THOM'S CONJECTURE ON TRIANGULATIONS OF MAPS

MASAHIRO SHIOTA (塩田 昌弘)

Graduate School of Polymathematics, Nagoya University

§1. Introduction

Let $f_i: X_i \to Y_i$, i = 1, 2, be proper C^0 maps between closed sets in Euclidean spaces. We call f_1 and $f_2 \mathcal{R}$ - \mathcal{L} equivalent if there exist homeomorphisms $\eta: Y_1 \to Y_2$ and $\tau: X_1 \to X_2$ such that $\eta \circ f_1 = f_2 \circ \tau$. We call f_1 triangulable if it is \mathcal{R} - \mathcal{L} equivalent to a PL map between closed polyhedra in Euclidean spaces.

Thom [T] conjectured that a so-called "Thom map", which Thom called une application stratifiée sans éclatement, is triangulable. In the present paper we solve the conjecture in a more general form. Partial solutions were given by Teissier [Te] and Proposition IV.1.10 in [S].

A tube system $\{T_j = (|T_j|, \pi_j, \rho_j)\}_{j=1,\dots,k}$ for a C^{∞} stratification $\{Y_j\}_{j=1,\dots,k}$ with $Y = \bigcup_j Y_j \subset \mathbf{R}^n$ and $\dim Y_j < \dim Y_{j+1}$ consists of one tube T_j at each Y_j , where $\pi_j \colon |T_j| \to Y_j$ is a C^{∞} open tubular neighborhood of Y_j in \mathbf{R}^n and ρ_j is a non-negative C^{∞} function on $|T_j|$ such that $\rho_j^{-1}(0) = Y_j$ and each point y of Y_j is a unique and non-degenerate critical point of $\rho_j|_{\pi_j^{-1}(y)}$. We call a tube system $\{T_j\}$ strongly controlled if for each pair j and j' with j < j', the following property holds true:

$$\operatorname{ct}(T_j, T_{j'})$$
 $\pi_j \circ \pi_{j'} = \pi_j$ and $\rho_j \circ \pi_{j'} = \rho_j$ on $|T_j| \cap |T_{j'}|$,

and (sc) the map $(\pi_j, \rho_j)|_{Y_{j'} \cap |T_j|}$ is a C^{∞} submersion into $Y_j \times \mathbf{R}$. Note that any Whitney stratification admits a strongly controlled tube system. An example of a C^{∞} stratification which admits a strongly controlled tube system but is not a Whitney stratification is $\{\text{the } x\text{-axis}, \{(x,y,z) \in \mathbf{R}^3 \colon y=z^2\sin x/z, z \neq 0\}\}$.

Theorem. Let $\{X_{i,j}\}$ and $\{Y_j\}$ be C^{∞} stratifications of closed sets $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^n$ respectively, and let $f: X \to Y$ be a C^{∞} proper map such that each restriction $f|_{X_{i,j}}$ is a submersion into Y_j . Assume there exist a strongly controlled tube system $\{T_j\}$ for $\{Y_j\}$ and a tube system $\{T_{i,j}\}$ for $\{X_{i,j}\}$ strongly controlled over $\{T_j\}$. Then f is triangulable.

The theorem is proved by a theory developed in [S] and hence can be proved also in the semialgebraic, subanalytic and \mathfrak{X} categories. (See [S] for the definition of \mathfrak{X} .) (In the subanalytic and \mathfrak{X} cases, we argue in the C^r category for a positive integer r). In the following proof we use integrations of vector fields. But we can avoid this in the above important special cases as shown in [S]. Note also that we can construct effectively a triangulation, i.e., polyhedra X' and Y' and homeomorphisms $\tau \colon X' \to X$ and $\eta \colon Y' \to Y$ such that $\eta^{-1} \circ f \circ \tau$ is PL in the cases. Hence the following assertion seems true.

Let $k, l, m \in \mathbb{N}$. The cardinal number of the \mathbb{R} - \mathbb{L} equivalence classes of all proper semialgebraic Thom maps between closed semialgebraic sets in \mathbb{R}^k whose graphs are defined by equalities or inequalities of l-polynomials of degree $\leq m$ is bounded by some recursive function in variables (k, l, m).

For the proof it suffices to find an effective method of choosing a Thom stratification $f: \{X_{i,j}\} \to \{Y_j\}$ of a Thom map $f: X \to Y$, because we can effectively construct strongly controlled tube systems $\{T_{i,j}\}$ and $\{T_j\}$ of a Thom stratification $f: \{X_{i,j}\} \to \{Y_j\}$ [S]. (See [G-al] for the definitions of a Thom map and a Thom stratification.) Therefore, we can prove the above assertion if we replace the phrase "Thom maps" with the one "Thom stratifications $f: \{X_{i,j}\} \to \{Y_j\}$ " and add the condition that $\{X_{i,j}\}$ and $\{Y_j\}$ are defined by l-polynomials as graph f.

§2. C^{∞} Triangulations

In this paper, K and L always denote simplicial complexes in some Euclidean space. Let |K| denote the underlying polyhedron of K. For a point x in |K|, let $\operatorname{st}(x,K)$ denote the subcomplex of K generated by the simplexes containing x. We denote by K^k the k-skeleton of K for a non-negative integer k. For a simplex or a manifold σ , Int σ and $\partial \sigma$ denote the interior and the boundary of σ respectively. If $K \subset L$, the simplicial neighborhood N(K,L) of K in L is the smallest subcomplex of K whose underlying polyhedron is a neighborhood of |K| in |L|. If a subset W of |L| is the underlying polyhedron of a subcomplex of L, we call the subcomplex $L|_W$. For each simplex σ of K, let v_{σ} denote the barycenter of σ . The barycentric subdivision K' of K consists of all the simplexes spanned by $v_{\sigma_1}, \dots, v_{\sigma_k}$ for $\sigma_1 \subset \dots \subset \sigma_k \in K$.

A C^{∞} map $h: K \to \mathbf{R}^n$ is a continuous map $h: |K| \to \mathbf{R}^n$ such that all the restrictions $h|_{\sigma}$, $\sigma \in K$, are of class C^{∞} . Let $b \in |K|$. We define $dh_b: |\operatorname{st}(b,K)| \to \mathbf{R}^n$ by

$$dh_b(x) = d(h|_{\sigma})_b(x-b)$$
 for $\sigma \in \operatorname{st}(b,K), x \in \sigma$.

We call h a C^{∞} imbedding if h and dh_b for all $b \in |K|$ are homeomorphisms onto the images. Let $Z \subset \mathbb{R}^n$. A C^{∞} triangulation of Z is a pair of K and a C^{∞} imbedding $h: K \to \mathbb{R}^n$ such that h(|K|) = Z. (A triangulation of Z consists of K and a homeomorphism from |K| to Z.) An approximation of h is a C^{∞} map

 $\hat{h}: \hat{K} \to \mathbf{R}^n$ such that \hat{K} is a subdivision of K,

$$|h(x) - \hat{h}(x)| \le c$$
 for $x \in |K|$,

and

$$|dh_b(x) - d\hat{h}_b(x)| \le c|x - b|$$
 for $b \in |K|$, $x \in |\operatorname{st}(b, K')|$

for a small positive number c.

Let $\alpha \colon K_1 \to K_2$ be a simplicial map between finite simplicial complexes in \mathbf{R}^n . By induction on $\dim K_1$ we define the mapping cylinder $C_{\alpha}(K_1,K_2)$ of α which is a simplicial complex in $\mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}$ and whose underlying polyhedron can be regarded as the mapping cylinder $C_{\alpha}(|K_1|,|K_2|)$ of the topological map $\alpha \colon |K_1| \to |K_2|$. Let K_1 and K_2 be given in $\mathbf{R}^n \times 0 \times 0 \subset \mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}$ and $0 \times \mathbf{R}^n \times 1 \subset \mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}$ respectively, and let K_1' and K_2' denote the barycentric subdivision of K_1 and K_2 respectively. If $\dim K_1 = -1$, i.e., $K_1 = \emptyset$, then set $C_{\alpha}(K_1, K_2) = K_2'$. Let $\dim K_1 = k$ and assume we have already defined the mapping cylinder $C_{\alpha}(K_1^{k-1}, K_2)$. For $\alpha \in K_1 - K_1^{k-1}$, let a_{α} denote the middle point of the barycenters of α and of $\alpha(\alpha)$ in $\mathbf{R}^n \times \mathbf{R}^n \times 1/2$. We set

$$C_{\alpha}(K_1, K_2) = C_{\alpha}(K_1^{k-1}, K_2)$$

$$\cup \bigcup_{\sigma \in K_1 - K_1^{k-1}} \{a_{\sigma}, \ \sigma_1, \ a_{\sigma} * \sigma_1 \colon \sigma_1 \in K_1'|_{\sigma} \cup K_2'|_{\alpha(\sigma)} \cup C_{\alpha|_{\partial \sigma}}(K_1|_{\partial \sigma}, K_2|_{\alpha(\partial \sigma)})\},$$

where $a_{\sigma} * \sigma_1$ denotes the cone with vertex a_{σ} and base σ_1 .

We show some good properties of $C_{\alpha}(K_1, K_2)$. Clearly it is a simplicial complex in $\mathbf{R}^n \times \mathbf{R}^n \times [0, 1]$, K_1' and K_2' are subcomplexes of $C_{\alpha}(K_1, K_2)$, and there is a natural simplicial map $C_{\alpha}(K_1, K_2) \to K_2'$, which is a retraction and carries the barycenter of a simplex σ of K_1 and the above-mentioned a_{σ} to the barycenter of $\alpha(\sigma)$. Given a commutative diagram of simplicial maps

$$\begin{array}{ccc}
L_1 & \xrightarrow{\beta} & L_2 \\
\downarrow & & \downarrow \\
K_1 & \xrightarrow{\alpha} & K_2,
\end{array}$$

there exists a natural simplicial map $C_{\beta}(L_1, L_2) \to C_{\alpha}(K_1, K_2)$. On the other hand, $C_{\mathrm{id}}(K_1, K_1)$ is naturally and simplicially isomorphic to the barycentric subdivision L of the cell complex $K_1 \times \{0, 1, [0, 1]\}$. Hence we have a natural simplicial map $L \to C_{\alpha}(K_1, K_2)$, which equals the identity map on $|K_1| \times 0$ and α on $|K_1| \times 1$. Through this map we identify $|C_{\alpha}(K_1, K_2)|$ with the mapping cylinder of the topological map α .

