x \in U_4 \\ \{h \in \mathcal{N}_x \colon \varphi_{4x}^{l'} h \in \mathcal{I}_{4x}^{V} \text{ for some } l'\} & \text{if } x \in V_4. \end{cases}$$

By (**), \mathcal{I}_4 is a well-defined coherent sheaf, and by the fact that φ is positive, it is an extension of \mathcal{I} . Hence the theorem follows from the note. \square

Proof of Lemma 2. Let $\dim M' = m$. Regard $M' \cup_{p|_{\operatorname{Int} M''}} M''$ as an abstract C^1 Nash manifold with corners which is of class C^ω around its boundary. By Theorem III.1.1 in [S], there exists its C^1 Nash imbedding into a Euclidean space, say, $\mathbf{R}^{n'}$. By the proof of Theorem III.1.1, the imbedding map can be of class C^ω around the boundary. Hence the image can be of class C^ω around the boundary. By Theorem III.1.3, ibid., and its proof, the image is modified to be a Nash manifold with corners through a C^1 Nash diffeomorphism of class C^ω around the boundary. Consequently, we have a Nash manifold with corners $M_1 \subset \mathbf{R}^{n'}$ and a C^1 Nash diffeomorphism $\rho \colon M_1 \to M' \cup_{p|_{\operatorname{Int} M''}} M''$ of class C^ω around ∂M_1 . Here by the same arguments as before, we can assume $\overline{M_1}$ is compact and contained in a Nash manifold M_2 of dimension m. It suffices to approximate ρ by a Nash map in the C^1 topology, because a strong C^1 Nash approximation of a C^1 Nash diffeomorphism in the C^1 topology is a diffeomorphism by Lemma II.1.7, ibid. (See Chapter II, ibid., for the topology.) Define a C^1 Nash map $\xi \colon M_1 \to \mathbf{R}^n$ by

$$\xi = \begin{cases} \rho & \text{on } \rho^{-1}(M') \\ p \circ \rho & \text{on } \rho^{-1}(M''). \end{cases}$$

Then $\xi(M_1) \subset \overline{M'}$, ξ is of class C^{ω} around ∂M_1 , and $\xi|_{\text{Int }M_1}$ is a C^1 diffeomorphism onto M'.

Shrink ∂M_1 . Then there exists a strong Nash approximation ξ' of ξ in the C^1 topology such that $\xi' = \xi$ on ∂M_1 and $\xi'(\operatorname{Int} M_1) = M'$ for the following reason.

Let $M' \subset \mathbf{R}^n$ be a Nash manifold that contains $\overline{M'}$ and is of dimension m. Shrink ∂M_1 . Then by Lemma 3 below, there exists a Nash function φ on M_1 with zero set $= \partial M_1$. Let U be a small open semialgebraic neighborhood of ∂M_1 in M_2 where $\varphi|_{U\cap M_1}$ and $\xi|_{U\cap M_1}$ can be extended as a Nash function and a Nash map to $\tilde{M'}$ respectively. Set $M_3 = M_1 \cup U$, and let $\tilde{\varphi} \colon M_3 \to \mathbf{R}$ and $\tilde{\xi} \colon M_3 \to \tilde{M'}$ denote the respective extensions. Apply Theorem II.5.2 in [S] to $\tilde{\varphi}$, $\tilde{\xi}$, M_3 and $\tilde{M'}$. Then there exists a Nash approximation $\tilde{\xi'} \colon M_3 \to \tilde{M'}$ of $\tilde{\xi}$ in the C^1 topology such that $\tilde{\xi'} = \tilde{\xi}$ on $\tilde{\varphi}^{-1}(0)$ and $\tilde{\xi'}(M_3) = \tilde{\xi}(M_3)$. If we set $\xi' = \tilde{\xi'}|_{M_1}$ then ξ' is a Nash approximation of ξ in the C^1 topology and satisfies the required conditions.

