ON $-P \cdot P$ OF SURFACE SINGULARITIES

群馬高専 奥間 智弘 (TOMOHIRO OKUMA)

1. Introduction

Let (X, x) be a normal surface singularity over the complex number field \mathbb{C} and $f:(M,A)\to (X,x)$ a resolution of the singularity (X,x). Let K be the canonical divisor on M. Let $A=\bigcup_{i=1}^k A_i$ be the decomposition of the exceptional set A into irreducible components. Assume that f is the minimal good resolution, i.e., f is the smallest resolution for which A consists of non-singular curves intersecting among themselves transversally, with no three through one point. It is well known that there exists a unique minimal good resolution.

Definition 1.1. By [12, Theorem A.1], K + A admits a unique Zariski-decomposition P + N, $P, N \in \sum_{i=1}^{k} \mathbb{Q}A_i$, where

- (1) $(K+A) \cdot A_i = (P+N) \cdot A_i$ for all i.
- (2) P is f-nef, i.e., $P \cdot A_i \ge 0$ for all i.
- (3) N is effective.
- (4) $P \cdot N = 0$.

Then we define the invariant P^2 by $P^2 := P \cdot P$.

The $P \cdot P$ is a topological invariant and its fundamental properties are stated in [15]. It is expected that P^2 has many of nice properties of the invariant $K \cdot K$ studied by Laufer [8]. The upper semicontinuity of $-P^2$ in a family of surface singularities follows from that of the L^2 -plurigenera δ_m (cf. [2]), since the following equality holds (see [15, Introduction]):

$$-P \cdot P/2 = \limsup_{m \to \infty} \delta_m/m^2.$$

In this note, we prove the following.

Theorem. Let $\pi: X \to T$ be a deformation of a normal Gorenstein surface singularity such that T is a neighborhood of the origin of \mathbb{C} . Let P_t^2 be the invariant of the fiber $X_t, t \in T$. Then the following conditions are equivalent:

- (1) π admits the simultaneous log-canonical model.
- (2) P_t^2 is constant.

2. Preliminaries

Let X be a normal variety over \mathbb{C} of dimension $d \geq 2$, and X_{sing} the singular locus of X. Let $f: Y \to X$ be a birational morphism of normal varieties and $E = f^{-1}(X_{sing})_{red}$ the largest reduced exceptional divisor on Y. For a \mathbb{Q} -Cartier divisor D on X, we denote by $f^{\dagger}D$ the sum of the divisors E and the strict transform of D under the morphism f. The morphism $f: Y \to X$ is called a good resolution of the pair (X, D), if Y is nonsingular and the support of $f^{\dagger}D$ is a divisor with only simple normal crossings.

Definition 2.1 (cf. [7], [13]). Let B be a reduced divisor on X. The divisor $K_X + B$ is said to be log-canonical if the following conditions are satisfied:

- (1) $K_X + B$ is a Q-Cartier divisor.
- (2) There exists a good resolution $f: Y \to X$ of (X, B) such that

$$K_Y + f^{\dagger}B = f^*(K_X + B) + \sum a_i E_i$$

for $a_i \in \mathbb{Q}$ with the condition that $a_i \geq 0$, where the E_i are the exceptional prime divisors.

Definition 2.2 (cf. [7], [13]). Let $f: Y \to X$ be a partial resolution with the exceptional divisor $E = f^{-1}(X_{sing})_{red}$. Then the morphism $f: Y \to X$ is called a log-canonical model of X, if the divisor $K_Y + E$ is log-canonical and $K_Y + E$ is f-ample.

Theorem 2.3 (cf. [6], [13]). Let X be a normal variety of dimension $d \leq 3$. Then there exists the log-canonical model $f: Y \to X$ of X. In fact, the following morphism gives the log-canonical model:

$$\operatorname{Proj}\left(\bigoplus_{n>0} f_*\mathcal{O}_Y(n(K_Y+E))\right) \to X,$$

where $f: Y \to X$ is a partial resolution with $E = f^{-1}(X_{sing})_{red}$ such that the divisor $K_Y + E$ is log-canonical.

