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Mordell-Weil rank OB IEZ#E9 5
Néron O FHFIEIZHOWT

FRARFEFE  HEBET (Yumiko Umezu)

1 Introduction.

Let f: S — B be a fibration of curves of genus g on a surface S over a curve B. We
assume that S, B and f are defined over the rational number field Q. Then, for each
rational point b on B such that I', = f~(b) is nonsingular, we can consider the Mordell-
Weil rank ry of T'y over Q, which is by definition the rank of the group of rational points
on the Jacobian variety of T,. ‘

Néron gave a method to construct such a fibration such that

(1) B has infinitely many rational points. |

(2) For infinitely many rational points b on B, the rank ry is "large”.
He started from the plane Sy = P?. Let A be a pencil of genus g defined over Q on So.
Let S; — So be the blow-up of Sy at the base points of A, so that we obtain a fibration
fi +S; — P! of curves of genus g. We assume that this fibration has a section. Then
we take some base change f : S — B of S; — P! by a surjective morphism B — P! of
curves defined over Q.

So +—m S5 ~— §

lon | lr

P! = P' — B

Let I' denote the generic fibre of f. Then I is a curve over Q(B). Hence we can consider

the Mordell-Weil rank of I over Q(B), which we denote by r. Then, by the specialization

theorem of Néron, Silverman, Tate (cf. [N1], [L], [Se]), we obtain that there exists a finite

subset X in the set of all rational points B(Q) on B such that r, > r if b € B(Q)\ .

Therefore it is enough to find A and B — P! such that I' has large r. '
Néron [N2] claimed that he can construct:
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(I) (¢ =1) a pencil A of cubic curves with r > 11 (B is an elliptic curve)

(II) (9 > 2) a pencil A of degree g + 2 with r > 3¢ 4+ 7 (B is an elliptic curve),
and gave an outline of the construction. But he did not publish the precise proof.

Néron’s claim for (I) was reproved and made effective by Shioda [Sh1] in 1991 applying
his theory of Mordell-Weil lattices (MWL) Our purpose of this paper is to verify Néron’s

~claim (II) applying Shioda’s theory of MWL for higher genus fibration developed in [Sh2]
and [Sh3].

In §2, we examine Néron’s original construction. This part was done with Shioda
((Sh-UJ). It turns out that Néron’s claim is not completely correct, and that his original
method proves only the existence of families with r > 3¢ +6. After §3 we modify Néron’s
method and construct families of curves of genus g > 3 with » > 3¢ + 7.

" In the meantime Shioda [Sh4] suceeeded in construéting families of curves of any genus
g 2 2 with 7 > 49 4+ 7 over P" by a completely different method.

2 Néron’s original construction.

In what follows all varieties are defined over the complex number field C if otherwise not
mentioned. For a variety defined over Q, a rational point means a Q-rational point.
Let g be an arbitrary integer greater than one. To construct families of curves of genus

g, Néron claimed the following:

Claim 2.1 (Néron [N2]) (See Figure 1) We can choose on P? i) three distinct lLines
Ly, Ly, Ls defined over Q with a common point O, i) g distinct rational points P, ..., P,,
none of which lie on any line Ly, and iii) three rational points Ry on Ly (k = 1,2,3)
different from O, satisfying the following conditions:

(a) There exists an irreducible curve Coo of degree g + 2 defined over Q such that O
is a g-ple point and Py, ..., P, are double points of Co,, and Co is tangent to Ly at Ry
for each k. '

(b) There exists an irreducible curve Cy of degree g + 2 defined over Q such that O
is a g-ple point of Co, and the intersection point Co N Coy comsists of 0,P,...,P; and
other 29 + 4 rational points Qy, ..., Q14 which are distinct and different from O, P;, Ry
for every i and k, and Cy N L, coﬁsists of two distinct rational points R}, R} which are
different frbm O and Ry for each k.

Let P — P? be the blow-up of P? at O. Then the projectibon of P? from O induces
a fibration p : P — P!, whose fibres correspond to the lines on P? passing through O.
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Figure 1: Curves on P2 -

It is clear that Cy, is a rational curve. Hence the morphism p restricted to Co defines a
morphism of degree two between rational curves. Therefore there do not exist three fibres
of p which are tangent to Cy, at its smooth points. On the other hand, we can verify the
statement in Claim 2.1 except the existence of the third line Ls. Let A denote the pencil
on P? spanned by C,, and Cy. Then we follow the diagram in §1. For the base change

S — B we take the successive base changes of S; — P! by L; and L,. Then we can show:

Theorem 2.2 The rank of the Jacobianvvariety J of the curve T of genus g over Q(B)
is at least 3g + 6. | :

Moreover we can Aprove that the base curve B has infinitely many rational points.