Moreover, $\xi'|_{\text{Int }M_1}$ can be a Nash diffeomorphism onto M' for the following reason.

First we prove that $\xi'|_{\text{Int }M_1}$ can be an immersion. For each $i=1,\ldots,n,$ let v_i denote the Nash vector field on M_1 such that for each $x\in M_1$,

$$\left(\frac{\partial}{\partial x_i}\right)_x = v_{ix} + (\text{a vector normal to the tangent space of } M_1 \text{ at } x).$$

For a C^1 map $\chi = (\chi_1, \ldots, \chi_n) \colon M_1 \to \mathbb{R}^n$, let $\alpha(\chi)$ denote the sum of the squares of the minors of degree m of the $n \times n$ matrix whose (i,j)-element is $v_i \chi_j$. Then $\chi|_{\mathrm{Int} M_1}$ is an immersion if and only if $\alpha(\chi)$ is positive on $\mathrm{Int} M_1$. It follows from Lojasiewicz Inequality and the property $\alpha(\xi) > 0$ on $\mathrm{Int} M_1$ that $\alpha(\xi') > 0$ on $\mathrm{Int} M_1$ if we choose ξ' so that $\xi' - \xi$ is the product of φ^l and a C^1 Nash map close to the zero map in the C^1 topology for a large integer l and for the above φ . Hence $\xi'|_{\mathrm{Int} M_1}$ can be an immersion.

Second, we see that $\xi'|_{\text{Int }M_1}$ can be injective. For a map $\chi \colon M_1 \to \mathbf{R}^n$, let $\beta(\chi) \colon M_1 \times M_1 \to \mathbf{R}^n$ be defined by

$$\beta(\chi)(x_1, x_2) = \chi(x_1) - \chi(x_2)$$
 for $(x_1, x_2) \in M_1 \times M_1$.

Let Δ denote the diagonal of $M_1 \times M_1$. Then $\chi|_{\text{Int }M_1}$ is injective if and only if

(*)
$$\beta(\chi)^{-1}(0) = \Delta$$
 in Int $M_1 \times \text{Int } M_1$,

the zero set of $\beta(\xi)$ contains Δ and is contained in $\partial M_1 \times \partial M_1 \cup \Delta$, and the rank of the Jacobian matrix of $\beta(\xi)$ at each point of Int Δ equals m. Note that $\dim \Delta = m$. Let l be a large integer and let $\gamma \colon M_1 \times M_1 \to \mathbb{R}^n$ be a C^1 Nash map which vanishes on Δ and is close to the zero map in the C^1 topology. Then by Lojasiewicz Inequality, it is easy to see that the zero set of the map

$$M_1 \times M_1 \ni (x_1, x_2) \longrightarrow \beta(\xi)(x_1, x_2) + (\varphi^{2l}(x_1) + \varphi^{2l}(x_2))\gamma(x_1, x_2) \in \mathbf{R}^n$$

coincides with the zero set of $\beta(\xi)$. Choose ξ' so that $\xi' - \xi$ is the product of $\varphi^{l'}$ and a C^1 Nash map close to the zero map in the C^1 topology for a much larger integer l'. Then $\beta(\xi')$ is of the above form. Hence ξ' has the property (*). Thus $\xi'|_{\text{Int }M_1}$ can be injective.

By the above two facts, $\xi'|_{\text{Int }M_1}$ can be a diffeomorphism onto M' because $(\xi - \xi')(x)$ converges to $0 \in \mathbb{R}^n$ as a point x in $\text{Int }M_1$ converges to a point of $\overline{M}_1 - \text{Int }M_1$.