3. The plurigenera

In this section, we describe basic facts concerning plurigenera of normal isolated singularities needed later.

Definition 3.1 (cf. [9], [16]). Let (X, x) be a normal isolated singularity and $f: (M, A) \to (X, x)$ a good resolution of the singularity (X, x). We define the log-plurigenera

 $\{\lambda_m(X,x)\}_{m\in\mathbb{N}}$ and the L^2 -plurigenera $\{\delta_m(X,x)\}_{m\in\mathbb{N}}$ by

$$\lambda_m(X,x) = \dim_{\mathbb{C}} \mathcal{O}_X(mK_X)/f_*\mathcal{O}_M(m(K_M+A))$$
 and

$$\delta_m(X,x) = \dim_{\mathbb{C}} \mathcal{O}_X(mK_X)/f_*\mathcal{O}_M(m(K_M+A)-A),$$
 respectively.

The definition does not depend on the choice of the good resolution.

Lemma 3.2. Let X be a normal variety and B a reduced divisor on X such that $K_X + B$ is log-canonical. Let $f: Y \to X$ be a good resolution of the pair (X, B) with $B_Y := f^{\dagger}B$. Then we have $f_*\mathcal{O}_Y(m(K_Y + B_Y)) = \mathcal{O}_X(m(K_X + B))$.

Proof. It is clear that $f_*\mathcal{O}_Y(m(K_Y+B_Y))\subset \mathcal{O}_X(m(K_X+B))$. We assume that X is affine, and we show that $f_*\mathcal{O}_Y(m(K_Y+B_Y))\supset \mathcal{O}_X(m(K_X+B))$.

Let r be the index of the divisor $K_X + B$ and m a positive integer which divides by r. By assumption, we have that $m(K_Y + B_Y) \ge f^*(m(K_X + B))$. Hence we obtain that

$$H^{0}(\mathcal{O}_{Y}(m(K_{Y}+B_{Y}))) \supset H^{0}(f^{*}\mathcal{O}_{X}(m(K_{X}+B))) = H^{0}(\mathcal{O}_{X}(m(K_{X}+B))).$$

For any positive integer m and any element ω in $H^0(\mathcal{O}_X(m(K_X+B)))$, we obtain that $v_{E_i}(\omega^r) \geq -mr$ for all exceptional prime divisor E_i on Y, where v_{E_i} is the valuation associated to the prime divisor E_i . Hence ω belongs to $H^0(\mathcal{O}_Y(m(K_Y+B_Y)))$.

Corollary 3.3. Let (X,x) be a normal isolated singularity and $f: Y \to X$ a partial resolution with $E = f^{-1}(x)_{red}$ such that $K_Y + E$ is log-canonical. Then we have

$$\lambda_m(X, x) = \dim_{\mathbb{C}} \mathcal{O}_X(mK_X) / f_* \mathcal{O}_Y(m(K_Y + E)).$$

Let $\pi: X \to T$ be a deformation of a normal Gorenstein surface singularity $(X_0, x) = \pi^{-1}(0)$, where T is a neighborhood of the origin of \mathbb{C} . Put $X_t := \pi^{-1}(t)$. Then we define the m-th log-plurigenus and m-th L^2 -plurigenus of X_t by

$$\lambda_m(X_t) := \sum_{p \in (X_t)_{sing}} \lambda_m(X_t, p)$$
 and $\delta_m(X_t) := \sum_{p \in (X_t)_{sing}} \delta_m(X_t, p).$