Let M be a subset of \mathbf{R}^n . We call M a C^{∞} manifold possibly with corners of dimension m if it is locally C^{∞} diffeomorphic to an open subset of \mathbf{R}_+^m , where $\mathbf{R}_+ = [0, \infty[$. Note that such an M admits the canonical C^{∞} stratification $\{Z_i\}_{i=0,\ldots,m}$ such that each Z_i is the subset of $\bigcup_{j=0}^i Z_j$ where $\bigcup_{j=0}^i Z_j$ is locally C^{∞} diffeomorphic to \mathbf{R}^i . Faces of M are the closures of the connected components of Z_i . For a face M' of M of dimension m', set Sing $M' = M' \cap \bigcup_{i=0}^{m'-1} Z_i$.

For continuous maps ψ_i : $A_i \to B$, i = 1, 2, let $A_1 \times_{(\psi_1, \psi_2)} A_2$ denote the fibre product $-\{(a_1, a_2) \in A_1 \times A_2 : \psi_1(a_1) = \psi_2(a_2)\}$.

The key of proof of the theorem is the following lemma, which is similar to Proposition I.3.20 in [S].

Lemma 1. Let M and M_1 be compact C^{∞} manifolds possibly with corners. Let $\varphi \colon M \to M_1$ be a surjective C^{∞} submersion which carries surjectively and submersively any face of M to some face of M_1 . Let M' be a face of M. Let (L,g) and (K,h) be C^{∞} triangulations of M_1 and a neighborhood of a union of subfaces of M' in M, respectively, such that $g^{-1} \circ \varphi \circ h$ is a PL map from |K| to |L|. Shrink the neighborhood of the union and subdivide K. Then keeping the property that $g^{-1} \circ \varphi \circ h$ is PL, we can extend h to a C^{∞} triangulation of a neighborhood of M' in M.

Proof of Lemma 1. We can assume that the given neighborhood is a neighborhood of Sing M' in M. Recall the following assertion in the proof of Proposition I.3.20 in [S].

Assertion. Let $n > n_1$ be non-negative integers, let $p: \mathbf{R}_+^n \to \mathbf{R}_+^{n_1}$ be the projection onto the first n_1 -factors, let $\alpha: A \to \mathbf{R}_+^n$ be a C^{∞} imbedding of a finite simplicial complex A, let (B,β) be a C^{∞} triangulation of $\mathbf{R}_+^{n_1}$ such that $\beta^{-1} \circ p \circ \alpha$ is PL, and let C be a compact subset of \mathbf{R}_+^n . Then there exist a simplicial complex A_0 and a C^{∞} imbedding $\alpha_0: A_0 \to \mathbf{R}_+^n$ such that some subdivision of A is a subcomplex of A_0 , the restriction $\alpha_0|_{|A|}: A_0|_{|A|} \to \mathbf{R}_+^n$ is a strong approximation of α ,

$$A_1 \subset A_0, \quad \alpha_0|_{|A_1|} = \alpha|_{|A_1|}, \quad \alpha_0(|A_0|) \supset C, \quad (\overline{|A_0| - |A|}) \cap |A_1| = \emptyset,$$

and $\beta^{-1} \circ p \circ \alpha_0$ is PL, where $A_1 = \{ \sigma \in A : \alpha(\sigma) \cap C = \emptyset \}$.

It is easy to see that $h^{-1}(M')$ and $h^{-1}(\operatorname{Sing} M')$ are the underlying polyhedra of some subcomplexes of K. Set $U = h(|N(K|_{h^{-1}(\operatorname{Sing} M')}, K)|)$. Then U is a compact neighborhood of $\operatorname{Sing} M'$ in M, and we can assume $U \cap \overline{M - h(|K|)} = \emptyset$. (Here replace K with its barycentric subdivision if necessary.) Let $\{C_i\}_{i=1,\dots,k}$ be a covering of $\overline{M' - h(|K|)}$ by compact sets such that for each i, there exist an open neighborhood V_i of C_i in M and C^{∞} imbeddings $\tau_i \colon V_i \to \mathbf{R}^m_+$ and $\theta_i \colon \varphi(V_i) \to \mathbf{R}^{m_1}_+$, where $m = \dim M$ and $m_1 = \dim M_1$, such that $V_i \cap U = \emptyset$, and the composite $\theta_i \circ \varphi \circ \tau_i^{-1} \colon \tau_i(V_i) \to \mathbf{R}^{m_1}_+$ is the restriction of the projection of \mathbf{R}^m_+ onto the first m_1 -factors.

Let 0 < l < k be an integer. Assume we have already constructed a C^{∞} triangulation (K_{l-1}, h_{l-1}) of a neighborhood of $U \cup \bigcup_{i=1}^{l-1} C_i$ in M such that $g^{-1} \circ \varphi \circ h_{l-1}$ is PL, some subdivision of K is a subcomplex of K_{l-1} , $h_{l-1}|_{|K|}$ is a strong approximation of h, and $h = h_{l-1}$ on $h^{-1}(U)$. Then it suffices to obtain (K_l, h_l) with the corresponding properties.

Subdividing finely L and then K_{l-1} , we can assume that (i) for $\sigma \in K_{l-1}$, if $h_{l-1}(\sigma) \cap C_l \neq \emptyset$ then $h_{l-1}(\sigma) \subset V_l$, (ii) for $\sigma_1, \sigma_2 \in L$, if $\sigma_1 \cap \sigma_2 \neq \emptyset$ and $g(\sigma_1) \cap \varphi(C_l) \neq \emptyset$ then $g(\sigma_2) \subset \varphi(V_l)$, and (iii) for $\sigma \in K_{l-1}$ and $\sigma_1 \in L$, if $h_{l-1}(\sigma) \cap C_l \neq \emptyset$ and $\varphi \circ h_{l-1}(\sigma) \cap g(\sigma_1) \neq \emptyset$ then $g(\sigma_1) \cap \varphi(C_l) \neq \emptyset$. Let D denote the complex generated by $\sigma \in L$ with $g(\sigma) \cap \varphi(C_l) \neq \emptyset$.

Apply the assertion to

$$n = m_1, \quad n_1 = 0,$$

$$(A, \alpha) = (\{\sigma \in L : g(\sigma) \subset \varphi(V_l)\}, \theta_l \circ (g|_{|A|})),$$

$$(B, \beta) = (\{0\}, \mathrm{id}), \quad \mathrm{and} \quad C = \overline{[0, c]^n - \alpha(|A|)}$$

for a large number c. Then by (ii) we have a C^{∞} triangulation (A_0, α_0) of a neighborhood of $[0, c]^n$ in \mathbf{R}^n_+ such that $A_0 \supset D$ and $\alpha_0 = \alpha$ on |D|. Repeat a similar argument for $c_1 = c, c_2, \ldots \to \infty$. Then we obtain a C^{∞} triangulation $(\tilde{B}, \tilde{\beta})$ of $\mathbf{R}^{m_1}_+$ such that $\tilde{B} \supset D$ and $\tilde{\beta} = \theta_l \circ g$ on |D|.

In consideration of application of the assertion, set newly

$$n=m, \quad n_1=m_1,$$

 (A, α)

= (the complex generated by $\sigma \in K_{l-1}$ with $h_{l-1}(\sigma) \cap C_l \neq \emptyset$, $\tau_l \circ (h_{l-1}|_{|A|})$), $(B,\beta) = (\tilde{B},\tilde{\beta})$, and $C = \tau_l(C_l)$.

By (i), α is well-defined. By (iii), $\alpha(|A|) \subset \beta(|D|)$. Hence $\beta^{-1} \circ p \circ \alpha$ (= $g^{-1} \circ \theta_l^{-1} \circ p \circ \tau_l \circ h_{l-1} = g^{-1} \circ \varphi \circ h_{l-1}$) is PL. Thus the conditions in the assertion are satisfied. Let $\alpha_0 \colon A_0 \to \mathbf{R}_+^m$ be a resulting C^{∞} imbedding. Set $\check{K}_{l-1} = \{ \sigma \in K_{l-1} \colon h_{l-1}(\sigma) \cap C_l = \emptyset \}$. Remember that

$$(A_0, \alpha_0) = (A, \alpha)$$
 on $|\{\sigma \in A : h_{l-1}(\sigma) \cap C_l = \emptyset\}|$,

and regard

$$|A_0| \cap |\check{K}_{l-1}| = |\{\sigma \in A : h_{l-1}(\sigma) \cap C_l = \emptyset\}|.$$

Let E' denote the barycentric subdivision of a simplicial complex E as always. Then the family $A'_0 \cup \check{K}'_{l-1}$ is a simplicial complex. Let K_l denote the complex. We can assume that $\alpha_0(|A_0|) \subset \tau_l(V_l)$. Set

$$h_l = \left\{ egin{array}{ll} au_l^{-1} \circ lpha_0 & ext{ on } & |A_0| \ h_{l-1} & ext{ on } & |\check{K}_{l-1}| - |A_0|. \end{array}
ight.$$

Then this map is well-defined and a C^{∞} imbedding by 8.8 in [M], and (K_l, h_l) fulfills the requirements. \square

§3. VECTOR FIELDS AND REMOVAL DATA

Let X, Y, $\{X_{i,j}\}$, $\{Y_j\}$, $f: X \to Y$, $\{T_{i,j}\}$ and $\{T_j\}$ be the same as in the theorem except for the assumption that f is proper. Assume $\dim Y_j < \dim Y_{j+1}$ and $\dim X_{i,j} < X_{i+1,j}$. Let the set of indexes of $\{X_{i,j}\}$ be $\overline{H} = \{(i,j) \in \mathbb{N}^2 : 1 \le j \le k, 1 \le i \le k_j\}$. Set $H = \overline{H} - \{(k_k, k)\}$. Give a lexicographic order to H and \overline{H} so that (i,j) < (i',j') if j < j' or j = j' and i < i'.

A vector field v^Y on $\{Y_j\}$ consists of one C^{∞} vector field v_j on each Y_j . We call v^Y controlled if for each pair j and j',

$$\left\{ \begin{array}{l}
 d\pi_j v_{j'y} = v_{j\pi_j(y)} \\
 d\rho_j v_{j'y} = 0
 \end{array} \right\} \quad \text{for} \quad y \in Y_{j'} \cap U_j,$$

where U_j is some neighborhood of Y_j in $|T_j|$. If only the former equality is assumed, we call v^Y weakly controlled. We call a vector field $v^X = \{v_{i,j}\}$ on $\{X_{i,j}\}$ controlled over v^Y if the former equality of $\operatorname{cv}(T_{i,j},T_{i',j'})$ for each pair (i,j) and (i',j'), the latter for each pair (i,j) and (i',j), and the following equality for each (i,j) hold:

$$dfv_{i,jx} = v_{jf(x)}$$
 for $x \in X_{i,j}$.