Define a Nash map ρ' : Int $M_1 \to M' \cup_{p|_{\operatorname{Int} M''}} M''$ to be ξ' . Choose ξ' so that the map $\xi' - \xi \colon M_1 \to \mathbf{R}^n$ is the product of φ^l and a C^1 Nash map $M_1 \to \mathbf{R}^n$ for a sufficiently large integer l (Theorem II.5.2, ibid.). Then by Lojasiewicz Inequality we can extend ρ' to a semialgebraic homeomorphism $\rho' \colon M_1 \to M' \cup_{p|_{\operatorname{Int} M''}} M''$ which equals ρ on ∂M_1 . Clearly $\rho'|_{\operatorname{Int} M_1}$ is a Nash diffeomorphism onto M'. Hence Lemma 2 follows if we can choose ξ' so that ρ' is a Nash diffeomorphism around ∂M_1 . For that it suffices to prove the following assertion.

Let π be the semialgebraic homeomorphism of M_1 such that $\rho \circ \pi = \rho'$. Then we can choose ξ' so that π is a Nash diffeomorphism around ∂M_1 .

It follows from $\rho \circ \pi = \rho'$ that $\xi \circ \pi = \xi'$. Since π is unique and since $\pi = \mathrm{id}$ on ∂M_1 , the problem is local at ∂M_1 . Hence we can reduce the above assertion to the next one.

We can choose ξ' so that for each $x \in \partial M_1$ there exists a Nash diffeomorphism germ τ of M_{1x} such that $\xi_x \circ \tau = \xi'_x$.

We can assume $M_1 \subset \mathbf{R}^m$ and $\tilde{M}' \subset \mathbf{R}^m$ since the problem is local. Let J denote the Jacobian of ξ . Then we precisely state the above assertion as follows, which is due to [T].

There exists such τ if for each $x \in \partial M_1$, $\xi'_x - \xi_x$ is the product of $J_x^2 \varphi_x$ and a Nash map germ.

Such ξ' exists by the above construction of ξ' if we have a Nash function J' on M_1 such that $J'^{-1}(0) \subset \partial M_1$, and for each $x \in \partial M_1$, J'_x is the product of J_x and a Nash function germ. Let \mathcal{J} denote the finite sheaf of \mathcal{N}_{M_1} -ideals defined to be $J\mathcal{N}_{M_1}$ around ∂M_1 and \mathcal{N}_{M_1} outside of ∂M_1 . Then by Lemma 3, \mathcal{J} has finite generators if we shrink ∂M_1 . The sum of the squares of the generators fulfills the requirements for J'.

It remains to show the last assertion. We assume $M_1 = \tilde{M}' = \mathbf{R}^m$ for simplicity of notation. Let $g \colon \mathbf{R}^m \to \mathbf{R}^m$ be the Nash map germ such that $\xi_0' - \xi_0 = J_0^2 \varphi_0 g$. By the Taylor expansion formula we have

$$\xi_0(x+y) = \xi_0(x) + y \cdot \frac{\partial \xi_0}{\partial x} + \sum_{i,j=1}^m y_i y_j f_{i,j}(x,y), \quad x, \ y = (y_1, \dots, y_m) \in \mathbf{R}^m,$$

for some Nash map germs $f_{i,j} : \mathbf{R}^{2m} \to \mathbf{R}^m$, where $\frac{\partial}{\partial x}$ denotes the Jacobian matrix. Substitute y with $J_0(x)y$. Then

$$\xi_0(x + J_0(x)y) - \xi_0(x) = J_0(x)y \cdot \frac{\partial \xi_0}{\partial x}(x) + J_0^2(x) \sum_{i,j=1}^m y_i y_j f'_{i,j}(x,y)$$

for some Nash map germs $f'_{i,j}$. Hence we need only find a Nash map germ $y = y(x) : \mathbf{R}^m \to \mathbf{R}^m$ such that y(0) = 0 and

$$J_0(x)y(x) \cdot \frac{\partial \xi_0}{\partial x}(x) + J_0^2(x) \sum_{i,j=1}^m y_i(x)y_j(x)f'_{i,j}(x,y(x)) = J_0^2(x)\varphi_0(x)g(x).$$