Let $\psi_t \colon M_t \to X_t$ be the minimal good resolution of the singularities and K_t the canonical divisor on M_t . Let $A_{t,p}$ be the connected component of the exceptional set A_t on M_t which blows down to $p \in (X_t)_{sing}$. Let $P_{t,p} + N_{t,p}$ be the Zariski decomposition of $K_t + A_{t,p}$. Here, $P_{t,p}$ and $N_{t,p}$ are \mathbb{Q} -divisor supported in $A_{t,p}$. We define the \mathbb{Q} -divisor P_t on M_t by $P_t := \sum_{p \in (X_t)_{sing}} P_{t,p}$. We put $P_t^2 := -P_t \cdot P_t$ and define the function $\mathcal{P} \colon T \to \mathbb{Q}$ by $\mathcal{P}(t) = -P_t^2$. From [15, Theorem 1.6], [11, Remark 2.7] and Introduction, we obtain the following.

Theorem 3.4. For any $m \in \mathbb{N}$,

(3.1)
$$\lambda_m(X_t) = \mathcal{P}(t)m^2/2 + P_t \cdot K_t m/2 + b_t(m) \quad and$$

(3.2)
$$\delta_m(X_t) = \mathcal{P}(t)(m-1)^2/2 - P_t \cdot K_t(m-1)/2 + b_t'(m),$$

where b_t and b'_t are bounded functions. Furthermore, the function P is upper semicontinuous.

4. Some invariants which depend on a deformation

In this section, we fix the following notation. Let $\pi\colon X\to T$ be a deformation of a normal Gorenstein surface singularity $(X_0,x)=\pi^{-1}(0)$, where T is a neighborhood of the origin of $\mathbb C$. Then X is a three-dimensional Gorenstein variety. Therefore, for any $t\in T$, we have the isomorphism $\mathcal O_{X_t}(mK_X)\cong \mathcal O_{X_t}(mK_{X_t})$. We denote by Y_t the fiber $f^{-1}(t)$ and put $f_t:=f|_{Y_t}$. Let $f\colon Y\to X$ be the log-canonical model of X with $E=f^{-1}(X_{sing})_{red}$. We define the sheaves by $\mathcal I_m:=f_*\mathcal O_Y(m(K_Y+E))$ and $\mathcal Q_m:=\mathcal O_X(mK_X)/\mathcal I_m$ for any $m\in\mathbb N$. We put $T^*:=T\setminus\{0\}$. We assume that T is sufficiently small.

Let $\mathbb{C}(t)$ be the residue field of $t \in T$, i.e., $\mathbb{C}(t) = \mathcal{O}_{T,t}/\mathcal{M}_t$, where \mathcal{M}_t is the maximal ideal. We use the symbol $\otimes \mathbb{C}(t)$ instead of $\otimes_{\mathcal{O}_T} \mathbb{C}(t)$. By Nakayama's Lemma, we obtain that

$$\dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(t) \leq \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(0),$$

where the equality holds if and only if \mathcal{Q}_m is a torsion free \mathcal{O}_T -module. Let $\mathcal{I}_{m,0}$ be the image of the homomorphism $\mathcal{I}_m \otimes \mathbb{C}(0) \to \mathcal{O}_{X_0}(mK_{X_0})$.

The following Lemmas are proved by an argument similar to that in [4, §1].

Lemma 4.1. The following conditions are equivalent.

- (1) The equality in (4.1) holds.
- (2) Q_m is a torsion free \mathcal{O}_T -module.
- (3) $\mathcal{I}_m \otimes \mathbb{C}(0) = \mathcal{I}_{m,0}$.

Lemma 4.2. For any $t \in T^*$, the restriction $f_t \colon Y_t \to X_t$ is the log-canonical model of X_t . Moreover, for each $m \in \mathbb{N}$, there exists a closed analytic subset S_m of T containing the origin such that $\lambda_m(X_t) = \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(t)$, for all $t \in T \setminus S_m$.