Let $v^Y = \{v_j\}$ be a vector field on $\{Y_j\}$. For each j, let $\omega_j \colon \Omega_j \to Y_j$, $\Omega_j \subset Y_j \times \mathbf{R}$, be the maximal C^{∞} flow defined by v_j . Set $\Omega = \bigcup \Omega_j$ and define a map $\omega \colon \Omega \to Y$ by $\omega|_{\Omega_j} = \omega_j$ for each j. We call ω the flow of v^Y . We call v^Y locally integrable if Ω is open in $Y \times \mathbf{R}$ and the flow is continuous.

Assume X and Y are compact. Let $0 < \varepsilon_{k-1} \ll \cdots \ll \varepsilon_1 \ll \infty$ be numbers. Then for $j \leq l$, (1) the following set is a C^{∞} submanifold possibly with corners of Y_l :

$$Y_{j,l} = Y_l \cap |T_j| - \rho_1^{-1}(]0, \varepsilon_1/2[) - \cdots - \rho_{j-1}^{-1}(]0, \varepsilon_{j-1}/2[),$$

(2) if j < l, the restriction of (π_j, ρ_j) to $Y_{j,l} \cap \rho_j^{-1}(]0, 2\varepsilon_j]$) is a C^{∞} submersion into $Y_{j,j} \times]0, 2\varepsilon_j]$, and (3) the sets $Y_{j,j}$ and $\bigcup_{j' \geq j} Y_{j,j'} \cap \rho_j^{-1}([0, 2\varepsilon_j])$ are compact. We call $\varepsilon = \{\varepsilon_j\}_{j=1,\dots,k-1}$ with such properties a removal data of $\{T_j\}_{j=1,\dots,k}$.

A removal data $\varepsilon = \{\varepsilon_{i,j}\}_{(i,j)\in H}$ of $\{T_j,T_{i,j}\}_{(i,j)\in \overline{H}}$ is such that the following eight conditions are satisfied. Let $(i_1,j_1)\leq (i_2,j_2)\in \overline{H}$. (1) Each $\varepsilon_{i,j}$ is a small positive number. Set $\varepsilon_{k_j,j}=\varepsilon_j$. (2) $\{\varepsilon_j\}_{j=1,\ldots,k-1}$ is a removal data of $\{T_j\}_{j=1,\ldots,k}$. (3) The following set is a C^∞ manifold possibly with corners:

$$X_{i_1,j_1,i_2,j_2} = X_{i_2,j_2} \cap |T_{i_1,j_1}| \cap (\rho_{j_1} \circ f)^{-1}([0,2\varepsilon_{j_1}])$$
$$- \bigcup_{j < j_1} (\rho_j \circ f)^{-1}(]0,\varepsilon_j/2[) - \bigcup_{i < i_1} \rho_{i,j_1}^{-1}(]0,\varepsilon_{i,j_1}/2[).$$

(Here we ignore $(\rho_{j_1} \circ f)^{-1}([0, 2\varepsilon_{j_1}])$ if $j_1 = k$.) (4) If $j_1 = j_2$ and if $i_1 < i_2$, the restriction of $(\pi_{i_1,j_1}, \rho_{i_1,j_1})$ to $X_{i_1,j_1,i_2,j_2} \cap \rho_{i_1,j_1}^{-1}([0, 2\varepsilon_{i_1,j_1}])$ is a C^{∞} submersion into $X_{i_1,j_1,i_1,j_1} \times [0, 2\varepsilon_{i_1,j_1}]$. (5) If $j_1 < j_2$, the restriction of $(\pi_{k_{j_1},j_1}, \rho_{j_1} \circ f)$ to $X_{k_{j_1},j_1,i_2,j_2}$ is a C^{∞} submersion into $X_{k_{j_1},j_1,k_{j_1},j_1} \times [0, 2\varepsilon_{j_1}]$. (6) If $j_1 < j_2$ and if $i_1 < k_{j_1}$, the restriction of $(\pi_{i_1,j_1}, f, \rho_{i_1,j_1})$ to $X_{i_1,j_1,i_2,j_2} \cap \rho_{i_1,j_1}^{-1}([\varepsilon_{i_1,j_1}/2, 2\varepsilon_{i_1,j_1}])$ is a C^{∞} submersion into $(X_{i_1,j_1,i_1,j_1} \times (f,\pi_{j_1})(Y_{j_1,j_2} \cap \rho_{j_1}^{-1}([0, 2\varepsilon_{j_1}]))) \times [\varepsilon_{i_1,j_1}/2, 2\varepsilon_{i_1,j_1}]$. (7) The set $\bigcup_{(i,j)\geq (k_{j_1},j_1)} X_{k_{j_1},j_1,i,j}$ is compact. (8) If $i_1 < k_{j_1}$, the set $\bigcup_{(i,j)\geq (i_1,j_1)} X_{i_1,j_1,i,j} \cap \rho_{i_1,j_1}^{-1}([0, 2\varepsilon_{i_1,j_1}])$ is compact.

It is easy to see existence of a removal data of $\{T_j, T_{i,j}\}_{(i,j)\in\overline{H}}$. Indeed, it suffices to choose $\{\varepsilon_{i,j}\}$ so that $0<\varepsilon_{1,1}\ll\infty$ and $\varepsilon_{i,j}\gg\varepsilon_{i',j'}$ if (i,j)<(i',j'). (Only condition (6) is nontrivial. For each $(i_3,j_1)>(i_1,j_1)$, the restriction of (π_{i_3,j_1},f)

to $X_{i_2,j_2} \cap |T_{i_3,j_1}|$ and $(\pi_{i_1,j_1}, \rho_{i_1,j_1})$ to $X_{i_3,j_1} \cap |T_{i_1,j_1}|$ are C^{∞} submersion into $X_{i_3,j_1} \times_{(f,\pi_{j_1})} (Y_{j_2} \cap |T_{j_1}|)$ and $X_{i_1,j_1} \times \mathbf{R}$, respectively, by conditions (sc2) and (sc3). Hence (6) holds.)

In the case where f is proper and the connected components of Y_j are bounded in \mathbf{R}^n , we need to and can easily generalize the above definition of a removal data. For each j, let $\{Y_j^l\}_{l\in\Gamma_j}$ denote the family of the connected components of Y_j . Replace the above $\{\varepsilon_{i,j}\}, X_{i_1,j_1,i_2,j_2}, \ldots$ with $\{\varepsilon_{i,j,l}\}_{(i,j)\in H,l\in\Gamma_j}$,

$$X_{i_{2},j_{2}} \cap f^{-1}(Y_{j_{2}}^{l_{2}}) \cap \pi_{i_{1},j_{1}}^{-1}(f^{-1}(Y_{j_{1}}^{l_{1}})) \cap (\rho_{j_{1}} \circ f)^{-1}([0,2\varepsilon_{j_{1},l_{1}}])$$

$$- \bigcup_{j < j_{1},l \in \Gamma_{j}} (\rho_{j} \circ f)^{-1}(]0,\varepsilon_{j,l}/2[) - \bigcup_{i < i_{1}} \rho_{i,j_{1}}^{-1}(]0,\varepsilon_{i,j_{1},l_{1}}/2[)$$
for $l_{1} \in \Gamma_{j_{1}}$ and $l_{2} \in \Gamma_{j_{2}}$,

... . Then the generalization is clear. We omit the details.

If we undo the assumption that the connected components of Y_j are bounded, the generalization becomes complicated. See [S] for it. We need not consider this case in the present paper by the following lemma.

Lemma 2. In the theorem, we can assume that each connected component of Y_i is bounded in \mathbb{R}^n .

Proof of Lemma 2. In this proof we shall frequently shrink $|T_{i,j}|$ and $|T_j|$ without telling. Considering the unions of strata of same dimensions, we assume $\dim Y_j = j, \ j = 0, \ldots, k$, only now. It is easy to construct a C^{∞} proper function ξ on \mathbf{R}^n such that for each $y \in Y_j$, ξ is constant on $\pi_j^{-1}(y)$, $\mathbf{Z} + [-1/3, 1/3] = \bigcup_{z \in \mathbf{Z}} [z-1/3, z+1/3]$ is common C^{∞} regular values of all ξ and $\xi|_{Y_j}$, $j \neq 0$, and $\xi(Y_0) \cap (\mathbf{Z} + [-1/3, 1/3]) = \emptyset$. Set

$$Y'_j = Y_j - \xi^{-1}(\mathbf{Z})$$
 and $Y''_j = Y_{j+1} \cap \xi^{-1}(\mathbf{Z})$.

Clearly $\{Y_j',Y_j''\}$ is a C^∞ stratification of Y such that the connected components of the strata are bounded in \mathbf{R}^n and each Y_j is the union of Y_j' and Y_{j-1}'' . We want to construct a strongly controlled tube system $\{T_j'=(|T_j'|,\pi_j',\rho_j'),\,T_j''=(|T_j''|,\pi_j'',\rho_j'')\}$ for $\{Y_j',Y_j''\}$. Set

$$|T'_j| = |T_j| - \xi^{-1}(\mathbf{Z}), \quad \rho'_j = \rho_j \quad \text{on} \quad |T'_j| \quad \text{and}$$

$$|T''_j| = |T_{j+1}| \cap \xi^{-1}(\mathbf{Z} +] - 1/3, 1/3[).$$

Let ξ' be a C^{∞} function on ${\bf R}$ such that

$$\xi'(x) = (x-z)^2$$
 on $[z-1/3, z+1/3]$ for each $z \in \mathbb{Z}$.

Set

$$\rho_j'' = \rho_{j+1} + \xi' \circ \xi \quad \text{on} \quad |T_j''|.$$

For the moment, set $\pi'_j = \pi_j$, which we need to modify.

We want to define π''_j first on $Y_{j+1} \cap |T''_j|$ so that for j < j',

Shrink $|T_j''|$ sufficiently. Assume that there exist a vector field $\{v_{j+1}\}$ on $\{Y_{j+1} \cap |T_j''|\}$ such that $v_{j+1}\xi = 1$, and for j < j',

Define π''_j on $Y_{j+1} \cap |T''_j|$ so that $\{\pi''_{j-1}(y)\}_{y \in Y''_j}$ is the integral curves of v_{j+1} . Then π''_j satisfies the required properties. Extend π''_j to $|T''_j|$ by setting $\pi''_j = \pi''_j \circ \pi_{j+1}$. Then it is easy to see that $\{T''_j\}$ is a strongly controlled tube system for $\{Y''_j\}$, and for j < j', the former equality of $\operatorname{ct}(T''_j, T''_{j'})$ and (sc) for $(\pi''_j, \rho''_j)|_{Y_{j'} \cap |T''_j|}$ hold.