Multiply this equality by the cofactor matrix of $\frac{\partial \xi_0}{\partial x}(x)$. Then it is equivalent to

$$y(x) + \sum_{i,j=1}^{m} y_i(x)y_j(x)f''_{i,j}(x,y(x)) = \varphi_0(x)g'(x),$$

where $f_{i,j}''$ and g' are some Nash map germs. By the implicit function theorem, the last equality is solved. \square

Lemma 3. Let $M \subset \mathbb{R}^n$ be a Nash manifold with corners. Let \mathcal{I} be a finite sheaf of \mathcal{N}_M -ideals on M such that $\mathcal{I}_x = \mathcal{N}_x$ for $x \in \operatorname{Int} M$. Shrink ∂M . Then Global equation conjecture and Extension conjecture for this \mathcal{I} hold true.

Proof. We can assume $\overline{M}-M$ is a point. Let φ be the function on M which measures distance from $\overline{M}-M$, and let ε be a small positive number. Then φ is of class Nash on $\varphi^{-1}(]0,\varepsilon])$ and C^1 regular on $(\operatorname{Int} M)\cap \varphi^{-1}(]0,\varepsilon])$ and on (each face of $\partial M)\cap \varphi^{-1}(]0,\varepsilon])$. Hence $M_1=\varphi^{-1}([\varepsilon,\infty[)$ is a compact Nash manifold with corners. Set

$$M_2 = M - \{x \in \partial M : \varphi(x) \le \varepsilon\}$$
 and $M_3 = \varphi^{-1}(]\varepsilon, \infty[)$,

which are Nash manifolds with corners. By the semialgebraic version of Thom's First Isotopy Lemma [C-S₂], we have a semialgebraic map $\tau \colon \varphi^{-1}(]0,\varepsilon]) \to \varphi^{-1}(\varepsilon)$ such that $\tau = \mathrm{id}$ on $\varphi^{-1}(\varepsilon)$ and $(\tau,\varphi)|_{M_2\cap\varphi^{-1}(]0,\varepsilon])}$ is a Nash diffeomorphism onto $(M_2\cap\varphi^{-1}(\varepsilon))\times]0,\varepsilon]$. Using τ we easily construct a C^1 Nash diffeomorphism $\pi\colon M_3\to M_2$ which is the identity on a small semialgebraic neighborhood of ∂M_3 in M_3 .

From the note it follows that there exists a Nash function on M_3 with zero set $= \partial M_3$, and $\mathcal{I}|_{M_3}$ is generated by global cross-sections. We show that $\mathcal{I}|_{M_2}$ also is generated by global cross-sections. For that it suffices to find a Nash approximation $\pi' \colon M_3 \to M_2$ of π in the C^1 topology such that $\pi' = \mathrm{id}$ on ∂M_3 and the pull back of $\mathcal{I}|_{M_2}$ by π' equals $\mathcal{I}|_{M_3}$.

Let ψ be a global cross-section of $\mathcal{I}|_{M_3}$ with zero set $=\partial M_3$. By Theorem II.5.2 in [S] there exists a Nash approximation π' of π such that the map $\pi' - \pi \colon M_3 \to \mathbf{R}^n$ is the product of ψ and a C^1 Nash map $\alpha \colon M_3 \to \mathbf{R}^n$ of class C^ω around ∂M_3 . We need only prove that for each $a \in \partial M_3$ and for each $f \in \mathcal{N}_a$, f is contained in \mathcal{I}_a if and only if $f \circ \pi'_a$ is in \mathcal{I}_a . (Note that $\pi'(a) = a$.) As the problem is local, we can assume $M \subset \mathbf{R}^m$ and a = 0, where $m = \dim M$. In general, for a Nash function germ g at 0 in \mathbf{R}^m there exists a Nash function germ h at 0 in $\mathbf{R}^m \times \mathbf{R}^m \times \mathbf{R}$ such that

$$g(x+zy)=g(x)+zh(x,y,z)$$
 for (x,y,z) around 0 in $\mathbf{R}^m\times\mathbf{R}^m\times\mathbf{R}$.