Let $\psi: (M, A) \to (X_0, x)$ be a good resolution. For every $m \in \mathbb{N}$, we put $\mathcal{A}_m := \psi_* \mathcal{O}_M(m(K_M + A))$ and define the invariant ϵ_m and θ_m by

$$\epsilon_m := \dim_{\mathbb{C}} \mathcal{A}_m / (\mathcal{I}_{m,0} \cap \mathcal{A}_m)$$

$$\theta_m := \dim_{\mathbb{C}} \mathcal{I}_{m,0} / (\mathcal{A}_m \cap \mathcal{I}_{m,0}).$$

Then we have the diagram

$$\begin{array}{cccc} \mathcal{A}_m \cap \mathcal{I}_{m,0} & \longrightarrow & \mathcal{I}_{m,0} \\ \downarrow & & \downarrow \\ \mathcal{A}_m & \longrightarrow & \mathcal{O}_{X_0}(mK_{X_0}). \end{array}$$

From (4.1) and Lemma 4.2, we have the following inequality for every $m \in \mathbb{N}$:

(4.2)
$$\lambda_m(X_t) \le \lambda_m(X_0) + \epsilon_m - \theta_m.$$

Lemma 4.3. There exist $a, b \in \mathbb{Q}$ such that $\epsilon_m \leq am + b$.

Proof. First, we show that $\psi_*\mathcal{O}_M(mK_M + (m-1)A) \subset \mathcal{I}_{m,0} \cap \mathcal{A}_m$. Let ω be a section of $\psi_*\mathcal{O}_M(mK_M + (m-1)A)$. By [2, Theorem 2.1], there exists a section ω' of $f_*\mathcal{O}_Y(mK_Y + (m-1)E)$ of which the image in $\mathcal{O}_{X_0}(mK_{X_0})$ is ω . Since $f_*\mathcal{O}_Y(mK_Y + (m-1)E) \subset \mathcal{I}_m$, we see that ω belongs to $\mathcal{I}_{m,0}$. Hence we obtain the inclusion. Then the inclusion implies that

$$\epsilon_m \leq \dim_{\mathbb{C}} \mathcal{A}_m/\psi_* \mathcal{O}_M(mK_M + (m-1)A)) = \delta_m(X_0, x) - \lambda_m(X_0, x).$$

From Theorem 3.4, we obtain the assertion.

In [14], Tomari and Watanabe proved their main theorem by using Izumi's results on the analytic orders [5]. We need their useful arguments. The following lemma is the version due to Ishii.

Lemma 4.4 (Ishii [3, Lemma 1.5]). Let (W, w) be a d-dimensional normal isolated singularity and $h: W_1 \to W$ a resolution of the singularity which factors through the blowing up by the maximal ideal of the singular point. Let $F = \bigcup_{i=1}^k F_i$ be the exceptional divisor on W_1 , where the F_i are irreducible components. Then there exist positive numbers $\beta \in \mathbb{R}$ and $b \in \mathbb{N}$ such that:

For an \mathcal{O}_W -ideal $J = h_* \mathcal{O}_{W_1}(-\sum_{i=1}^k a_i F_i)$ with $a_i > b$ for some i, the inequalities $\dim_{\mathbb{C}} \mathcal{O}_W/J \geq \beta(a_i)^d$ (i = 1, ..., k) hold.

Lemma 4.5. If $\theta_r \neq 0$ for some $r \in \mathbb{N}$, then there exists a positive integer $c \in \mathbb{R}$ such that $\theta_{mr} \geq cm^2$ for all $m \in \mathbb{N}$.

Proof. Assume $\theta_r \neq 0$. By Lemma 3.2, we may assume that $\psi \colon (M,A) \to (X_0,x)$ is a good resolution of the singularity which factors through the blowing up by the maximal ideal of the singular point. Let ω be a section of $\mathcal{I}_{r,0}$ which does not belong to \mathcal{A}_r . We define a homomorphism $\varphi_m \colon \mathcal{O}_{X_0} \to \mathcal{I}_{mr,0}$ by $\varphi_m(s) = s\omega^m$ for every $m \in \mathbb{N}$. We denote by J_m the inverse image $\varphi_m^{-1}(\mathcal{A}_{mr} \cap \mathcal{I}_{mr,0})$. Then we have the injection

$$\mathcal{O}_{X_0}/J_m \to \mathcal{I}_{mr,0}/\mathcal{A}_{mr} \cap \mathcal{I}_{mr,0}.$$

