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EMBEDDINGS OF Z,-HOMOLOGY 3-SPHERES IN R’ UP TO
REGULAR HOMOTOPY

MASAMICHI TAKASE
mE

ABSTRACT. Let F' : M® — R® be an embedding of an (oriented) Z,-homology
3-sphere M3 in R®. Then F bounds an embedding of an oriented manifold W* in
R®. It is well known that the signature o(W*) of W* is equal to the y-invariant

of M3 modulo 16. In this paper we prove that or(W4) itself completely determines
the regular homotopy class of F.

1. INTRODUCTION

Let Imm[X,Y] be the set of regular homotopy classes of immersions of
a manifold X in a manifold Y, and Emb[X,Y] denote the subset of Imm[X,Y]
consisting of all regular homotopy classes containing an embedding. Smale [6] has
given a 1-1 correspondence (the Smale invariant) s : Imm[S®, RY] — 7,(Vwn),
where Vy ,, is the Stiefel manifold of all n-frames in R™. Hirsch [2] has generalized
this to the case of immersions of an arbitrary manifold in an arbitrary manifold.
These results solve the problem of the number of regular homotopy classes in terms
of homotopy theory, but do not succeed in finding representatives for each class or
determining which classes are represented by an embedding.

Acéording to Hughes [4], Imm[S™ RV] has a group structure under connected
sum and the Smale invariant actually gives a group isomorphism. [4] gives explicit
generators of Immm[S% R*] and Imm/[S3, R5].

Hughes-Melvin [5] determine which classes of Imm[S™, R"*?] are represented by
an embedding, and prove that Emb[S™, R"*?] is isomorphic to Z if n = 3 mod 4,

and to 0 otherwise. Furthermore, [5] proves that the regular homotopy class of
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~an embedding S — R™?(n = 3 mod 4) can be completely determined by the
signature of its oriented “Seifert” manifold. For example, in the case n = 3, we have

the following diagram:

s: Imm[S3R%] =5 ma(Vis)m Z

U U
Emb[S3, R%] = 247,
f —  —2o(V%)

~ where V* is an oriented Seifert manifold for f.

This implies that there exist many n-knots which cannot be transformed to the
'standard embedding even through a smooth deformation admitting self-intersections
(n =3 mod 4).

The purpose of this paper is to prove a similar statement for embeddings of Z,-
homology 3-spheres in R®. More precisely we prove that the regular homotopy class
of an embedding of a Z,-homology 3-sphere in R® is completely determined by the
- signature of its oriented Seifert manifold.

Throughout this paper, manifolds and immersions are of class C*. The symbol
“x” denotes an appropriate isomorphism betweeen algebraic objects; “~” and “~,”
mean respectively “homotopic” and “regularly homotépic”. We often do not dis-
tinguish between an immersion f and its regular homotopy class, both of which we
denote by f.

The author is grateful to Professor Yukio Matsumoto for his valuable advice and

encouragement.

2. PRELIMINARIES

We recall some results of [9]. Let M™ be a parallelizable n-manifold, and
| f: M™% RN be an immersion. Fix a trivialization TM = M™ x R" ; we can
associate to f a map df : M™ — VN, from M™ to the Stiefel manifold Vi ,,, where |
Vg is identified with the set of all injective linear maps from R” to RN. df is

essentially the differential of f. By Hirsch’s theorem [2], the correspondence f ~— df
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gives a bijection between Imm[M™ RY] and the homotopy set [M™ Vi ,]. Every
oriented 3-manifold M? is parallelizable, so Imm[M3 R%] ~ [M?3, Vs 5].

We now study the set [M?, V5 3]. Since Vj 3 is simply connected, we can make use
of the results of Whitney(8]. Let m; = 7;(Vs3), then 7 = 0; Ty & 73 & 4. Therefore
we must éonsider the secondary difference. '

Identify m; and 73 with Z in the same way as [9, Proof ofv Theorem 2]. For a map
£ : M?® — Vi3 we can suppose £(MM) = p e Vs,3 because 7, = 0, (p is a point
in V53 and M (@) denotes the g-skeleton of M). So lwe can consider the difference
2-cochain between ¢ and the constant map to the point p. Since ¢ is defined over
M?3, this 2-cochain is actually a 2-cocycle. Let CZ denote its cohomology class in
H*(M3Z).

Next, for two maps £,7 : M3 — Vi3 with ¢{{M®) ~ 5|M®), denote by A%, the
difference 3-cochain. |

The following is an application of [8, Theorem 8A] to our special case of mappings

of M? in V;3 (see also [9, proof of Theorem 2]).