Hence we have

$$f \circ \pi'_0(x) = f(x + \psi_0(x)\alpha_0(x)) = f(x) + \psi_0(x)f_1(x, \alpha_0(x), \psi_0(x))$$

for some Nash function germ f_1 at 0 in $\mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}$. Therefore, $f \in \mathcal{I}_0$ if and only if $f \circ \pi'_0 \in \mathcal{I}_0$. \square

Remark. Global equation and Extension conjectures hold true for any real closed field R which contains R.

We prove this in the same way as in the proof of the implication (i) \Rightarrow (ii) of Theorem 2.4 in [C-S₁]. For semialgebraic subsets X and Y of \mathbb{R}^n and for a semialgebraic map $f\colon X\to Y$, let $X_R,\,Y_R$ and $f_R\colon X_R\to Y_R$ denote the extensions to R of $X,\,Y$ and f respectively.

Proof of Global equation conjecture. It suffices to prove the theorem for a (not necessarily noncompact) Nash manifold M in \mathbb{R}^n . Let $\dim M = m$. By Theorem 2.4 in [C-S₁], we can assume there exists a Nash manifold $M^{\mathbf{R}} \subset \mathbf{R}^n$ such that M is diffeomorphic to $M_R^{\mathbf{R}}$. Hence let $M = M_R^{\mathbf{R}}$. Moreover, by its proof we can assume $U = U_R^{\mathbf{R}}$ and $V = V_R^{\mathbf{R}}$ for some open semialgebraic sets $U^{\mathbf{R}}$ and $V^{\mathbf{R}}$ of $M^{\mathbf{R}}$. Let $f_1, \ldots, f_k \in H^0(U, \mathcal{I}|_U)$ and $g_1, \ldots, g_k \in H^0(V, \mathcal{I}|_V)$ be generators of $\mathcal{I}|_U$ and $\mathcal{I}|_V$ respectively. Let $\gamma_{i,j} \colon U \cap V \to R$ and $\delta_{i,j} \colon U \cap V \to R$, $i,j=1,\ldots,k$, be Nash functions such that for each i,

(*)
$$f_i = \sum_{j=1}^k \gamma_{i,j} g_j \quad \text{and} \quad g_i = \sum_{j=1}^k \delta_{i,j} f_j \quad \text{on} \quad U \cap V.$$

Let $f: M \to R$ be a Nash function. Then we have a presentation

$$\operatorname{graph} f = \bigcup_{\text{finite}} \{ x \in \mathbb{R}^{n+1} \colon \varphi(x, a) = 0, \ \varphi_1(x, a) > 0, \dots, \varphi_l(x, a) > 0 \},$$

where φ and φ_i are polynomials with coefficients in **Z** and a is a p-uple of elements of R. For $b \in \mathbb{R}^p$, set

$$X_b = \bigcup_{\text{finite}} \{ x \in \mathbf{R}^{n+1} : \varphi(x,b) = 0, \ \varphi_1(x,b) > 0, \dots, \varphi_l(x,b) > 0 \}.$$

Then, as noted in the proof of Theorem 2.4 in [C-S₁], the set of b such that X_b is a Nash manifold of dimension m is semialgebraic in \mathbf{R}^p . Moreover, by the same reason as in the proof, the set $B \subset \mathbf{R}^p$ of b such that X_b is the graph of a Nash function on $M^{\mathbf{R}}$ is semialgebraic. Note that $X_b \subset M^{\mathbf{R}} \times \mathbf{R}$. Set $X = \bigcup_{b \in B} X_b \times b$.