We now construct v_j . Since $\xi|_{Y_1}$ is C^{∞} regular at $Y_1 \cap \xi^{-1}(\mathbf{Z})$, there clearly exists v_1 . Assume that we have already constructed v_j for all j < k. It suffices to construct v_k . Moreover, consider the following downward induction. Let l < k be a nonnegative integer. Assume we have defined v_k on $Y_k \cap |T''_{k-1}| \cap (\bigcup_{l < j < k-1} |T''_j|)$ so that $\operatorname{cv}'(j+1,k)$ hold on $Y_k \cap |T''_{k-1}| \cap |T''_j|$ for all j with l < j < k-1. Then it suffices to extend v_k to $Y_k \cap |T''_{k-1}| \cap |T''_l|$ so that $\operatorname{cv}'(l+1,k)$ holds on $Y_k \cap |T''_{k-1}| \cap |T''_l|$, because we easily extend v_k defined on $Y_k \cap |T''_{k-1}| \cap (\bigcup_{j < k-1} |T''_j|)$ to $Y_k \cap |T''_{k-1}|$ by using a C^{∞} partition of unity.

Note that $\operatorname{cv}'(l+1,k)$ for v_k holds on $Y_k \cap |T''_{k-1}| \cap |T''_l| \cap (\bigcup_{l < j < k-1} |T''_j|)$. Indeed, the former equality follows from $\operatorname{ct}(T_{l+1},T_{j+1})$, $\operatorname{cv}'(j+1,k)$ and $\operatorname{cv}'(l+1,j+1)$, and we have

$$\begin{split} d\rho_{l}''v_{ky} &= d\rho_{l+1}v_{ky} + d(\xi' \circ \xi)v_{ky} \\ &= d\rho_{l+1} \circ d\pi_{j+1}v_{ky} + d(\xi' \circ \xi) \circ d\pi_{j+1}v_{ky} \\ &= d\rho_{l}'' \circ d\pi_{j+1}v_{ky} = d\rho_{l}''v_{j+1\pi_{j+1}(y)} = 0 \\ &\qquad \qquad \text{for} \quad y \in Y_{k} \cap |T_{k-1}''| \cap |T_{l}''| \cap |T_{j}''|, \ l < j < k-1. \end{split}$$

Forget T_j'' , l < j < k-1, and consider only T_l'' . For sufficiently small $|T_{k-1}''|$, the map $(\pi_{l+1}, \rho_l'')|_{Y_k \cap |T_{k-1}'' \cap |T_l''|}$ is a C^{∞} submersion into $Y_{l+1} \times \mathbf{R}$. Hence we have a C^{∞} vector field v_{kl} on $Y_k \cap |T_{k-1}''| \cap |T_l''|$ such that $v_{kl}\xi = 1$ and $\mathrm{cv}'(l+1,k)$ holds. Consequently, pasting v_k and v_{kl} by a partition of unity, we can extend v_k to $Y_k \cap |T_{k-1}''| \cap |T_l''|$. To be precise, let θ be a C^{∞} function on Y_k such that $0 \le \theta \le 1$, $\theta = 1$ outside $Y_k \cap (a$ sufficiently small neighborhood of $\bigcup_{l < j < k-1} Y_j''$ in \mathbf{R}^n) and $\theta = 0$ on $Y_k \cap (a$ smaller one). Shrink $|T_j''|$, $l \le j < k-1$. Define v_k to be $\theta v_{kl} + (1-\theta)v_k$ on $Y_k \cap |T_{k-1}''| \cap |T_l''| \cap (\bigcup_{l < j < k-1} |T_j''|)$, v_{kl} on $Y_k \cap |T_{k-1}''| \cap (\bigcup_{l < j < k-1} |T_j''|)$ and v_k on $Y_k \cap |T_{k-1}''| \cap (\bigcup_{l < j < k-1} |T_j'''|) - |T_l''|$. Then v_k satisfies the required conditions. Thus we obtain $\{T_j''\}$.

It is easy to see that for j < j', $\operatorname{ct}(T'_j, T'_{j'})$, the former equality of $\operatorname{ct}(T''_j, T'_{j'})$, (sc) and the conditions of a tube system hold. If j + 1 < j', then the latter of $\operatorname{ct}(T''_j, T'_{j'})$ also holds because

$$\rho_{j}'' \circ \pi_{j'}' = \rho_{j}'' \circ \pi_{j'} = \rho_{j+1} \circ \pi_{j'} + \xi' \circ \xi \circ \pi_{j'}$$
$$= \rho_{j+1} + \xi' \circ \xi = \rho_{j}'' \quad \text{on} \quad |T_{j}''| \cap |T_{j'}'|.$$

But the latter of $\operatorname{ct}(T''_j, T'_{j+1})$ is not correct. (We need not consider $\operatorname{ct}(T'_j, T''_{j'})$ because we can choose $|T'_j|$ and $|T''_{j'}|$ so that they do not intersect.) We modify π'_{j+1} so that this holds as follows.

Shrinking $|T_{j+1}|$ we assume $\rho_{j+1} \leq 1$. Let $V_1 \subset V_2$ be small open neighborhoods of $Y_j'' \times \mathbf{Z} \times 0$ in $Y_j'' \times \mathbf{R} \times [0,1]$ such that $\overline{V_1} \subset V_2$, and the image of $\overline{V_2}$ under the projection $Y_j'' \times \mathbf{R} \times [0,1] \to Y_j'' \times \mathbf{R}$ is contained in $(\pi_j'', \xi)(Y_{j+1} \cap |T_j''|)$. Let $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ be a C^{∞} diffeomorphism of $Y_j'' \times (\mathbf{R} - \mathbf{Z}) \times [0,1]$ such that

$$\alpha = \mathrm{id} \quad \mathrm{on} \quad Y_j'' \times (\mathbf{R} - \mathbf{Z}) \times 0,$$

$$\alpha_1(y, s, t) = y, \quad \alpha_3(y, s, t) = t, \quad \mathrm{and}$$

$$\alpha_2(y, s, t) = \begin{cases} \pm ((s - z)^2 + t)^{1/2} + z \\ & \mathrm{on} \quad V_1 \cap (Y_j'' \times ([z - 1/3, z + 1/3] - z) \times [0, 1]), \quad z \in \mathbf{Z} \end{cases}$$

$$s \quad \mathrm{outside} \quad V_2,$$

whose existence is easily shown if V_1 is sufficiently small. Modify π'_{i+1} to be

$$((\pi_j'',\xi)|_{Y_{j+1}\cap |T_j''|})^{-1}\circ (\alpha_1,\alpha_2)\circ (\pi_j'',\xi,\rho_{j+1})$$
 on $|T_{j+1}'|\cap |T_j''|$,

and do not change π'_{j+1} on $|T'_{j+1}| - |T''_j|$. Then it is clear that $\{T'_j\}$ is a tube system and (sc) is satisfied. Note that π'_{j+1} does not change outside $(\pi''_j, \xi, \rho_{j+1})^{-1}(V_2)$. Hence $\operatorname{ct}(T'_{j'+1}, T'_{j+1})$ can hold for any j' < j because we can choose small V_2 and shrink $|T'_{j'+1}|$ so that $(\pi''_j, \xi, \rho_{j+1})^{-1}(V_2)$ and $|T'_{j'+1}|$ do not intersect.

Moreover, we have

$$\pi''_{j} \circ \pi'_{j+1} = \pi''_{j} \circ ((\pi''_{j}, \xi)|_{Y_{j+1} \cap |T''_{j}|})^{-1} \circ (\alpha_{1}, \alpha_{2}) \circ (\pi''_{j}, \xi, \rho_{j+1})$$

$$= \alpha_{1} \circ (\pi''_{j}, \xi, \rho_{j+1}) = \pi''_{j}$$
on
$$(\pi''_{j}, \xi, \rho_{j+1})^{-1}(V_{1}) \cap \xi^{-1}([z-1/3, z+1/3] - z), \ z \in \mathbf{Z},$$
and
$$\rho''_{j} \circ \pi'_{j+1} = \rho_{j} \circ ((\pi''_{j}, \xi)|_{Y_{j+1} \cap |T''_{j}|})^{-1} \circ (\alpha_{1}, \alpha_{2}) \circ (\pi''_{j}, \xi, \rho_{j+1})$$

$$+ \xi' \circ \xi \circ ((\pi''_{j}, \xi)|_{Y_{j+1} \cap |T''_{j}|})^{-1} \circ (\alpha_{1}, \alpha_{2}) \circ (\pi''_{j}, \xi, \rho_{j+1})$$

$$= 0 + \xi' \circ \alpha_{2} \circ (\pi''_{j}, \xi, \rho_{j+1}) = (\xi - z)^{2} + \rho_{j+1} = \rho''_{j} \quad \text{on the same domain.}$$

Therefore, if we shrink $|T''_j|$, $ct(T''_j, T'_{j+1})$ holds.

If j' < j, $\operatorname{ct}(T''_{j'}, T'_{j+1})$ continues to hold. Indeed, this is clear on $|T''_{j'}| \cap |T'_{j+1}| - (\pi''_{j}, \xi, \rho_{j+1})^{-1}(V_2)$. Shrink $|T'_{j+1}|$ and $|T''_{j}|$ so that $|T'_{j+1}| \cap |T''_{j}| \subset (\pi''_{j}, \xi, \rho_{j+1})^{-1}(V_1)$. Then, on $|T''_{j'}| \cap |T'_{j+1}| \cap (\pi''_{j}, \xi, \rho_{j+1})^{-1}(V_2)$, we have

$$(\pi''_{j'}, \rho''_{j'}) \circ \pi'_{j+1} = ((\pi''_{j'}, \rho''_{j'}) \circ \pi''_{j}) \circ \pi'_{j+1}$$
$$= (\pi''_{j'}, \rho''_{j'}) \circ (\pi''_{j} \circ \pi'_{j+1}) = (\pi''_{j'}, \rho''_{j'}) \circ \pi''_{j} = (\pi''_{j'}, \rho''_{j'}).$$

Thus a strongly controlled tube system $\{T'_j, T''_j\}$ is constructed.