We put $a_i := \min\{v_i(\omega) + r, 0\}$, where v_i is the valuation at an irreducible component A_i of A. Then $J_m = \psi_* \mathcal{O}_M(\sum m a_i A_i)$. By the choice of ω , there exists a component A_i such that $a_i < 0$. By Lemma 4.4, there exists $c \in \mathbb{R}$ such that $\theta_{mr} \geq cm^2$ for any $m \in \mathbb{N}$. \square

Corollary 4.6. If $\mathcal{P}(t)$ is constant, then $\theta_m = 0$ for all $m \in \mathbb{N}$.

Proof. It follows from Theorem 3.4, (4.2) and lemmas above.

5. Main theorem

In this section, we prove the main theorem. We use the same notation as in the preceding section.

Definition 5.1. Let $f: Y \to X$ be the log-canonical model of X with the exceptional divisor E. We call f the simultaneous log-canonical model, SLC model for short, if the restriction $f_t: Y_t \to X_t$ is the log-canonical model of X_t and $K_{Y_t} + E_t$ is log-canonical for any $t \in T$.

Definition 5.2. For any $m \in \mathbb{N}$, we define the function $\Lambda_m \colon T \to \mathbb{Z}$ by $\Lambda_m(t) := \lambda_m(X_t)$.

The following Lemma is proved by an argument similar to that in Lemma 4.5.

Lemma 5.3. Let $g: (X', B) \to (X_0, x)$ be a partial resolution such that $K_{X'} + B$ is log-canonical. Let D be a reduced divisor on X' such that $0 \le D \le B$. For every $m \in \mathbb{N}$, we define the invariant $\nu_m(X'; B, D)$ by

$$\nu_m(X'; B, D) = \dim_{\mathbb{C}} g_* \mathcal{O}_M(m(K_{X'} + B)) / g_* \mathcal{O}_M(m(K_{X'} + D)).$$

If $\nu_r(X'; B, D) \neq 0$ for some $r \in \mathbb{N}$, then there exists a positive integer $c \in \mathbb{R}$ such that $\nu_{mr}(X'; B, D) \geq cm^2$ for all $m \in \mathbb{N}$.

Proposition 5.4. Assume that there exists the SLC model of the deformation $\pi: X \to T$. Then the function Λ_m is constant for m >> 0.

Proof. Let $f: Y \to X$ be the SLC model of the deformation π . Since $K_Y + E$ is f-ample, $R^1 f_* \mathcal{O}_Y(m(K_Y + E)) = 0$ for m >> 0. From the exact sequence (cf. [10])

$$0 \to f_* \mathcal{O}_Y(m(K_Y + E)) \to f_* \mathcal{O}_Y(m(K_Y + E)) \to f_* \mathcal{O}_{Y_0}(m(K_{Y_0} + E_0))$$

$$\to R^1 f_* \mathcal{O}_Y(m(K_Y + E)),$$

we have $f_*\mathcal{O}_{Y_0}(m(K_{Y_0}+E_0))=\mathcal{I}_m\otimes\mathbb{C}(0)$ for m>>0. Since $f_*\mathcal{O}_{Y_0}(m(K_{Y_0}+E_0))$ is a submodule of $\mathcal{O}_{X_0}(mK_{X_0})$, we have the equality $\mathcal{I}_m\otimes\mathbb{C}(0)=\mathcal{I}_{m,0}$. Then Lemma 4.1 and Lemma 4.2 imply that

$$\lambda_m(X_t) = \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(0).$$

We denote by B the exceptional set on Y_0 . Since $E_0 \leq B$, we obtain the equality

$$\dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(0) = \lambda_m(X_0, x) + \nu_m(Y_0; B, E_0).$$

Since $\mathcal{P}(t)$ is upper semicontinuous, $\nu_m(Y_0; B, E_0) = 0$ by the lemma above. \square

Lemma 5.5. Q_m is a torsion free \mathcal{O}_T -module for any $m \in \mathbb{N}$, if \mathcal{P} is constant.