By Theorem 2.4 there exists a finite semialgebraic stratification $B = \cup B^i$ of B into Nash manifolds such that for each $i, X^i = X \cap \mathbf{R}^{n+1} \times B^i$ is a Nash manifold and that there is a Nash diffeomorphism $\xi^i \colon M^{\mathbf{R}} \times B^i \to X^i$ compatible with the projection onto B^i . For $(x,b) \in M^{\mathbf{R}} \times B^i, \xi^i(x,b)$ is of the form $(\xi_1^i(x,b),\xi_2^i(x,b),b) \in M^{\mathbf{R}} \times \mathbf{R} \times B^i$. Then it is easy to see that the map $M^{\mathbf{R}} \times B^i \ni (x,b) \to (\xi_1^i(x,b),b) \in M^{\mathbf{R}} \times B^i$ is a diffeomorphism. Hence we can assume ξ_1^i is the identity map of $M^{\mathbf{R}}$ and we have a Nash function $h^i \colon M^{\mathbf{R}} \times B^i \to \mathbf{R}$ such that for each $b \in B^i$, the graph of the function $h^i(\cdot,b) \colon M^{\mathbf{R}} \to \mathbf{R}$ coincides with X_b .

Note that there exists i such that $a \in B_R^i$, i.e., $f = h_R^i(\cdot, a)$.

Consequently, there exist Nash manifolds A and C over \mathbf{R} , Nash maps $F = (F_1, \ldots, F_k) \colon U^{\mathbf{R}} \times A \to \mathbf{R}^k$, $G = (G_1, \ldots, G_k) \colon V^{\mathbf{R}} \times A \to \mathbf{R}^k$, Nash functions

 $\Gamma_{i,j}: (U^{\mathbf{R}} \cap V^{\mathbf{R}}) \times C \to \mathbf{R}$ and $\Delta_{i,j}: (U^{\mathbf{R}} \cap V^{\mathbf{R}}) \times C \to \mathbf{R}$, $i, j = 1, \ldots, k$, and points $a \in A_R$ and $c \in C_R$ such that

$$F_R(\cdot, a) = (f_1, \dots, f_k), \quad G_R(\cdot, a) = (g_1, \dots, g_k),$$

 $\Gamma_{i,jR}(\cdot, c) = \gamma_{i,j} \quad \text{and} \quad \Delta_{i,jR}(\cdot, c) = \delta_{i,j}.$

Replace A, C, a and c with $A \times C$, $A \times C$, (a, c) and (a, c) respectively. Then we can assume A = C and a = c. Moreover, we can choose A, F, G, $\Gamma_{i,j}$ and $\Delta_{i,j}$ so that for each i,

(**)
$$F_i = \sum_{j=1}^k \Gamma_{i,j} G_j \quad \text{and} \quad G_i = \sum_{j=1}^k \Delta_{i,j} F_j \quad \text{on} \quad (U^{\mathbf{R}} \cap V^{\mathbf{R}}) \times A$$

by the same reason as above, because it is possible to express by a formula of the first order theory of real closed field the fact that the equality (**) holds.

By (**) there exists a sheaf of $\mathcal{N}_{M^{\mathbf{R}}\times A}$ -ideals \mathcal{J} on $M^{\mathbf{R}}\times A$ such that $\mathcal{J}|_{U^{\mathbf{R}}\times A}$ and $\mathcal{J}|_{V^{\mathbf{R}}\times A}$ are generated by F_1,\ldots,F_k and G_1,\ldots,G_k respectively. By the theorem we have a finite number of generators H_i of \mathcal{J} . Then it is easy to see that $H_{iR}(\cdot,a)$ generate \mathcal{I} . \square

Proof of Extension conjecture. It is sufficient to prove the following assertion.

Let $M \subset \mathbb{R}^n$ be a Nash manifold. Let U and V be open semialgebraic subsets of M such that $M = U \cup V$. Let \mathcal{I} be a sheaf of \mathcal{N}_M -ideals generated by a finite number of global Nash functions. Let $f \colon U \to R$ and $g \colon V \to R$ be Nash functions such that f - g is a cross-section of $\mathcal{I}|_{U \cap V}$. Then there exists a Nash function $h \colon M \to R$ such that $h|_U - f$ and $h|_V - g$ are cross-sections of $\mathcal{I}|_U$ and $\mathcal{I}|_V$ respectively.