Hence we obtain:

Theorem 2.3 There exists a non-empty open subset By of B(Q) such that {T'y}sep, is
an nfinite family of curves of genus g over Q with rank at least 3g + 6.
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Remark. Néron claimed that one can construct a family of curves of genus g over Q with
rank r at least 3¢g + 7 from the fibration P%— —>  P! defined by A by changing the base
three times with respect to the curves L;, L, and L3 in Claim 2.1. Hence the rank of
curves we can construct via Néron’s method is reduced by one. |

For the detail of this section we refer to [Sh-U].

3 Construction of new pencils A.

In what follows we assume g > 3. :

We take Sy = P! x P! in the diagram in §1 and let 7; : Sy — P! be the projection to
the ¢-th factor (: = 1,2). Let F and G be a general fibre of 71 and 7, respectively. Then
any complete linear system on S is of the form |mF + nG| for some m and n. We note
dim |mF +nG|=mn+m +n if m,n > 0. For any point P on Sy, we denote by Fp the
member in | F| which. passes through P.

Let I'; be an irreducible curve in [F'+ G| defined over Q and take two different rational
points U and V on I';. Then there exists an irreducible curve 'y in |2F + G| which is
defined over Q and passes through U and V. The curves T'; and I'; meet also at the
third point, say W. For the sake of simplicity, we take I'; so that W is different from U
and V. Take Fy,...,F,_3 € |F| defined over Q such that Fi, ... Fy_s, Fy, Fv and Fy
are different from each other. Moreover take a general rational point @ on I'; and let
Go denote the member in |G| passing through @1, and Ry the intersection point Fi N Go
(1 <k <g—3). Wemay assume Q, ¢ I'1; U,V ¢ Go; and Ry,...,R;_3 ¢ I'1,I';. Let
U, [resp. V;] denote the rational point Fyy N Gy [rgsp. Fy N Gy). Let Py, ..., P4, [resp.
Q2, ..., Qg+4) be general rational points on I'; [resp. on I'y] such that no two points among
P Pro, @1y, Qias Ry, ,Ry—3,U,V,W lie on a same fibre of .

Set

N =g+ 1)F+2G—P— =Py~ Qr—— Qgya— Bi— - — Rys|.

Since dim A’ > 2, there exists a curve C in A’ which is defined over Q and passes through
U, and V;. Note that CG =g+ 1, CF =2, CI'y = ¢+ 3, CT'y; = g + 5. Define rational
points Ry_5, Ry (1 < k < g —2), Pyys, Qgts, Uz and V5 by the following equations as
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0-cycles:
CGo=Q+Ui+Vi+ R+ +Rys+ Ry
OFk=Rk+RL (15k§g——2)
Clh = P1‘+ R S A + Pyi3
CTly=Q1+ 4+ Qgya+ Qgus
Cly =U1+ U,
CFy=Vi +V;,
where we set F,_; = Fr,_,. The configuration of the curves and the points defined above

is shown in Figure 2.

Fy  Fy P F Fys
| FPoss
P
P2 /
Rl R2 ' R,—2 /
G A g
°/ iy W A ~
I‘l 1 Qg+5
P -
C
Ug\
V2\ ’ . / '
R, R} IR,

Figure 2: Curves on Sy = P! x P!

Lemma 3.1 If P,..., P, and Qq,...,Q,44 are general, then C is irreducible, and
hence the points Ry_y, R, Pyis, Qgys, Uy and Vz is well-defined. Moreover the followingA
conditions are satisfied: ‘

(1) Re # B(1 <k < g—2).

(2) Uy # Uy, Vi # Va.
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(3) No two points among Pi,...,P,13,Q1,...,Qu4s,R1,..., Ry_a, U, V,W lie on a
same fibre of ;.

Proof. Set Ay = [(¢g+1)F +2G - Q, — Ry — -+ — R,_3 — U; — V4|. Since A; contains
|F + 2G|+ Fy, + Fy + - - + Fo_s+ Fy + Fyv and [(g + 1)F + G| + Gy, we see that A,
has no fixed component. Moreover we have dimA; > 2¢g + 5. Hence, if Py, ..., Pyig on
Iy and Q., ..., Qg+4 on I'y are general, then we can find an irreducible member C in A4
passing through these points.