From now on we remove the assumption $\dim Y_j = j$, and we change the definition of Y_j'' for

$$Y_j'' = Y_j \cap \xi^{-1}(\mathbf{Z}).$$

In the same way as above, set

$$X'_{i,j} = X_{i,j} - (\xi \circ f)^{-1}(\mathbf{Z})$$
 and $X''_{i,j} = X_{i,j} \cap (\xi \circ f)^{-1}(\mathbf{Z})$.

We want to define a tube system $\{T'_{i,j}=(|T'_{i,j}|,\pi'_{i,j},\rho'_{i,j}),T''_{i,j}=(|T''_{i,j}|,\pi''_{i,j},\rho''_{i,j})\}$ for $\{X'_{i,j},X''_{i,j}\}$ strongly controlled over $\{T'_j,T''_j\}$. Let \tilde{f} denote the extension of f in condition (sc1) of strong controlledness.

Set

$$|T'_{i,j}| = |T_{i,j}| - (\xi \circ \tilde{f})^{-1}(\mathbf{Z}), \quad |T''_{i,j}| = |T_{i,j}| \cap (\xi \circ \tilde{f})^{-1}(\mathbf{Z} +] - 1/3, 1/3[),$$

$$\pi'_{i,j} = \pi_{i,j} \} \quad \text{on} \quad |T'_{i,j}|, \quad \text{and}$$

$$\rho''_{i,j} = \rho_{i,j} + \xi' \circ \xi \circ \tilde{f} \quad \text{on} \quad |T''_{i,j}|.$$

The definition of $\pi''_{i,j}$ is similar to that of π''_j as follows. Shrink $|T''_{i,j}|$ sufficiently. Then there exist C^{∞} imbeddings

$$\theta_{i,j} \colon X_{i,j} \cap |T''_{i,j}| \longrightarrow X''_{i,j} \times \mathbf{R}$$

of the form $(\theta_{i,j}^*, \xi \circ f)$ such that

$$\theta_{i,j}^* = \mathrm{id} \quad \text{on} \quad X_{i,j}'',$$

$$f \circ \theta_{i,j}^* = \pi_j'' \circ f \quad \text{on} \quad X_{i,j} \cap |T_{i,j}''|,$$

$$\pi_{i,j} \circ \theta_{i',j'}^* = \theta_{i,j}^* \circ \pi_{i,j} \quad \text{on} \quad X_{i',j'} \cap |T_{i',j'}''| \cap |T_{i,j}''|, \quad \text{and}$$

$$\rho_{i,j}'' \circ \theta_{i',j'}^* = \rho_{i,j}'' \quad \text{on the same domain if } j = j'.$$

Set $\pi''_{i,j} = \theta^*_{i,j}$ on $X_{i,j} \cap |T''_{i,j}|$, and extend it to $|T''_{i,j}|$ by setting $\pi''_{i,j} = \pi''_{i,j} \circ \pi_{i,j}$. The tube system $\{T'_{i,j}, T''_{i,j}\}$ satisfies the required conditions except that

$$f \circ \pi'_{i,j} = \pi'_j \circ \tilde{f}$$
 on $|T'_{i,j}|$.

But we can modify $\pi'_{i,j}$ so that this equality holds in the same way that we did π'_j . We omit the details. Thus we prove the lemma. \square

Lemma 3 (I.3.2 in [G-al] and its proof). Let $X, Y, \{X_{i,j}\}, \{Y_j\}, f: X \to Y, \{T_{i,j}\}$ and $\{T_j\}$ be the same as in the theorem except for the assumption that f is proper. Assume dim $Y_1 < \dim Y_j$ for $j \neq 1$.

Given a C^{∞} vector field v_1 on Y_1 , there exists a controlled vector field on $\{Y_j\}$ which is an extension of v_1 .

Given a weakly controlled vector field $v^Y = \{v_j\}$ on $\{Y_j\}$ and a vector field $\{v_{i,1}\}_i$ on $\{X_{i,1}\}_i$ controlled over $\{v_1\}$, there exists a vector field on $\{X_{i,j}\}_{i,j}$ which is an extension of $\{v_{i,1}\}_i$ and controlled over v^Y .

[G-al] treats only Thom maps. But the proof works in our situation. See [S].

Lemma 4 (I.4.6 in [G-al]). In the same situation as in Lemma 3, a controlled vector field on $\{Y_j\}$ and a vector field on $\{X_{i,j}\}$ controlled over a locally integrable vector field on $\{Y_j\}$ are locally integrable.

§4. Proof of the theorem

Proof of the theorem. Assume $\dim Y_j < \dim Y_{j+1}$ and $\dim X_{i,j} < X_{i+1,j}$. Let the sets of indexes H and \overline{H} and an order in H and \overline{H} be given as in §3. By Lemma 2 we can assume that each connected component of Y_j is bounded in \mathbb{R}^n . But, only for simplicity of notations, we assume, moreover, that Y is compact. The following arguments work in the noncompact case. (See a generalization of the definition of a removal data in §3.) Let a removal data $\varepsilon = \{\varepsilon_{i,j}\}_{(i,j)\in H}$ of $\{T_i,T_{i,j}\}_{(i,j)\in \overline{H}}$ be fixed. Set $\varepsilon_{k_i,j} = \varepsilon_j$.

Set

$$Y_j^{\varepsilon} = Y_j - \bigcup_{l < j} \rho_l^{-1}(]0, \varepsilon_l[), \quad j = 1, \dots, k,$$

which are compact C^{∞} manifolds possibly with corners. We want C^{∞} triangulations (L_j, g_j) of Y_j^{ε} such that for j < j', the restriction of $g_j^{-1} \circ \pi_j \circ g_{j'}$ to a neighborhood of $g_{j'}^{-1}(\rho_j^{-1}(\varepsilon_j))$ in $|L_{j'}|$ is a PL map to $|L_j|$. We call the property PL(j, j'). (Proposition I.3.20 in [S] shows the existence. But we repeat the proof because we shall use the idea.)

We construct the triangulations by induction. If we apply Lemma 1 to the constant map $Y_1^{\varepsilon} \to 0$, existence of (L_1,g_1) follows. Let $1 \leq l_1 < l_2 \leq k$ be integers. Assume we have constructed (L_j,g_j) for all j with $j < l_2$ and a C^{∞} triangulation (L_{l_2},g_{l_2}) of a neighborhood of $Y_{l_2}^{\varepsilon} \cap (\cup_{l_1 < j < l_2} \rho_j^{-1}(\varepsilon_j))$ in $Y_{l_2}^{\varepsilon}$ with $\mathrm{PL}(j,l_2)$ for all j with $l_1 < j < l_2$. Then shrinking the neighborhood we need to extend (L_{l_2},g_{l_2}) to a C^{∞} triangulation of a neighborhood of $Y_{l_2}^{\varepsilon} \cap (\cup_{l_1 \le j < l_2} \rho_j^{-1}(\varepsilon_j))$ with $\mathrm{PL}(l_1,l_2)$. Let $l_1 < j < l_2$. By $\mathrm{PL}(l_1,j)$, $\mathrm{PL}(j,l_2)$ and $\mathrm{ct}(T_{l_1},T_j)$, the restriction of $g_{l_1}^{-1} \circ \pi_{l_1} \circ g_{l_2}$ to a neighborhood of $g_{l_2}^{-1}(\rho_{l_1}^{-1}(\varepsilon_{l_1}) \cap \rho_j^{-1}(\varepsilon_j))$ in $|L_{l_2}|$ is a PL map to $|L_{l_1}|$. Note that $Y_{l_2}^{\varepsilon} \cap \rho_{l_1}^{-1}(\varepsilon_{l_1})$ is a disjoint union of faces of $Y_{l_2}^{\varepsilon}$, and $Y_{l_2}^{\varepsilon} \cap \rho_{l_1}^{-1}(\varepsilon_{l_1}) \cap (\cup_{l_1 < j < l_2} \rho_j^{-1}(\varepsilon_j))$ is a union of subfaces of $Y_{l_2}^{\varepsilon} \cap \rho_{l_1}^{-1}(\varepsilon_{l_1})$. Hence by Lemma 1 we can extend (L_{l_2},g_{l_2}) as required. Thus we have a C^{∞} triangulation (L_{l_2},g_{l_2}) of a neighborhood of $\partial Y_{l_2}^{\varepsilon}$ in $Y_{l_2}^{\varepsilon}$ with $\mathrm{PL}(j,l_2)$ for all $j < l_2$. A further extension to whole $Y_{l_2}^{\varepsilon}$ follows from Lemma 1 applied to the map $Y_{l_2}^{\varepsilon} \to 0$. Therefore, there exist (L_j,g_j) , $j=1,\ldots,k$.

Note that for $1 \leq j < j' \leq k$, $g_{j'}^{-1}(\rho_j^{-1}(\varepsilon_j))$ is the underlying polyhedron of a subcomplex of $L_{j'}$. For a simplicial complex K, let K' and \hat{K} denote the barycentric and some subdivisions of K respectively.

Set

$$Y_j^+ = Y - \bigcup_{l < j} \rho_l^{-1}([0, \varepsilon_l[), j = 1, \dots, k.$$

Note that

$$Y_1^+ = Y, \quad Y_k^+ = Y_k^{\varepsilon} \quad \text{and} \quad Y_j^+ = Y_{j+1}^+ \cup (Y_j^+ \cap \rho_j^{-1}([0, \varepsilon_j])), \quad j = 1, \dots, k-1.$$

We want to construct (not necessarily C^{∞}) triangulations (L_j^+, g_j^+) of Y_j^+ such that for $1 \leq j < j' \leq k$, $g_{j'}^{-1}(\rho_j^{-1}(\varepsilon_j))$ is the underlying polyhedron of some subcomplex

 $L_{j'}^+(j)$ of $L_{j'}^+$, the map $\alpha_{j'}^+(j): |L_{j'}^+(j)| \to |L_j|$ is PL,

$$\begin{split} L_{j}^{+} &= (\widehat{L_{j+1}^{+}})' \cup C_{\alpha_{j+1}^{+}(j)}(\widehat{L_{j+1}^{+}}(j), \widehat{L}_{j}), \\ \widehat{L_{j+1}^{+}}(j)' &= (\widehat{L_{j+1}^{+}})' \cap C_{\alpha_{j+1}^{+}(j)}(\widehat{L_{j+1}^{+}}(j), \widehat{L}_{j}), \\ g_{j}^{+}|_{|L_{j+1}^{+}|} &= g_{j+1}^{+} \quad \text{and} \quad g_{j}^{+}|_{|L_{j}|} = g_{j}, \\ \alpha_{j'}^{+}(j) &= g_{j}^{-1} \circ \pi_{j} \circ (g_{j'}^{+}|_{|L_{j'}^{+}(j)|}). \end{split}$$

where

(This is shown in the proof of Corollary I.3.21 in [S]. We shall need the same procedure.)

