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ON —P.P OF SURFACE SINGULARITIES

HE®E M 3L (TOMOHIRO OKUMA)

1. INTRODUCTION

Let (X,z) be a normal surface singularity over the complex number field C and
f:(M,A) — (X, ) aresolution of the singularity (X,z). Let K be the canonical divisor
onM. Let A= Ule A; be the decomposition of the exceptional set A into irreducible com-
ponents. Assume that f is the minimal good resolution, i.e., f is the smallest resolution
for which A consists of non-singular curves intersecting among themselves transversally,
with no three through one point. It is well known that there exists a unique minimal

good resolution.

Definition 1.1. By [12, Theorem A.1], K + A admits a unique Zariski-decomposition
P+ N, PN ek QA, where | ' |
(D) (K+A)- A, =(P+N)- A forall 1.
(2) Pis f-nef, e, P-A; >0 for all 7.
(3) N is effective. '
(4) P-N=0.
Then we define the invariant P? by P?:= P . P.

The P P is a topological invariant and its fundamental properties are stated in [15].
It is expected that P? has many of nice properties of the invariant K - K studied by
Laufer [8]. The upper semicontinuity of —P? in a family of surface singularities follows
from that of the L*-plurigenera d,, (cf. [2]), since the following equality holds (see [15,
Introduction}):

—P - P/2 = limsup §,,/m*.

In this note, we prove the following.
Theorem . Let m: X — T be a deformation of a normal Gorenstein surface singularity

such that T is a neighborhood of the origin of C. Let P? be the invariant of the ﬁber
X.,t € T. Then the following conditions are equivalent: '

(1) 7 admits the simultaneous log-canonical model.
(2) P}? is constant.
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2. PRELIMINARIES

Let X be a normal variety over C of dimension d > 2, and Xj;,, the singular locus of
X. Let f: Y — X be a birational morphism of normal varieties and E = f~(X;ing)red
the largest reduced exceptional divisor on Y. For a Q-Cartier divisor D on X, we denote
by fTD the sum of the divisors £ and the strict transform of D under the morphism f.
The morphism f: Y — X is called a good resolution of the pair (X, D), if Y is nonsingular

and the support of f1D is a divisor with only simple normal crossings.

Definition 2.1 (cf. [7], [13]). Let B be a reduced divisor on X. The divisor K'x + B is

said to be log-canonical if the following conditions are satisfied:

(1) Kx + B is a Q-Cartier divisor.
(2) There exists a good resolution f: Y — X of (X, B) such that

Ky + f'B=f(Kx + B)+ Y a.E;

for a; € Q with the condition that a; > 0, where the E; are the exceptional prime

divisors.

Definition 2.2 (cf. [7], [13]). Let f: Y — X be a partial resolution with the exceptional
divisor E = f™1(X,ing)rea- Then the morphism f: ¥ — X is called a log-canonical model

of X, if the divisor Ky + E is log-canonical and Ky + E is f—amplg.

Theorem 2.3 (cf. [6], [L3]). Let X be a normal variety of dimension d < 3. Then there
exists the log-canonical model f:Y — X of X. In fact, the following morphism gives the
log-canonical model: ’
Proj <€B £.Oy(n(Ky +'E))> - X,
n>0
where f:Y — X is a partial resolution with E = f~'(Xjing)rea such that the divisor

Ky + FE is log-canonical.

3. THE PLURIGENERA

In this section, we describe basic facts concerning plurigenera of normal isolated sin-

gularities needed later.

Definition 3.1 (cf. [9], [16]). Let (X, z) be a normal isolated singularity and f:
(M,A) — (X, z) a good resolution of the singularity (X,z). We define the log-plurigenera
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{Am(X,2)}men and the L2-plurigenera {6,,(X, z)}men by

Am(X,2) = dimc Ox (mKx)/ fOp(m(Kpy + A)) and
dm(X,2) = dimc Ox (mKx)/ feOn(m(Ky + A) — A), respectively.

The definition does not depend on the choice of the good resolution.

Lemma 3.2. Let X be a normal variety and B a reduced divisor on X such that Kx + B
is log-canonical. Let f: Y — X be a good resolution of the pair (X, B) with By := f'B.
Then we have f.Oy(m(Ky + By)) = Ox(m(Kx + B)). ’

Proof. 1t is clear that f,Oy(m(Ky + By)) C Ox(m(Kx + B)). We assume that X is
affine, and we show that f.Oy(m(Ky + By)) D Ox(m(Kx + B)).