Proof. We assume that there exists a section $\omega \in \mathcal{O}_X(rK_X) \setminus \mathcal{I}_r$ of which the image in \mathcal{Q}_r is a torsion element. Then there exists an exceptional prime divisor F on Y lying over X_0 such that $v_F(\omega) < -r$. We note that F is a projective surface. Let \mathcal{I}_F be the \mathcal{O}_Y -ideal of the subvariety F, and let $L_m := m(K_Y + E)$. Since L_1 is f-ample, there exists an integer $n \in \mathbb{N}$ such that $\mathcal{O}_F(L_n)$ is a very ample invertible sheaf and the following sequence is exact for any $m \in \mathbb{N}$:

$$0 \to f_*(\mathcal{I}_F \mathcal{O}_Y(L_{mn} + F)) \to f_* \mathcal{O}_Y(L_{mn} + F) \to H^0(\mathcal{O}_F(L_{mn} + F)) \to 0.$$

By [1, III, Ex. 5.2], there exists a polynomial q' of degree 2 such that

$$\dim_{\mathbb{C}} f_* \mathcal{O}_Y(L_{mn} + F) / f_* (\mathcal{I}_F \mathcal{O}_Y(L_{mn} + F)) = q'(m)$$

for m >> 0. Since $\mathcal{I}_F \mathcal{O}_Y(L_{mn} + F)$ is isomorphic to $\mathcal{O}_Y(L_{mn})$ outside a one-dimensional subvariety in F, there exists a polynomial q of degree 2 such that $\dim_{\mathbb{C}} f_* \mathcal{O}_Y(L_{mn} + F)/\mathcal{I}_{mn} \geq q(m)$ for m >> 0. Since any section of the sheaf $f_* \mathcal{O}_Y(L_{mn} + F)/\mathcal{I}_{mn}$ is a torsion element of \mathcal{Q}_{mn} , we obtain the inequality (cf. (4.2))

$$\dim_{\mathbb{C}} \mathcal{Q}_{mn} \otimes \mathbb{C}(t) \leq \dim_{\mathbb{C}} \mathcal{Q}_{mn} \otimes \mathbb{C}(0) - q(m).$$

Since $\dim_{\mathbb{C}} \mathcal{Q}_{mn} \otimes \mathbb{C}(0) - \dim_{\mathbb{C}} \mathcal{Q}_{mn} \otimes \mathbb{C}(t)$ is bounded by a linear function, we are led to a contradiction.

Remark 5.6. From the proof above, we see that Y_0 is irreducible. Thus any irreducible component of E dominates T. Since Y_0 is a principal divisor, for any irreducible component F of E, the intersection $F \cap Y_0$ is a one-dimensional variety.

Lemma 5.7. $\mathcal{I}_{m,0} = \mathcal{A}_m$ for any $m \in \mathbb{N}$, if \mathcal{P} is constant.

Proof. The inclusion $\mathcal{I}_{m,0} \subset \mathcal{A}_m$ follows from Corollary 4.6. Let ω be a section of \mathcal{A}_m and ω' a section of $\mathcal{O}_X(mK_X)$ of which the image in $\mathcal{O}_{X_0}(mK_{X_0})$ is ω . If $v_F(\omega') < -m$ for an irreducible component F of E, then there exists an irreducible component A_i of A lying over the variety $F \cap Y_0$ such that $v_{A_i}(\psi^*\omega) < -m$. It contradicts the definition of ω . Hence ω' belongs to \mathcal{I}_m , and ω also belongs to $\mathcal{I}_{m,0}$.

Theorem 5.8. The following conditions are equivalent.