We define (L_j^+, g_j^+) by downward induction on j. Clearly we set $L_k^+ = L_k'$ and $g_k^+ = g_k$. Let $1 \le j < k$ be an integer, and assume (L_{j+1}^+, g_{j+1}^+) . Set

$$g_j^+ = \begin{cases} g_{j+1}^+ & \text{on } |L_{j+1}^+| \\ g_j & \text{on } |L_j|. \end{cases}$$

We need to subdivide L_{j+1}^+ and L_j so that $\alpha_{j+1}^+(j) \colon \widehat{L_{j+1}^+}(j) \to \widehat{L}_j$ is a simplicial map and then to extend g_j^+ to $C_{\alpha_{j+1}^+(j)}(|L_{j+1}^+(j)|, |L_j|)$. The former requirement is clearly fulfilled since $\alpha_{j+1}^+(j)$ is PL. For the latter it suffices to find a homeomorphism $\theta_j \colon Y_j^+ \cap \rho_j^{-1}([0, \varepsilon_j]) \to (Y_j^+ \cap \rho_j^{-1}(\varepsilon_j)) \times [0, \varepsilon_j]$ of the form (θ_j^*, ρ_j) such that $\pi_j \circ \theta_j^* = \pi_j$ and $\theta_j^* = \mathrm{id}$ on $Y_j^+ \cap \rho_j^{-1}(\varepsilon_j)$. Indeed, by such θ_j we can identify $Y_j^+ \cap \rho_j^{-1}([0, \varepsilon_j])$ with $C_{\pi_j|_{Y_j^+ \cap \rho_j^{-1}(\varepsilon_j)}}(Y_j^+ \cap \rho_j^{-1}(\varepsilon_j), Y_j^{\varepsilon})$, and we can naturally extend g_j^+ to $C_{\alpha_{j+1}^+(j)}(|L_{j+1}^+(j)|, |L_j|)$. It is clear by $\mathrm{ct}(T_{j'}, T_j)$, $\mathrm{PL}(j', j)$ for j' < j and by the properties of a mapping cylinder that $(L_j^+, \mathrm{the}$ extension) satisfies all the requirements.

Existence of θ_j immediately follows if we apply Thom's Second Isotopy Lemma to the sequence of maps $Y_j^+ \cap \rho_j^{-1}(]0, \varepsilon_j] \stackrel{(\pi_j, \rho_j)}{\longrightarrow} \pi_j(Y_j^+ \cap \rho_j^{-1}(\varepsilon_j)) \times]0, \varepsilon_j] \stackrel{\text{proj}}{\longrightarrow}]0, \varepsilon_j]$. (Note that $\pi_j(Y_j^+ \cap \rho_j^{-1}(\varepsilon_j))$ does not necessarily coincide with Y_j^{ε} . We will show a more precise construction of θ_j later because we need another additional property.) Thus we have the required (L_j^+, g_j^+) .

Set

$$X_{i,j}^{\varepsilon} = X_{i,j} - \bigcup_{j' < j} (\rho_{j'} \circ f)^{-1}(]0, \varepsilon_{j'}[) - \bigcup_{i' < i} \rho_{i',j}^{-1}(]0, \varepsilon_{i',j}[) \quad \text{for} \quad (i,j) \in \overline{H},$$

which also are compact C^{∞} manifolds possibly with corners. We will construct C^{∞} triangulations $(K_{i,j},h_{i,j})$ of $X_{i,j}^{\varepsilon}$ with the following three properties. (1) For $(i,j) \in \overline{H}$, the map $g_j^{-1} \circ f \circ h_{i,j} \colon |K_{i,j}| \to |L_j|$ is PL. Let $(i_1,j_1) < (i_2,j_2) \in \overline{H}$. (2) If $j_1 < j_2$, the restriction of $h_{i_1,j_1}^{-1} \circ \pi_{i_1,j_1} \circ h_{i_2,j_2}$ to a neighborhood of $h_{i_2,j_2}^{-1}((\rho_{j_1} \circ f)^{-1}(\varepsilon_{j_1}) \cap \rho_{i_1,j_1}^{-1}(]0,\varepsilon_{i_1,j_1}]) \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon}))$ in $h_{i_2,j_2}^{-1}(\rho_{i_1,j_1}^{-1}(]0,\varepsilon_{i_1,j_1}]) \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon}))$ is a PL map to $|K_{i_1,j_1}|$. (Here we ignore $\rho_{i_1,j_1}^{-1}(]0,\varepsilon_{i_1,j_1}]$) if $i_1 = k_{j_1}$.) (3) If $j_1 = j_2$,

the restriction of $h_{i_1,j_1}^{-1} \circ \pi_{i_1,j_1} \circ h_{i_2,j_2}$ to a neighborhood of $h_{i_2,j_2}^{-1}(\rho_{i_1,j_1}^{-1}(\varepsilon_{i_1,j_1}))$ in $|K_{i_2,j_2}|$ is a PL map to $|K_{i_1,j_1}|$.

As in the case of Y_i^{ε} , we construct them by induction. Existence of $(K_{1,1}, h_{1,1})$ with (1) is clear by Lemma 1. Let $(i_1, j_1) < (i_2, j_2) \in \overline{H}$. Assume we have $(K_{i,j},h_{i,j})$ for all $(i,j)<(i_2,j_2)$ and a C^{∞} triangulation $(K_{i_2,j_2},h_{i_2,j_2})$ of the following set with property (1) for (i_2, j_2) , (2) for any pair $(i', j') < (i_2, j_2)$ with $(i',j') > (i_1,j_1)$ and (3) for any pair $(i',j_2) < (i_2,j_2)$ with $(i',j_2) > (i_1,j_1)$:

$$\bigcup_{(i,j)>(i_1,j_1),\,j< j_2} (\text{a neighborhood of } X_{i_2,j_2}^{\varepsilon} \cap (\rho_j \circ f)^{-1}(\varepsilon_j) \cap \pi_{i,j}^{-1}(X_{i,j}^{\varepsilon}) \\ \qquad \qquad \text{in } X_{i_2,j_2}^{\varepsilon} \cap \pi_{i,j}^{-1}(X_{i,j}^{\varepsilon})) \\ \cup \bigcup_{(i_1,j_1)<(i',j_2)<(i_2,j_2)} (\text{a neighborhood of } X_{i_2,j_2}^{\varepsilon} \cap \rho_{i',j_2}^{-1}(\varepsilon_{i',j_2}) \text{ in } X_{i_2,j_2}^{\varepsilon}).$$

We call such $(K_{i_2,j_2},h_{i_2,j_2})$ a C^{∞} triangulation of $R(i_2,j_2,i'_1,j'_1)$, where (i'_1,j'_1) denotes the minimum of the elements of \overline{H} greater than (i_1, j_1) . We extend $(K_{i_2,j_2},h_{i_2,j_2})$ to a C^{∞} triangulation of $R(i_2,j_2,i_1,j_1)$. Let $\varepsilon'_{j_1}>\varepsilon_{j_1}$ be a number sufficiently close to ε_{j_1} .

There are four possible cases: (i) $j_1 = j_2$, (ii) $j_1 < j_2$ and $i_1 = k_{j_1}$, (iii) $j_1 < j_2$, $i_1 < k_{j_1}$ and $i_2 = 1$ or (iv) $j_1 < j_2$, $i_1 < k_{j_1}$ and $i_2 > 1$. In case (i), the arguments on the extension are the same as in the case of Y_j^{ε} , because we do not need consider (2) and because (1) follows from (1) for (i_1, j_1) and (3).

Assume (ii). We easily see the following three facts. First the fibre product $|K_{i_1,j_1}| \times_{(f \circ h_{i_1,j_1},\pi_{j_1} \circ g_{j_2})} g_{j_2}^{-1}(\rho_{j_1}^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}[)))$ is a polyhedron. (We treat not $g_{j_2}^{-1}(\rho_{j_1}^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}]))$ but $g_{j_2}^{-1}(\rho_{j_1}^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}]))$, because $g_{j_2}^{-1}(\rho_{j_1}^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}]))$ is not always a polyhedron. But $g_{j_2}^{-1}(\rho_{j_1}^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}]))$ is non-compact and hence does not admit a finite simplicial decomposition.) Second, the restriction of the map (h_{i_1,j_1},g_{j_2}) to some simplicial complex whose underlying polyhedron is this polyhedron is a C^{∞} triangulation of the fibre product $X_{i_1,j_1}^{\varepsilon} \times_{(f,\pi_{j_1})} (Y_{j_2}^{\varepsilon} \cap \rho_{j_1}^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}]))$, which is a C^{∞} manifold possibly with corners. Third, the restriction of (π_{i_1,j_1},f) to $X_{i_2,j_2}^{\varepsilon} \cap (\rho_{j_1} \circ f)^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}[) \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon}))$ is a C^{∞} submersion onto a union of some connected components of the preceding manifold possibly with corners and, moreover, satisfies the conditions in Lemma 1. (Lemma 1 treats only compact sets, and the present sets are not compact. But the problem is only around the compact set $X_{i_2,j_2}^{\varepsilon} \cap (\rho_{j_1} \circ f)^{-1}(\varepsilon_{j_1}) \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon})$. Hence Lemma 1 is applicable.) Therefore, an extension of $(K_{i_2,j_2},h_{i_2,j_2})$ to a C^{∞} triangulation of $R(i_2,j_2,i_1,j_1)$ is possible.