Let r be the index of the divisor Kx 4+ B and m a positive integer which divides by
r. By assumption, we have that m(Ky + By) > f*(m(Kx + B)). Hence we obtain that

HO(Oy (m(Ky + By))) D H(f*Ox (m(Kx + B))) = H°(Ox(m(Kx + B))).

For any positive integer m and any element w in H°(Ox(m(Kx + B))), we obtain that
vg,(w") > —mr for all exceptional prime divisor E; on Y, where vg, is the valuation
associated to the prime divisor E;. Hence w belongs to H°(Oy (m(Ky + By))). a

Corollary 3.3. Let (X,z) be a normal isolated singularity and f:Y — X a partial

resolution with E = f71(2),cq such that Ky + [ is log-canonical. Then we have

A (X, 2) = dimg Ox(mAx)/ [ Oy (m(Ky + E)).

Let 7: X — T be a deformation of a normal Gorenstein surface singularity (Xo,z) =
771(0), where T is a neighborhood of the origin of C. Put X, := n7!(t). Then we define

the m-th log-plurigenus and m-th L*-plurigenus of Xt by

(XD i= D0 An(Xep) and 6a(X) = D a(Xep):

- PE(Xt)sing PE(Xt)sing
Let v, M; — X, be the minimal good resolution of the singularities and K} the canonical
divisor on M;. Let A, be the connected component of the exceptional set A, on M, which
blows down to p € (X;)sing. Let P;, + Ny, be the Zariski decomposition of K; + A;,.
Here, P, ahd N, , are Q-divisor supported in A;,. We define the Q-divisor P, on M,
by P, := Zpe(Xc)smg P;,. We put P? := —P,- P, and define the function P: T — Q by
P(t) = —P?. From [15, Theorem 1.6, [11, Remark 2.7] and Introduction, we obtain the

following.
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Theorem 3.4. For anym € N,
(3.1) Am(Xe) = P(t)m?/2 + P, - Ky;m /2 + by(m)  and
(3.2) om(Xe) = P(t)(m — 1)*/2 — P, - Ky(m —1)/2 4 b(m),

where by and b, are bounded functions. Furthermore, the function P is upper semicontin-

- Uous.

4. SOME INVARIANTS WHICH DEPEND ON A DEFORMATION

In this section, we fix the following notation. Let 7: X — T be a deformation of a
normal Gorenstein surface singularity (Xo,2) = 7~1(0), where T is a neighborhood of the
origin of C. Then X is a three-dimensional Gorenstein variety. Therefore, for any ¢t € T,
we have the isomorphism Ox,(mKx) = Ox,(mKx,). We denote by Y; the fiber f7(¢) and
put f; := fly,. Let f: Y — X be the log-canonical model of X with £ = FH (X sing )rea-
We define the sheaves by 7, := f.Oy(m(Ky + E)) and Q,, := Ox(mKx)/ZL, for any
m € N. We put 7™ :=T \ {0}. We assume that T is sufficiently small.

Let C(¢) be the residue field of t € T, i.e., C(t) = O/ M,, where M, is the maximal
ideal. We use the symbol ®C(t) instead of ®0,C(t). By Nakayama’s Lemma, we obtain
that

(4.1)  dime @ © C(¢) < dime O, @ C(0),

where the equality holds if and only if Q,, is a torsion free Op-module. Let Z,.0 be the
image of the homomorphism Z,, © C(0) — Ox,(mKy,).

The following Lemmas are proved by an argument similar to that in [4, §1].

Lemma 4.1. The following conditions are equivalent.
(1) The equality in (4.1) holds. |
(2) Qn isa torsion free Op-module.
(3) Z,, ® C(0) = L 0.

Lemma 4.2. For any t € T™, the restriction f,: Y, — X, is the log-canonical model of
Xi. Moreover, for each m € N, there ezists a closed analytic subset S,, of T containing
the origin such that A, (X;) = dimg Q,, ® C(¢), for allt € T'\ Sp.

Let ¢: (M, A) — (Xo,z) be a good resolution. For every m € N, we put A, :=
Y. Opnr(m(Kp + A)) and define the invariant e,, and 6,, by
€y = dlm(c Am/(Im’o N Am)
Gm = dimc Im,O/ (Am ﬂImyo) .
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Then we have the diagram
Am N Imyo — Im,O
A, —— Ox,(mKy,).