- Lemma 2.1. ([8, Theorem 8A], [9, Theorem 2]) Two maps &,n : M® — V3 are
homotopic if and only if

(a) C? = C? € HX(M3; Z) |

(b) There is a I-cocycle X and a 2-cochain Y? such that A}, = 4X'UCE+6Y2.

3. MAIN RESULTS

Let M?® be a closed oriented 3-manifold. Let D? be the 3-disk, which from
now on we will often identify with thg northern hemisphere of the 3-sphere S3. Fix
an inclusion D® C M3, and put My, = M® — intD®. Suppose Fy : M3 «— R’
is an embedding such that Fy|D? coincides with the northern part of the standard

embedding 5° C R®. For an immersion f : $ & R, we can assume f|(the southern
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hemisphere) is standard, so define the map
br 0 Imm[S3,R%] — Imm[M3 R’
f — Fob f
where (Foff)|Mo = Fo|Mo, and (Fot f)ID? = fID3. The normal bundle of o 1s
trivial and if Fp is altered on D? its normal bundle does not change. So we can n

fact define the map
ir, : Imm[S3 R%] — Imm[M* R%)o

where Imm[M?3,R%], is the subset of Imm[M?3, R®] consisting of all regular homo-

topy classes of immersions with trivial normal bundle. Note that Emb[M SR C
Imm[M?3, R®),. |

Proposition 3.1. If H*(M3;Z) has no elements of even order, then
| 4r, « Imm[S®, R®) — Imm[M® R
is bijective. |

Proof. Let vr be the normal bundle of an immersion F : M3 9 R®. Since there

is the bundle map
vp — Vs

! !
M L Vg
and since the Euler class of the S'-bundle Vs 5 — Vs 3 is equal to 252 for a generator

Y2 € H*(Vs3;Z) =~ Z, we have

vp is trivial,

& the normal Euler class of F' (denoted by x F) 1s zero,
& dF (2xr) = 24F (xr) = 0,

& 202 = 0

o C2 -

Therefore, Imm[Mg’, R5]0 H¥(Mo; Z) = 0 by [9, Theorem 2]. This means that {r,
is surjectlve from the covering homotopy property for immersion spaces (see [7])-

We next prove the injectivity. For two immersions f,g : S ¢ R®, by Lemma 2.1,
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Foi f ~. Folyg,

& d(Folf) ~ d(Follg),
& A3 is a coboundary.

d(Foﬁf)yd(Fo Ng)

. 3 _ 3 C e _ . . . _
If we consider D? as a 3-cell, AWE(W is a 3-cochain which assigns s(f)

s(g) € m3(Vs3) to D%, and 0 € m3(Vs3) to other 3-cells by definition. So clearly
: 3
d(Foﬂf)»d(FoHy)

 s(f) = s(g) € m3(Vs,),
& fr~og: 52— RO,
This completes the proof. ||

is a coboundary,

Remark 3.2. For a general closed oriented 3-manifold M®, Imm[M3 R%), ~ Z U
-+ UZ (the number of elements c € H2(M?3;Z) with 2¢ = 0) ([9, Theorem 2]).

We now investigate {, restricted to Emb[M? R®]. We want to show that {F,
gives a bijection between Emb[S3 R®] and Emb[M3, R5].

Theorem 3.3. If H'(M3;Z,) = 0, then
tr : Emb[S®, R°] — Emb[M3,R?)

is bijective.
Prop.3.1 Smale inv.

Furthermore, under the identification Imm[M3 R%, " = Imm[S3 R’ =
Z,
EmbM3 R%] =~ 247
F — 3(c(Wg) — a(WE))

where Wi stands for an oriented Seifert manifold for F, and o(W4) is its signature.

Proof. Extend the embedding Fy : M® < R® to an embedding Fp : W4 — R®.
Take a suitable neighbourhood of M?® in W}, diffeomorphic to M® x [0,1), and
further extend Fy to an embedding (denoted again by I

Fo:Wg U M®x(-1,0] — R®.
Let F' : M°® — R® be an embedding, and extend F to

F:WE U M®x(-1,0] — RS
M x {0}
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in the same way as above.

Take a neighbourhood Mg of Mo in M®. Since Mg x (—1,1) is parallelizable,
Imm[Mg x (=1,1),R%] & [My x (=1,1), Vs 4] = [Mo, SO(5)].