- (1) $\pi: X \to T$ admits the SLC model.
- (2) The map $\Lambda_m : T \to \mathbb{Z}$ is constant for any $m \in \mathbb{N}$.
- (3) The map $\mathcal{P}: T \to \mathbb{Q}$ is constant.

Proof. We consider the following condition: (2)' The map $\Lambda_m : T \to \mathbb{Z}$ is constant for m >> 0. By Proposition 5.4 (1) implies (2)'. It follows from Theorem 3.4 that (2)' implies (3). We assume that \mathcal{P} is constant. Then, from Lemma 4.1 and lemmas above, we obtain the following equalities for any $m \in \mathbb{N}$:

$$\mathcal{I}_m \otimes \mathbb{C}(0) = \mathcal{I}_{m,0} = \mathcal{A}_m, \quad \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(t) = \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(0).$$

Now it is clear that (2) holds, and that $Y_0 = \operatorname{Proj}(\bigoplus_{m \in \mathbb{N}} \mathcal{I}_m \otimes \mathbb{C}(0))$ is the log-canonical model of X_0 . Since $\mathcal{A}_m = \mathcal{I}_m \otimes \mathbb{C}(0) = f_*\mathcal{O}_{Y_0}(m(K_{Y_0} + E_0))$ for m >> 0 (cf. proof of Proposition 5.4) and $K_{Y_0} + E_0$ is ample, $K_{Y_0} + E_0$ is log-canonical. On the other hand, $f_t \colon Y_t \to X_t$ is the log-canonical model for $t \in T^*$ by Lemma 4.2. Hence we obtain the condition (1).

REFERENCES

- 1. R. Hartshorne, Algebraic geometry, Guraduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
- 2. S. Ishii, Small deformation of normal singularities, Math. Ann. 275 (1986), 139-148.
- 3. _____, The asymptotic behavior of plurigenera for a normal isolated singularity, Math. Ann. 286 (1990), 803-812.
- 4. _____, Simultaneous canonical models of deformations of isolated singularities, Algebraic geometry and analytic geometry (A. Fujiki et.al., ed.), ICM-90 Satell. Conf. Proc., Springer-Verlag, 1991, pp. 81-100.
- 5. S. Izumi, A measure of integrity for local analytic algebras, Publ. Res. Inst. Math. Sci. 21 (1985), 719-735.
- 6. Y. Kawamata, Log-canonical models of threefolds, Internat. J. Math. 3 (1992), 351-357.
- 7. Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai 1985 (T. Oda, ed.), Advanced Studies in Pure Math., vol. 10, Kinokuniya, Tokyo, North-Holland, Amsterdam, 1987, pp. 283-360.
- 8. H. Laufer, Weak simultaneous resolution for deformations of Gorenstein surface singularities, Singularities (P. Orlik, ed.), Proc. Sympos. Pure Math., vol. 40, Part 2, Amer. Math. Soc., 1983, pp. 1-30.
- 9. M. Morales, Resolution of quasi-homogeneous singularities and plurigenera, Compositio Math. 64 (1987), 311-327.
- 10. T. Okuma, Simultaneous log-canonical models of deformations of Gorenstein surface singularities, preprint.
- 11. _____, The plurigenera of Gorenstein surface singularities, Manuscripta Math. 94 (1997), 187-194.
- 12. F. Sakai, Anticanonical models of rational surfaces, Math. Ann. 269 (1984), 389-410.
- 13. V. Shokurov, 3-fold log flips, Russian Acad. Sci. Izv. Math. 40 (1993), 95-202.
- 14. M. Tomari and K. Watanabe, On L²-plurigenera of not-log-canonical Gorenstein isolated singularities, Proc. Amer. Math. Soc. 109 (1990), 931-935.
- 15. J. Wahl, A characteristic number for links of surface singularities, J. Amer. Math. Soc. 3 (1990), 625-637.
- 16. K. Watanabe, On plurigenera of normal isolated singularities, I, Math. Ann. 250 (1980), 65-94.