Next, let us consider the restrictions of A; to Gy, I'; and I',. We have that A|g, =
Qi+ R+ +Ry3+ U + Vi +|F||g,, Ailr, is base point free, and that the base point
of Aylr, is scheme-theoretically equal to the single point @;. Therefore, if P, ..., Py,
Q2. .-,Q,+4 are general so that C is general in Aj, then the conditions (1), (2), (3) are
satisfied. Clearly C can be taken to be defined over Q. a

Assume that Py, ..., Pyy2,Q2,..., Q44 are general as in Lemma 3.1. Let A = {Ci},cp
be the subspace of A’ spanned by Co =C and Coo =Ty + o + Fy + -+ + Fy;_5. We see
that the base points of A is scheme-theoretically equal to P; + - -- + Poys+ Q1+ -+
Ques t Bit+ -+ Ria+ R+ + R, ' -

Lemma 3.2 [f Ph oy Pyo and Qq,...,Qu44 are general, then every member Cy in A

with t # oo is irreducible.

Proof. Let D be a reducible member in A.
Step 1. Suppose D >T'y: Set D =T1+ D;. Then D, is a member of

A2 :|gF+G_Q1~_Qg+5_R1_~_ 9_2._R1_.'.._R‘Iq_2|
ClgF +G = Qu— = Quua = Ry — - = Ry,
Since dim |gF + G — Q) — Ry —--- — Ry_3| = g + 3, and since Qy,...,Q 44 are general
~with respect to Qq, Ry, ... , Ry_3, we have either dimA; = 0 or I'; is a fixed component

of Aj. Also in the former case I'y is a fixed component of A,, because Ty + Fy + - - - Fy_o
always belongs to A;. Hence we obtain D = I'y + I'y + Dy with D; € |(g — 2)F — Ry —
= Ry_9— Ry —---—R,_,|. Then it follows that D; = Fy +---+ F,_5, and'so D = Ce.
Step 2. If D > T';, then we obtain D = C, as in Step 1. :
Step 3. Suppose D = Dy + Dy with Dy € [mF + G = Yie1 Pi — Yes Q5 — Skex Bl
Dy € [(g+1-m)F + G~ YigrPi— Tj¢5 Qi — Thgx Ri| where 1 < m < g +1,
Ic{l,...,g+3},JC{l,...,g+5}, KC{l,...,g9 —2}: We have dim |[mF + G| +
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dim (g + 1 —m)F + G| = 2g + 4. Since the 2g + 5 points Py, ..., P2, Q2. .., Qgiq are
general on I'; or I'y, we deduce that D > T or I[',.

Step 4. Suppose D = F' + D, with F' € |F|:

Case 1. F' = Fp, for some (1 << g+2): Then D; is a member of

AS :=lgF+2G— Z P]-— Z QJ'—- Z Rk— Z RH

1sicots 1<j<g+5 1<k<g—2 1<k<g—2
1
ClgF+2G-Qi— >, Ri— > PA- 3 Qjl.
1<k<g-3 1Sigete o 2<i<gHd
1] B

Since dim [gF +2G — Q, — 21<k<g-3 Bi| = 29 +4, it follows as in Step 1 that As contains
'y or I'; as a fixed component. : N
Case 2. F' = Fy, for some j (2 < j < g+ 4): In this case we have D; € |gF + 2G —
Q1 — Z Ry — Z P, — Z Qi|, and hence D; > T, or I'; as in Case 1.

1<k<g-3 1<i<g+2 2$ll¥<_?+4
Case 3. F' = Fj for some k (1 < k<g-—3)or F'=Fg,: Weset Ry = Q;. Then we
have Dy € [gF +2G - > R — > Pi— > Qjl, and hence D, > T; or I'.

osige—s 1<i<g+2 2<5<g+4 -
Case 4. F' # Fp(l < i < g+2),F(1 <j < g+4),F(l <k <g-23):

Then we have Dy € |[gF +2G —Q,— >, R,— > P — > Q. How-

1<k<g-3 1<i<g+2 2<5<g+4 )
ever, if Pi,...,Py49,Qs,...,Q,44 are general, then this linear system is empty since
dim [gF +2G — Q1 — Cicreo—3 Bil =29 + 4. o

4 Base change and configuration of the reducible

fibres and sections.