From (4.1) and Lemma 4.2, we have the following inequality for every m € N:
(4.2) Am(X1) € Am(Xo) + €m — Oim.
Lemma 4.3. There exist a,b € Q such that ¢,, < am + b.

Proof. First, we show that ¥,Opn(mKy 4+ (m —1)A) C L0 N An. Let w be a section of
. Op(mEpr+(m —1)A). By [2, Theorem 2.1], there exists a section w’ of f.Oy(mKy +
(m —1)E) of which the image in Oy, (mKyx,) is w. Since f.Oy(mKy + (m = 1)E) C I,
we see that w belongs to Z,, 0. Hence we obtain the inclusion. Then the inclusion implies
that | '

em < dime A /YOy (mEy + (m = 1)A)) = 6m(Xo,z) — Am(Xo, ).

From Theorem 3.4, we obtain the assertion. , a

In [14], Tomari and Watanabe proved their main theorem by using Izumi’s results
on the analytic orders [5]. We need their useful arguments. The following lemma is the

version due to Ishii.

Lemma 4.4 (Ishii [3, Lemma 1.5]). Let (W,w) be a d-dimensional normal isolated sin-
gularity and h: Wi — W a resolution of the singularity which factors through the blowing
up by the maxzimal ideal of the singular point. Let F = Ule F; be the e:ccégjtional divisor
on Wy, where the F; are irreducible components. Then there exist pgsitive numbers § € R
and b € N such that: _

For an Oyw-ideal J = h.Ow,(— Zle a; F}) with a; > b for some 1, the inequalities
dimg Ow/J > B(a;)* (i =1,... ,k) hold. '

Lemma 4.5. If 6, # 0 for some r € N, then there ezists a positive integer ¢ € R such
that 0,,. > cm? for all m € N.

Proof. Assume 0, # 0. By Lemma 3.2, we may assume that ¢: (M, A) — (Xo,z) Is a
good resolution of the singularity which factors through the blowing u.p by the maximal
ideal of the singular point. Let w be a section of Z, o which does not belong to A,. We
define a homomorphism ¢,y : Ox, —> Tmro by ©m(s) = sw™ for every m € N. We denote

by J,, the inverse image ¢! (Amr N ZLpr0). Then we have the injection

OXO/Jm — Imr,O/Amr N -Zmr,O-
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We put a; := min{ v;(w)+7,0 }, where v; is the valuation at an irreducible component A;
of A. Then J,, = $.Om(>_ ma;A;). By the choice of w, there exists a component A; such
that a; < 0. By Lemma 4.4, there exists ¢ € R such that 8,,, > cm? forany m € N. O

Corollary 4.6. If P(t) is constant, then 8,, = 0 for all m € N.

Proof. 1t follows from Theorem 3.4, (4.2) and lemmas above. d

5. MAIN THEOREM

In this section, we prove the main theorem. We use the same notation as in the

preceding section.

Definition 5.1. Let f: Y — X be the log-canonical model of X with the exceptional
divisor E. We call f the simultaneous log-canonical model, SLC model for short, if the
restriction f;: ¥y — X; is the log-canonical model of X; and Ky, + E; is log-canonical for
any t € T '

Definition 5.2. For any m € N, we define the function A,,: T — Z by A, () := A (Xe).
The following Lemma is proved by an argument similar to that in Lemma 4.5.

Lemma 5.3. Let g: (X', B) — (\0, ) be a partial res’olutlon such that Ky + B is log-

canonical. Let D be a reduced divisor on X' such that 0 < D < B. For every m € N, we

define the invariant v, (X'; B, D) by " '
vm(X';B, D) = dimc 9. Opr(m(Kx —}—"B))/g*OM(Im([x'z\», + D)).

If v.(X'; B, D) # 0 for some r € N, then there exists a positive integer ¢ € R such that

Vmr(X'; B, D) > ¢cm? for all m € N.

Proposition 5.4. Assume that there exists the SLC model of the clejonnatzon m X —=T.

Then the function A,, is constant for m >> 0.