Let φ_i , $i = 1, \ldots, l$, be generators of \mathcal{I} . We have

$$f-g=\sum_{i=1}^{l}\gamma_{i}\varphi_{i}$$
 on $U\cap V$

for some Nash functions $\gamma_i \colon U \cap V \to R$. Then, as in the preceding proof of Global equation conjecture, we can assume $M = M_R^{\mathbf{R}}, \ U = U_R^{\mathbf{R}}$ and $V = V_R^{\mathbf{R}}$ for some Nash manifold $M^{\mathbf{R}}$ over \mathbf{R} and open semialgebraic subsets $U^{\mathbf{R}}$ and $V^{\mathbf{R}}$ of $M^{\mathbf{R}}$ and we obtain a Nash manifold A over \mathbf{R} , a point a of A_R and Nash functions $F \colon U^{\mathbf{R}} \times A \to \mathbf{R}, \ G \colon V^{\mathbf{R}} \times A \to \mathbf{R}, \ \Phi_i \colon M^{\mathbf{R}} \times A \to \mathbf{R}, \ i = 1, \ldots, l,$ and $\Gamma_i \colon (U^{\mathbf{R}} \cap V^{\mathbf{R}}) \times A \to \mathbf{R}, \ i = 1, \ldots, l,$ such that

$$F - G = \sum_{i=1}^{l} \Gamma_i \Phi_i$$
 on $(U^{\mathbf{R}} \cap V^{\mathbf{R}}) \times A$,

$$F_R(\cdot, a) = f$$
, $G_R(\cdot, a) = g$, $\Phi_{iR}(\cdot, a) = \varphi_i$ and $\Gamma_{iR}(\cdot, a) = \gamma_i$.

Let \mathcal{J} be the sheaf of $\mathcal{N}_{M^{\mathbf{R}}\times A}$ -ideals on $M^{\mathbf{R}}\times A$ generated by Φ_i . Then, since Extension conjecture holds true for \mathbf{R} , there exists a Nash function $H:M^{\mathbf{R}}\times A\to \mathbf{R}$ such that $H|_{U^{\mathbf{R}}\times A}-F$ and $H|_{V^{\mathbf{R}}\times A}-G$ are cross-sections of $\mathcal{J}|_{U^{\mathbf{R}}\times A}$ and $\mathcal{I}|_{V^{\mathbf{R}}\times A}$ respectively. Clearly $h=H_R(\cdot,a)$ fulfills the requirements. \square

Problem. Open problems are Global extension and Extension conjectures for a general real closed field.

REFERENCES

- [C-R-S₁] M. Coste-J. M. Ruiz-M. Shiota, Approximation in compact Nash manifolds, Amer. J. Math. 117 (1995), 905-927.
- [C-R-S₂] _____, Separation, factorization and finite sheaves on Nash manifolds, Compositio Math. 103 (1996), 31-62.
- [C-S₁] M. Coste-M. Shiota, Nash triviality in families of Nash manifolds, Inv. Math. 108 (1992), 349-368.
- [C-S₂] _____, Thom's first isotopy lemma: semialgebraic version, with uniform bound, in Real analytic and algebraic geometry, Verlag Walter De Gruyter, 1995, pp. 83-101.
- [M] T. Mostowski, Some properties of the ring of Nash functions, Ann. Scu. Norm. Sup. Pisa III 2 (1976), 245–266.
- [S] M. Shiota, Nash manifolds, Lecture Notes in Math., 1269, Springer, 1987.
- [T] J. C. Tougeron, Idéaux de fonctions différentiables I, Ann. Inst. Fourier 18 (1968), 177-240.

IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France Graduate School of Polymathematics, Nagoya University, Chikusa, Nagoya, 464-01, Japan