Assume (iii) or (iv). In these cases, the preceding arguments do not work. Indeed, the given $(K_{i_2,j_2}, h_{i_2,j_2})$ defines only a C^{∞} triangulation of a neighborhood of $X_{i_2,j_2}^{\varepsilon} \cap (\rho_{j_1} \circ f)^{-1}(\varepsilon_{j_1}) \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon}) \cap \rho_{i_1,j_1}^{-1}(\varepsilon_{i_1,j_1})$ in $X_{i_2,j_2}^{\varepsilon} \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon}) \cap \rho_{i_1,j_1}^{-1}(\varepsilon_{i_1,j_1})$, but for application of Lemma 1 in the preceding way, what is necessary is a C^{∞} triangulation of a neighborhood of the same set in $X_{i_2,j_2}^{\varepsilon} \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon}) \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon})$ $\rho_{i_1,j_1}^{-1}(]0,\varepsilon_{i_1,j_1}]$). Hence we need such an extension of the C^{∞} triangulation. To be precise, set

$$M = X_{i_2,j_2}^{\varepsilon} \cap (\rho_{j_1} \circ f)^{-1}([\varepsilon_{j_1},\varepsilon_{j_1}'[) \cap \pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon}) \cap \rho_{i_1,j_1}^{-1}(]0,\varepsilon_{i_1,j_1}]),$$

which is a C^{∞} manifold possibly with corners. Then we have

$$\partial M = A \cup B \cup C \cup D,$$
where
$$A = M \cap (\rho_{j_1} \circ f)^{-1}(\varepsilon_{j_1}), \quad B = M \cap (\bigcup_{i < i_2} \rho_{i,j_2}^{-1}(\varepsilon_{i,j_2})),$$

$$C = M \cap \rho_{i_1,j_1}^{-1}(\varepsilon_{i_1,j_1}) \quad \text{and} \quad D = M \cap (\bigcup_{i < i_1} \rho_{i,j_1}^{-1}(\varepsilon_{i,j_1})),$$

 $h_{i_2,j_2}^{-1}(M)$ is the intersection of the open neighborhood $h_{i_2,j_2}^{-1}((\rho_{j_1} \circ f)^{-1}([\varepsilon_{j_1},\varepsilon'_{j_1}[)))$ of $h_{i_2,j_2}^{-1}(A)$ in $|K_{i_2,j_2}|$ and the closed polyhedron $h_{i_2,j_2}^{-1}(\pi_{i_1,j_1}^{-1}(X_{i_1,j_1}^{\varepsilon})\cap\rho_{i_1,j_1}^{-1}(]0,\varepsilon_{i_1,j_1}]))$, and $M\cap \text{Im } h_{i_2,j_2}$ is the union of C and a closed neighborhood U of B in M. Hence $(K_{i_2,j_2},h_{i_2,j_2})$ induces a C^{∞} triangulation, say, (K,h) for simplicity of notation, of $U\cup C$, which equals $(K_{i_2,j_2},h_{i_2,j_2})$ around $h_{i_2,j_2}^{-1}(A)$. Shrinking U, we need to extend (K,h) to a C^{∞} triangulation of $U\cup (A)$ a neighborhood of $A\cap C$ in A.

Assume (iii). Then $B = \emptyset$. Hence the extension follows from the following note, which is clear by condition (6) of a removal data of $\{T_{i,j}\}$.

Note: There exists a C^{∞} diffeomorphism $\theta: M \cap \rho_{i_1,j_1}^{-1}([\varepsilon_{i_1,j_1}/2,\varepsilon_{i_1,j_1}]) \to C \times [\varepsilon_{i_1,j_1}/2,\varepsilon_{i_1,j_1}]$ of the form $(\theta^*,\rho_{i_1,j_1})$ with $\pi_{i_1,j_1} \circ \theta^* = \pi_{i_1,j_1}$ and $f \circ \theta^* = f$.

Case (iv) remains. The situation is more complicated. The note is not sufficient. Indeed, (K,h) would change if we used only the note, since $B \neq \emptyset$. Given a subset E of M such that $h^{-1}(E)$ is the underlying polyhedron of some subcomplex of K, let K_E denote the subcomplex by abuse of notation. We can assume that the closure of the interior U° of U as a subset of M coincides with U, and $|N(K_B, K)|$ does not intersect with the boundary of $|K_U|$ as a subset of |K|. Let a > 1 be a number close to 1. Let β be the simplicial function on K defined by $\beta = a$ at the vertices $|K_A^0 \cap K_C^0| - h^{-1}(U^{\circ})$ and $\beta = 1$ at any other vertex. Clearly $\beta = 1$ on $|N(K_B, K)|$, and the polyhedron $\bigcup_{u \in |K_C|} u \times [1, \beta(u)]$ has a natural cell complex structure. Paste the barycentric subdivision of this cell complex with K' by the identification of $|K_C| \times 1$ with $|K_C|$ in |K|. Let \tilde{K} denote this simplicial complex.

We want to define a C^{∞} imbedding $\tilde{h}: \tilde{K} \to M$ so that (\tilde{K}, \tilde{h}) is the required C^{∞} triangulation. By θ in the note in case (iii), we can regard (M, C) as $(C \times]\varepsilon_{i_1,j_1}/2, \varepsilon_{i_1,j_1}], C \times \varepsilon_{i_1,j_1})$, because the problem is only local around C. We call the latter pair $(C \times]0,1], C \times 1)$ for simplicity of notation. Let h be of the form (h_1,h_2) , where $h_1: |K| \to C$ and $h_2: |K| \to]0,1]$. Set

$$\tilde{h} = \begin{cases} (h_1, (2-\beta)h_2) & \text{on } |K| \\ (h_1(u), t+1-\beta(u)) & \text{for } u \in |K_C| \text{ and } t \in [1, \beta(u)]. \end{cases}$$

Note that $\tilde{h}=h$ on $|N(K_B,K)|$. Let a be sufficiently close to 1. Then $\tilde{h}|_{K'}$ is a strong approximation of h. Hence by 8.8 in [M], $\tilde{h}|_{K'}$ is a C^{∞} imbedding. On the other hand, by the above definition of \tilde{h} , \tilde{h} outside K' also is a C^{∞} imbedding. Moreover, it is clear that \tilde{h} is a C^{∞} triangulation of a neighborhood of $B \cup (A \cap C)$ in M.

In both cases of (iii) and (iv), we can extend $(K_{i_2,j_2},h_{i_2,j_2})$ to a C^{∞} triangulation of $R(i_2,j_2,i_1,j_1)$ in the same way as in case of (ii). That completes the

induction step. Thus by induction we have a C^{∞} triangulation $(K_{i_2,j_2},h_{i_2,j_2})$ of a neighborhood of $\partial X_{i_2,j_2}^{\varepsilon}$ in $X_{i_2,j_2}^{\varepsilon}$. Its further extension to a C^{∞} triangulation of X_{i_2,j_2} with (1) follows if we apply Lemma 1 to the map $f|_{X_{i_2,j_2}^{\varepsilon}}: X_{i_2,j_2}^{\varepsilon} \to Y_{j_2}^{\varepsilon}$.

As in the case of Y_j , note the following property. Let $(i_1, j_1) < (i_2, j_2) \in \overline{H}$. The following set is the underlying polyhedron of some subcomplex of K_{i_2, j_2} :

$$h_{i_{2},j_{2}}^{-1}(\rho_{i_{1},j_{1}}^{-1}(\varepsilon_{i_{1},j_{1}})) \quad \text{if} \quad j_{1}=j_{2},$$

$$h_{i_{2},j_{2}}^{-1}((\rho_{j_{1}}\circ f)^{-1}(\varepsilon_{j_{1}})\cap\pi_{i_{1},j_{1}}^{-1}(X_{i_{1},j_{1}}^{\varepsilon})) \quad \text{if} \quad i_{1}=k_{j_{1}} \text{ and } j_{1}< j_{2}, \quad \text{and}$$

$$h_{i_{2},j_{2}}^{-1}((\rho_{j_{1}}\circ f)^{-1}(\varepsilon_{j_{1}})\cap\pi_{i_{1},j_{1}}^{-1}(X_{i_{1},j_{1}}^{\varepsilon})\cap\rho_{i_{1},j_{1}}^{-1}(]0,\varepsilon_{i_{1},j_{1}}])) \quad \text{otherwise.}$$

For each $(i, j) \in \overline{H}$, set

$$N_{i,j} = \begin{cases} X \cap \pi_{i,j}^{-1}(X_{i,j}^{\varepsilon}) \cap \rho_{i,j}^{-1}([0,\varepsilon_{i,j}]) & \text{if} \quad j = k \\ X \cap (\rho_{j} \circ f)^{-1}([0,\varepsilon_{j}]) \cap \pi_{i,j}^{-1}(X_{i,j}^{\varepsilon}) & \text{if} \quad i = k_{j}, \ j < k \\ X \cap (\rho_{j} \circ f)^{-1}([0,\varepsilon_{j}]) \cap \pi_{i,j}^{-1}(X_{i,j}^{\varepsilon}) \cap \rho_{i,j}^{-1}([0,\varepsilon_{i,j}]) & \text{otherwise,} \\ N'_{i,j} = N_{i,j} \cap \bigcup_{\substack{(i',j') > (i,j)}} N_{i',j'} & \text{and} \quad X_{i,j}^{+} = \bigcup_{\substack{(i',j') \geq (i,j)}} N_{i',j'}. \end{cases}$$

Since $X_{1,1}^+ = X$, the theorem follows if we can construct triangulations $(K_{i,j}^+, h_{i,j}^+)$ of $X_{i,j}^+$ such that the following three conditions are satisfied. For $(i,j) \in \overline{H}$, $g_j^{+-1} \circ f \circ h_{i,j}^+ \colon |K_{i,j}^+| \to |L_j^+|$ is PL. For $(i_1,j_1) < (i_2,j_2) \in \overline{H}$, $h_{i_2,j_2}^{+-1}(N_{i_1,j_1})$ is the underlying polyhedron of some subcomplex $K_{i_2,j_2}^+(i_1,j_1)$ of K_{i_2,j_2}^+ , and the map $\alpha_{i_2,i_2}^+(i_1,j_1) \colon |K_{i_2,j_2}^+(i_1,j_1)| \to |K_{i_1,j_1}|$ is PL, where

$$\alpha_{i_2,j_2}^+(i_1,j_1) = h_{i_1,j_1}^{-1} \circ \pi_{i_1,j_1} \circ (h_{i_2,j_2}^+|_{|K_{i_2,j_2}^+(i_1,j_1)|}).$$

For $(i,j) \in H$, let (i',j') denote the minimum of the elements of \overline{H} greater than (i,j). Then

$$\begin{split} K_{i,j}^+ &= (\widehat{K_{i',j'}^+})' \cup C_{\alpha_{i',j'}^+(i,j)}(\widehat{K_{i',j'}^+}(i,j), \hat{K}_{i,j}), \\ \widehat{K_{i',j'}^+}(i,j)' &= (\widehat{K_{i',j'}^+})' \cap C_{\alpha_{i',j'}^+(i,j)}(\widehat{K_{i',j'}^+}(i,j), \hat{K}_{i,j}), \\ h_{i,j}^+|_{|K_{i',j'}^+|} &= h_{i',j'}^+ \quad \text{and} \quad h_{i,j}^+|_{|K_{i,j}|} = h_{i,j}. \end{split}$$

Here ' and `denote the barycentric and some subdivisions respectively.