Proof. Let f: Y — X be the SLC model of the deformation 7. Since Ny + E is f-ample,
R'f.Oy(m(Ky + E)) = 0 for m >> 0. From the exact sequence (cf. [10])
0 — f.Oy(m(Ky + E)) = fLOy(m(Ky + E)) = f.Oy,(m(Ky, + Ep))
— R'f.Oy(m(Ky + E)),
we have f.Oy,(m(Ky, + Ep)) = Z,, ® C(0) for m >> 0. Since f.Oy,(m(Ky, + Ep)) is a -
submodule of Ox,(mKx,), we have the equality Z,, ® C(0) = Z,, 5. Then Lemma 4.1 and
Lemma 4.2 imply that

Am(Xy) = dime @, ® C(0).
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We denote by B the exceptional set on Y. Since Fy < B, we obtain the equality
dimg @ ® C(0) = An(Xo,z) + vm(Yo; B, Eo).

Since P(t) is upper semicontinuous, vn,(Yo; B, Eo) = 0 by the lemma above. O
Lemma 5.5. Q,, is a torsion free Or-module for any m € N, if P is constant.

Proof. We assume that there exists a section w € Ox(rKx)\ Z, of which the imagé in Q,
is a torsion element. Then there exists an exceptional prime divisor F' on Y lying over X,
such that vp(w) < —r. We note that F is a projective surface. Let Zr be the Oy-ideal of
the subvariety F, and let L,, := m(Ky + E). Since L, is f-ample, there exists an integer
n € N such that Op(L,) is a very ample invertible sheaf and the following sequence is

exact for any m € N:
0= fu(ZrOy(Lmn + F)) = .0y (L + F) = H(Op(Lpn + F)) = 0.
By [1, III, Ex. 5.2], there exists a polynomial ¢’ of degree 2 such that
dime f.Oy (Lmn + F)/ fo(ZEOy (Lomn + F)) = ¢'(m)

for m >> 0. Since ZrOy(Lmn + F) is isomorphic to Oy (Ly,,) outside a one-dimensional
subvariety in F, there exists a polynomial ¢ of degree 2 such that dimc f.Oy(Lmn +
F)/Z,, > q(m) for m >> 0. Since any section of the sheaf fiOy(Lmn + F)/Lmn is a

torsion element of Q,.., we obtain the inequality (cf. (4.2))
dimg Qumn @ C(¢) < dimg Qmn @ C(0) — g(m).

Since dimg Qmn @ C(0) — dimg Qmn ® C(t) is bounded by a linear function, we are led to

a contradiction. g

Remark 5.6. From the proof above, we see that Yj is irreducible. Thus any irreducible
component of E dominates 7. Since Y; is a principal divisor, for any irreducible compo-

nent F of E, the intersection F' N Y} is a one-dimensional variety.
Lemma 5.7. 7,0 = A, for anym € N, if P is constant.

Proof. The inclusion Z,o C A,, follows from Corollary 4.6. Let w be a section of A,
and w’ a section of Ox(mK'x) of which the image in Ox,(mKx,) is w. If vp(w') < —m".
for an irreducible component F of E, then there exists an irreducible component A; of A
lying over the variety F'N Y such that vy, (¢*w) < —m. It contradicts the definition of

w. Hence w’ belongs to Z,,, and w also belongs to Zp, o. O

Theorem 5.8. The following conditions are equivalent.
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(1) 7: X = T admits the SLC model.
(2) The map Am: T — Z is constant for any m € N.
(3) The map P: T — Q is constant.

Proof. We consider the following condition: (2)' The map A,: T — Z is constant for
~m >> 0. By Proposition 5.4 (1) implies (2)’. It follows from Theorem 3.4 that (2’
implies (3). We assume that P is constant. Then, from Lemma 4.1 and lemmas above,

we obtain the following equalities for any m € N:
1,C(0) =Tno = An, dimcQ, ®C(¢) = dimg Q,, @ C(0).

Now it is clear that (2) holds, and that ¥, = Proj(D,,en Im ® €(0)) is the log-canonical
" model of X,. Since A,, = T, ® C(0) = f.Oy(m(Ky, + Ep)) for m >> 0 (cf. proof of
Proposition 5.4) and Ky, + Ej is arﬁple, Ky, + Ey is log-canonical. On the other hand,
fi: Y = X, is the log-canonical model for ¢t € T* by Lemma 4.2. Hence we obtain the
condition (1). | a
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