Let A be the pencil defined in §1 such that Lemmas 3.1 and 3.2 hold.

Let hy : S; — S be the resolution of the base points of A and let f; : .S; — P!
be the morphism defined by A. Then S; is obtained by blowing up the 4¢ + 4 points
P;,Q;, R, R;,. For any divisor D on Sy, we denote its strict transform to S; also by the
same letter D. Moreover we denote the exceptional curves of h; by the same letters as
the corresponding points on Sp. They are sections of f;. (See Figure 3.)

On 51, the rational curves Fy; and Fy are double sections of f;. Let ¢y [resp. tv]
denote the induced morphism Fy [resp. Fy] — 5 2, Pl Then ty [resp. ty] has two
branch points. One of them is ¢ = co. Let ty [resp. tv] denote the other branch point.
Then ty and ty are rational points and ty,ty # 0. Let u be a coordinate of Fy & P!
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C’0 Coo
P,
T,
Pg+3
R,
\\ P
R,
A ' Fg—2
U1 FU \/
C
U,
i Fy
1%
Va
Qs W
Iy
Qg+5

Figure 3: Curves on 5,
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such that ¢y is defined by u? = ¢ — ty. Consider the base change S := 51 Xp1 Fy — Fy
of fy : S; — P! by uwy : Fy — P!. The induced morphism S, — S; is of degree two
and its branch locus is Dy, + D;,. Hence S} has a singularity over each singular point
of Do and Dyy,. Let S; — S} be the minimal resolution of the singularities of S; and
f2: Sy = Fy,hy : S; — S; the induced morphisms. The fibration f, corresponds to the
pencil {D,}ver, induced from the pencil {Di},epr on S1 by ha. Let Fy; and Fy, denote
the strict transform of Fyy and Fy by hy respectively. Then F; is a sum of two sections of
fo. Ity # tv, then Fy, ) is an irreducible rational curve with a node on f;*(oco). Let B be
the normalization of Fy, and let S’ := S; X, B — B be the base change of f;: S; — Fy
by B — F, — S, £, Fy. The singularity of S’ corresponds to the singularity of the
branch locus h;*(Dy,) = Dm + D_ s7=5 of the induced morphism 5’ — Sj. Let
S — S’ be the minimal resolution of the singularities of S’ and f: S — B, h : S — 5; the
induced morphisms. If {y = tv, then we take S =Sy, B=Fy, f = fo and h = hy. Then
we obtained a new fibration f : S — B of curves of genus g. Note that B is a rational
curve. On S, the strict transforms of both of Fy; and Fy by h are sum of two sections
of f, which we denote by F(l) + Fl(f) and F(l) + F‘(,z) respectively. We denote the strict
transforms of Dy, I'y, I'y, Fi, P,, Q; and R by h or hy by the same letters Dy, I'y, I'2, F,
P, Q; and Ry.

In order to calculate the hexght pairing in the next sectlon we need the configuration of
all reducible fibres and sections F;, @;, R, FU and FV of f:S — B. From Lemma 3.2,
the reducible fibres of f are fibres over D, and possibly those over D;, and D;,. In
this section we consider the reducible fibres on S,, which are Do, = f5*(c0) and possibly
Do = f;71(0). We see (cf. Figure 3) that the fibre D, on S has 2g — 1 A;-singularities.
Let Ey and Ej denote the exceptional curves on S, over the singular points I'y N F; and
['y N Fy; respectively of Dy, (1 < k < g —2) and we denote the exceptional curves over
U,V and W by the same letters U,V and W. Then the configuration of curves near
Do =T1 4+ T2+ Y4 (Fi+ Ex + E,) + U4V + W is as in Figure 4.

Let Ty be the unique point of Fyy on Sy over ty. Since FyDy, = 2, Ty is at worst a
double point of D;,. Hence the point on S; over Ty is an A,,-singularity for some ny
(we set ny = 0 if Cy, is non-singular at Ty and so S} is non-singular over Tyy). Moreover,

if Dy, is singular at Ty, then a single blow-up at Ty separates the strict transforms of Fy
and D,,. Set

2my if ny 1s even
n =
v 2my — 1 if ny 1s odd.