We construct $(K_{i,j}^+, h_{i,j}^+)$ by downward induction as (L_j^+, g_j^+) . Then by the same reason, it suffices to find a homeomorphism $\theta_{i,j} \colon N_{i,j} - X_{i,j}^{\varepsilon} \to N'_{i,j} \times]0,1]$ of the form $(\theta_{i,j}^*, \theta_{i,j}^{**})$ for each $(i,j) \in H$ such that

(a)
$$\theta_{i,j}^* = \text{id}$$
 on $N'_{i,j}$, $\pi_{i,j} = \pi_{i,j} \circ \theta_{i,j}^*$,

(b)
$$\rho_j \circ f = \theta_{i,j}^{**} \cdot \rho_j \circ f \circ \theta_{i,j}^{*} \quad \text{if} \quad j < k, \quad \text{and}$$

(c)
$$\theta_j^* \circ f = \theta_j^* \circ f \circ \theta_{i,j}^*$$
 on $N_{i,j} - (\rho_j \circ f)^{-1}(0)$ if $j < k$.

If j = k, $\theta_{i,j}$ is constructed as θ_j . So assume j < k. To distinguish elements of \overline{H} , we call (i,j) (i_0,j_0) and use the notation (i,j) for a general element. Since the problem is local around N_{i_0,j_0} , we assume

$$|T_{i,j}| \subset |T_{i_0,j_0}|$$
 and $|T_j| \subset |T_{j_0}|$ for all $(i,j) > (i_0,j_0)$.

Set

$$X_{?(i,j)} = \bigcup_{(i',j')?(i,j)} X_{i',j'} \quad \text{and} \quad Y_{?j} = \bigcup_{j'?j} Y_{j'} \quad \text{for} \quad (i,j) \in \overline{H} \quad \text{and} \quad ? \in \{\geq, >\},$$

and let $\otimes Z$ or $\otimes(Z)$ in $\mathbf{R}^n \times \mathbf{R}^n$ denote the fibre product $X_{i_0,j_0} \times_{(f,\pi_{j_0})} Z$ for a subset Z of $Y_{\geq j_0}$. Define naturally a C^{∞} map $\otimes f \colon X_{\geq (i_0,j_0)} \to \otimes Y_{\geq j_0}$. Then we can easily construct a strongly controlled tube system $\{\otimes T_j = (|\otimes T_j|, \otimes \pi_j, \otimes \rho_j)\}_{j\geq j_0}$ for $\{\otimes Y_j\}_{j\geq j_0}$ such that for each $j\geq j_0$,

and $\{T_{i,j}\}_{(i,j)\geq (i_0,j_0)}$ is strongly controlled over $\{\otimes T_j\}_{j\geq j_0}$. Let $p_X\colon \otimes Y_{\geq j_0}\to X_{i_0,j_0}$ and $p_Y\colon \otimes Y_{\geq j_0}\to Y_{\geq j_0}$ denote the projections.

Let us specify the construction of θ_j^* as in the proof of I.5.8 (Thom's Second Isotopy Lemma) in [G-al]. There exists a controlled vector field $\{v_j\}_{j>j_0}$ on $\{Y_j \cap \rho_{j_0}^{-1}(]0, 2\varepsilon_{j_0}[)\}_{j>j_0}$ such that

(*)
$$d\pi_{j_0}v_j = 0$$
 and $v_i\rho_{j_0} = 1$, $j > j_0$.

(The existence follows if we apply Lemma 3 to the map (π_{j_0}, ρ_{j_0}) : $Y \cap \rho_{j_0}^{-1}(]0, 2\varepsilon_{j_0}[) \rightarrow Y_{j_0} \times]0, 2\varepsilon_{j_0}[.)$ Then by Lemma 4, $\{v_j\}$ is locally integrable. Hence if we define $\theta_{j_0} = (\theta_{j_0}^*, \rho_{j_0})$ so that for each $y \in Y_{j_0}^+ \cap \rho_{j_0}^{-1}(\varepsilon_{j_0})$,

$$\theta_{j_0}^{*-1}(y) = \rho_{j_0}^{-1}(]0, \varepsilon_{j_0}]) \cap (\text{the integral curve of } \{v_j\} \text{ passing through } y),$$

which is possible by condition (3) of a removal data of $\{T_j\}$, then θ_{j_0} fulfills the requirements.

Multiplying v_j by ρ_{j_0} , we replace the latter equality of (*) with $v_j\rho_{j_0}=\rho_{j_0}$. Let (*)' denote the new equalities. Define a C^{∞} vector field v_{j_0} on Y_{j_0} to be 0. Then $v^Y=\{v_j\}_{j\geq j_0}$ is a locally integrable and weakly controlled vector field on $\{Y_j\}_{j\geq j_0}$. (Local integrability around Y_{j_0} follows from (*)'.)

We want to lift v^Y to a vector field v^X on $\{X_{i,j}\}_{(i,j)\geq(i_0,j_0)}$ which induces $\theta_{i,j}^*$ as v^Y does θ_j^* . First we lift v^Y to $\{\otimes Y_j\}$. Since $d\pi_{j_0}v_j=0$, there exists uniquely a vector field $v^{\otimes Y}=\{\otimes v_j\}_{j\geq j_0}$ on $\{\otimes Y_j\}_{j\geq j_0}$ such that

$$dp_X \otimes v_{jx,y} = 0$$
 and $dp_Y \otimes v_{jx,y} = v_{jy}$ for $(x,y) \in \otimes Y_j, \ j \ge j_0$.

Clearly $v^{\otimes Y}$ is locally integrable and weakly controlled, and it induces the homeomorphism

$$\otimes (Y_{j_0}^+ \cap \rho_{j_0}^{-1}(]0, \varepsilon_{j_0}])) \ni (x, y) \longrightarrow (x, \theta_{j_0}(y)) \in \otimes (Y_{j_0}^+ \cap \rho_{j_0}^{-1}(\varepsilon_{j_0})) \times]0, \varepsilon_{j_0}].$$

Second, by the same reason as above we obtain a controlled vector field $\{v_{i,j_0}\}_{i>i_0}$ on $\{X_{i,j_0}\}_{i>i_0}$ such that

(**)
$$d\pi_{i_0,j_0}v_{i,j_0} = 0 \quad \text{and} \quad v_{i,j_0}\rho_{i_0,j_0} = \rho_{i_0,j_0}, \quad i > i_0.$$

Set $v_{i_0,j_0}=0$ on X_{i_0,j_0} . Then $\{v_{i,j_0}\}_{i\geq i_0}$ is a locally integrable vector field on $\{X_{i,j_0}\}_{i\geq i_0}$.

Third, by Lemma 3 there exists a vector field $v^X = \{v_{i,j}\}_{(i,j)\geq(i_0,j_0)}$ on $\{X_{i,j}\}_{(i,j)\geq(i_0,j_0)}$ which is an extension of $\{v_{i,j_0}\}_{i\geq i_0}$ and such that $\{v_{i,j}\}_{(i,j)>(i_0,j_0)}$ is controlled over $v^{\otimes Y}$. Lemma 4 claims that $\{v_{i,j}\}_{(i,j)>(i_0,j_0)}$ is locally integrable. Moreover, it follows from (*)', (**) and controlledness of $\{v_{i,j}\}_{(i,j)>(i_0,j_0)}$ over $v^{\otimes Y}$ that v^X is locally integrable around X_{i_0,j_0} .

In the same way as we defined θ_{i_0,j_0}^* , we do θ_{i_0,j_0}^* so that for each $x \in N'_{i_0,j_0}$,

$$\theta_{i_0,j_0}^{*-1}(x) = N_{i_0,j_0} \cap (\text{the integral curve of } v^X \text{ passing through } x),$$

which is possible by conditions (7) and (8) of a removal data of $\{T_{i,j}\}$, if v^X points outside of N_{i_0,j_0} at each point of N'_{i_0,j_0} . The last condition is satisfied at $N'_{i_0,j_0} \cap (\rho_{j_0} \circ f)^{-1}\{0, \varepsilon_{j_0}\}$, and hence, by weak controlledness of v^X , at a neighborhood of $N'_{i_0,j_0} \cap (\rho_{j_0} \circ f)^{-1}(0)$ in N'_{i_0,j_0} . Therefore, it suffices to choose sufficiently small ε_{j_0} . This means that when we fix $\{\varepsilon_{i,j}\}$ at the beginning of the proof, we construct also $\theta_{i,j}$.

By (b), θ_{i_0,j_0}^{**} is automatically defined on $N_{i_0,j_0} - (\rho_{j_0} \circ f)^{-1}(0)$. It is extensible to $N_{i_0,j_0} \cap (\rho_{j_0} \circ f)^{-1}(0) - X_{i_0,j_0}^{\varepsilon}$ for the following reason. Let $\omega \colon \Omega \to X_{\geq (i_0,j_0)}$, $\Omega \subset X_{\geq (i_0,j_0)} \times \mathbf{R}$, denote the flow of v^X . Then by (*) we have

$$\omega(x, \log t) = \theta_{i_0, j_0}^{-1}(x, t) \quad \text{for} \quad (x, t) \in (N'_{i_0, j_0} - (\rho_{j_0} \circ f)^{-1}(0)) \times]0, 1].$$

Conditions (a), (b) and (c) are satisfied. Indeed, the former equality of (a) is trivial. The latter follows from controlledness of $\{v_{i,j}\}_{(i,j)>(i_0,j_0)}$ over $v^{\otimes Y}$. (c) is clear by the definition of $\theta_{j_0}^*$ and θ_{i_0,j_0}^* and the same controlledness. \square

REFERENCES

- [G-al] C.G. Gibson et al, Topological stability of smooth mappings, Lecture Notes in Math., 552, Springer, 1976.
- [M] J.R. Munkres, Elementary differential topology, Ann. of Math. Studies, Princeton Univ. Press, 1963.
- [S] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math., 150, Birkhäuser, 1997.
- [Te] B. Teissier, Sur la triangulation des morphismes sous-analytiques, Publ. Math. IHES 70 (1989), 169–198.
- [T] R. Thom, La stabilité topologique des applications polynomiales, l'Enseignement Mathémati que 8 (1962), 24-33.

CHIKUSA, NAGOYA, 464-01, JAPAN