"And it follows by obstruction theory that Imm[M{ x (—=1,1),R®] = [My, SO(3)]
consists of a unique element , because m,(SO(5)) = 0, H3(Mo;73(SO(5))) = 0,
and HY(My; 71(SO(5))) ~ H'(M?;Z,) = 0. Therefore we can alter F' by a regular

homotopy (we use again the letter F to represent the resulting immersion) so that
FI(M§ x (=1,1))(z,t) = Fo| (M} x (—1,1))(:1:,.—t), (z,t) € My x (—1,1).

Consider the manifold Vi = W§, . U{o} W4 (the orientation of V2 is taken to be
o X

in accord with the one of W4 ), whose boundary is S°. Using F and Fy, construct
a map from V7 to R®. This map is an immersion except on S? = M, C JIVz.
Pushing a neighbourhood of S? into V}, we have an immersion G of the whole Vi

in R® (Figure 1).

M(’) X ("‘17 1)

2 _ :
§% = OM, (Figure 1) (Figure 2)

Now clearly F' ~, Fo#(G|oVE) : M® & R® (Figure 2). By Proposition 3.1,
the regular homotopy class of F' depends only on the regular homotopy class of
G|0VE : §® a5 R®. Since [5, Proof of Theorem and Corollary 2] actually proves that

if an immersion f : 5% % RS bounds an immersion of an oriented 4-manifold V*
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then s(f) is equal to —20(V'*), we can see
s(GloVE) = ——ga(V{ﬁ) € 247,
and G|0Vy € Emb[S®, R®]. Thus, the map 5, gives a bijection from Em6[53, R3] to

Emb[M?3 R?]. 'Therefdre, identifying Imm[M3, R%], Pragss Imm[S3 R Smale, #nv.
Z, F € EmbM3 R®] corresponds to %J(Vg) = _E;.(O-(W;,O) — o(W%)) by Novikov

additivity. This completes the proof. ||

Remark 3.4. We actually proved here that if an immersion F : M3 9 R’ bounds
an immersion of an oriented 4-manifold Wi then F corresponds to 2(a(Wp) —

2
o(Wg,)) under the above identification Imm[M?3, R%], ~ Z.

Remark 3.5. Suppose M? is a Z,-homology sphere. By Theorem 3.8, we can choose
Fy so that o(W4) = p(M3Y, where p(!\/[3)' is the integer in {0,1,--- ,15} represent-
ing the p-invariant u(M®) € Z/16Z. Let S : Imm[M?3, R5]0‘—+ Z denote the previ-
ous identification through this Fy, Imm[M?3, R°lo=Imm[S®, RP|~Z. Then Theorem
8.8 implies that S(F) = 3(c(WE) — u(M3)') € 24Z if F ¢ Emb[M3 R5].

4. REALIZING H-COBORDISMS IN RS

In this section, we study the following problem. Suppose My, M, are two Z,-
homology 3-spheres which are mutually h-cobordant and let S; : Imm[M;, R%)y —
Z (i = 1,2) denote the bijections as in Remark 3.5. Is it possible to relate S; to S,?

Let My, M; be as above, and V be an h-cobordism between M; and M,. Let
F, : M; — RS be embeddings and W, be oriented Seifert manifolds for them
(¢ = 1,2). Abstractly each M; bounds a simply connected spin 4-manifold W/ of sig-
nature o(W) = o(W;) (taking a connected sum with some copies the +K 3-surface

if necessary) (¢ = 1,2)(see [3]). Consider the closed manifold

Y =W UVuyw
1 2
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Y is a simply connected spin 4-manifold of signature (o (W{)—o(W}3)), since W} AL/.IJIV
is homotopy equivalent to W] and since each M; admits a unique spin structure.
By Cochran[l], ¥ can embed in R® if o(W]) = o(W}). Clearly this embedding
restricted to each M; is regularly homotopic to F; (i=1,2), using Theorem 3.3.
Conversely, suppose H : V < R?® is an embedding. H can extend to an i{nmersion
of WUV in R?® for a Seifert manifold W; for H|M,, if the trivialization of the normal
bundle of H | M (for the construction of W;) is suitably chosen. This, together with
Theorem 3.3, implies that Sy (H|M;) = So(H|M:) € Z because o(Wy) = (W1 UV).

Thus, we have

Proposition 4.1. Let M;, S; (i = 1,2) and V be as above. For embeddings F; :
M; = R® (i1 = 1,2), S1(F) = S3(F;) € Z if and only if there is an embedding
H :V — R® with HIM; ~, F; (1 = 1,2) (or equivalently, there is an immersion
H:V % RS with H|M; = F; (i =1,2)).
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