The exceptional set h;*(Ty) is a chain of ny (—2)-curves, which we denote by Ey,+---+
Eyn,. Then Fl(jl) and F[(]2) meet only Ey; or Eyn,. We may assume that F[(jl)EU,l =1



Py
T
Pg;l-3
‘R
: ' /4\‘ Fy \
E{/ \El
ng_2 /\ F,_, .
L F[(Jl) E;_z/ .\,Eg—-Z
(2)
F§ V—R -
N DN
F{,{
N\ ‘
W
Q1
T,
Qg+s

Figure 4: Curves on S; near é’oo
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and F[(f)EU,nU = 1. The configuration of curves near h;*(Tyy) C Dy is as in Figure 5,
where the number attatched to each component Ey, is the multiplicity of Ey; in Do.

-5 Calculation of the height pairing.

Let f:.S — B be the fibration of genus g obtained in §2. This fibration is defined over
Q. Let I’ denote the generic fibre of f and J the Jacobian variety of I'. Then I" and J are
defined over the function field Q(B) of B. The Mordell-Weil group M of J is defined as
the group J(Q(B))/7Tr(Q) (modulo torsion), where (T'r,7) is the Q(B)/Q-trace of J.
The sections P;, Q;, Ry, F[(Jl) and F‘(/l) of f are defined over Q and hence can be regarded
as points of I'(Q(B)). We may take Qg+s5 as the zero-section of f and so the origin of J.
Then P;, Q;, Ry, F(I) F‘(,l) are also regarded as points of J(Q(B)). We will show that
the 3g + 7 points Pi,..., Pyia, Q1, ..., Qqeq, Ry, ... , Rg—2, F(l) and F‘(,l) are independent
in M by applying the theory of Mordell-Weil lattices for higher genus fibration developed
in [Sh2] and [Sh3]. What we have to show is that the ‘determinant of the matrix of the
height pairing of these 3¢ + 7 points is not zero.

Recall that the height pairing is calculated as follows: Let T be the subgroup of the
Néron-Severi group NS(S) of S generated by the zero-section Qg+5, a general fibre of f
and all components of fibres of f which are disjoint from Q@g+5- For any section P of f, let
©(P) denote the Q-divisor on S such that (i) ¢(P) = P'(mod. T®Q) and (ii) ¢(P) L T.
Then for two sections P and @ of f, defined over Q, the height pairing of the points in
M corresponding to P and Q is equal to —p(P)p(Q).

First we consider the case of ¢;; = ty. Let us define Ty, ny, my and Evi+:--+Ey,, for
V in the same way as Ty etc. for U. We may assume that F‘(,I)EVJ =1 and F‘(/2)Evynv = 1.
Let D be a general fibre of f. Then the group T is generated by Q,s, D, T, F,... yFy_a,
ELEL .. By B UV, W, Ey,,...,Eyn, and Byy,..., Ey,,. (Infact Do has also
components other than Cy, = C;,, Eyy,...,Eyn,, Evi,...,Ev,, if D., has singular
points other than Ty and Ty. But the other singular points produce no effect on the
calculation of the height pairing of the sections above. Hence we may assume that Dy,
1s singular at worst only at Ty and Ty.) Since the morphism S — S; is generically two
to one, we have P} = Q% = R} = —2. Moreover we can calculate FZ = FZ = —2,
IP=T}=—(g+1), F = E} = E? = -2 and D?U = —(my + my). From these and
Figures 4 and 5, we obtain the configuration of curves on S with their self-intersection
numbers we need. As an example we show in Figure 6 one of the cases, in which ny is

even and ny is odd.
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Co
- my my — 1 2 1
EU,mu+1 o N )
N/ Ey,
/ EU,2mU
. .. / -
my my — 1 2 1
(l) ny = 2mU
Co
Nﬂ %
‘ Ey,
EU,Zmu-—l

(2) ny = 2mU —1

Figure 5: Curves on S, near h;'(Ty)
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Co Coo
P, —2
Ciy|—(my + my) I'i—(g+1)
) —2
-9 :
Ry- .
' ~ AN
S
-2 -2
AANIE = IR
N\
-2 F(l) -2 :
U
2 AN
E;_Q . Eg—-2
EU2mU F[(IZ)
AR -9
_9 /V %3 F\(/I)
EV,m
. v EV2mv 1 F‘(})
NUZIR N N x
2 N \ -9
%%
-2
o =2
Ty|~(g+1)
Qg+5 -2

Figure 6: Sections and reducible fibres on S (ty = tv,ny = 2my,ny = 2my — 1)



In any case we can deduce:

g-2

@(P) = Pi = Qgqs —2D + 4hT'1 + b Y (2F, + 3E, + E) + 2h(U + V + W)

(Qs) = Qj = Qges — 2D
@(Ri) = Ri — Qs — 2D + 2hTy + A >

p(Fy)

1 1
+F + 5 B + §E,;

+

nU+1

p=1

9—2

p=1

p=1

(nvByi+ (ny —1)Eys+ -+ EU,.nU)
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(1<i1<g+3)
1<;<g+4)

3 1_,
(Fp+§Ep+§EP)+h(U+V+W)

(1<k<g-2)

= 2 3 1 1
)= B = Quus = 2D + 2hLs 4 h S (Fy + 2By + sE}) + h(U +V + W) + 35U

9—2

: ~ 3 1 1

@(F) = F) — Quus = 2D + 2D+ h Y (Fy + 5By + SEp) + h(U +V 4+ W) + 5V
p=1 :

+ (nvEvi+(nv —1)Eva+ -+ Evpa,, ),
ny +1 :
where we set h = 1/(g+4). Hence the determinant of the height pairing for Pj,..., P43,
1 1) . .
Q1 Qgya, Ry,..., Ry_a, FL(,),and F‘(,) is:
4—4h 2-—4h 2 — 4h 2]2-2n 2-2h 2-2h| 2-2h 2 - 2h
2-4h 4-4h 2 —4h 2|2-2n 2-2h 2—2h| 2-2h 2 —2h
2-4h 2—4h 4 4h 2-2h 2-2h 2-2h| 2-2h 2 — 2h
2 2 2 2 2 2 2 2
2 2 2 2| 2 2 2 2 2
2 2 2 |2 2 2 2 2
2-2h 2-2h 2—2h 2/ 3—h 2-h 2—h 2—h 2—h
2-2h 2-2h 2 —2h 2—h 3—h 2-h 2—h 2-h
2-2h 2-2h 2 —2h 2—-h 2-h 3—h 2—h 2-h
2—-2h 2-2h 2 —2h 2—h 2-h 2—h |f-h- 2—h
2—-2h 2-2h 2—2h | .2 2-h 2-h 2~h 2—h T—h—
which is equal to ~
_ 2ny )( _ 2ny '
ny+1 ny+1 #0
g+4

Next let us assume that ty # ty. Then there exist two fibres of f : S — B over
each of the fibres Do, Dy, Dy, of f1 : S; — P'. Moreover the morphism & : S — S
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is of degree 4, and hence all sections Pi,..., Pyi3, Q1,...,Qg4a, B1,..., Rg_2; F(S}) and
F‘(,l) have self-intersection number —4. From these we see that the matrix of the height
pairing of the sections above is obtained from that for the case ty = ty by multiplying
every entry by 2. Thus it follows that its determinant is:

'5g+13( - n2:+1)( - n2‘7+1)
2 # 0.

g+4

Therefore we have proved:

Theorem 5.1 The rank of the Jacobian variety J of the curve I of genus g over C(B)
is at least 3g + 7. : »

6 Rational points on the base curve.

Let us prove that the base curve B of our fibration f : S — B defined in §2 has infinitely
many rational points so as to show that f induces an infinite family of curves of genus
g over Q. From Q(Fy) = Q(¢)(u) and Q(Fy) = Q(t)(v) where u®> = a(t — ty) and

v? = b(t — ty) for some a,b € Q*, we have
Q(B) = Q(d,v), bU2 — CZ’U2 + ab(tU — tV) = 0.

Then what we need to show is that B has at least one rational point. Remember that on
So, Do meets Fy [resp: Fy] at two rational points U; and U, [resp. V; and V;]. Let (0,u;)
and (0,v;) be the coordinates of U; and V; on S respectively. Then we have u} = —aty
and v? = —bty, and so bu? — av? + ab(ty — tv) = 0, hence we are dgine.

For any b € B, let 'y denote the fibre of f : S — B over b. If b is a rational point,
then T'y is a curve defined over Q. Therefore, by the specialization theorem of Néron,

Silverman, Tate (cf. [N1], [L], [Se]), we obtain the following:
Theorem 6.1 There exists a non-empty open subset By of B(Q) such that {Fb}beBo is

an infinite family of curves of genus g over Q with rank at least 3g + 7.
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