Mordell-Weil rank の高い曲線族を構成する Néron の方法について

東邦大学医学部 梅津裕美子 (Yumiko Umezu)

1 Introduction.

Let $f: S \to B$ be a fibration of curves of genus g on a surface S over a curve B. We assume that S, B and f are defined over the rational number field \mathbf{Q} . Then, for each rational point b on B such that $\Gamma_b = f^{-1}(b)$ is nonsingular, we can consider the Mordell-Weil rank r_b of Γ_b over \mathbf{Q} , which is by definition the rank of the group of rational points on the Jacobian variety of Γ_b .

Néron gave a method to construct such a fibration such that

(1) B has infinitely many rational points.

(2) For infinitely many rational points b on B, the rank r_b is "large".

He started from the plane $S_0 = \mathbf{P}^2$. Let Λ be a pencil of genus g defined over \mathbf{Q} on S_0 . Let $S_1 \to S_0$ be the blow-up of S_0 at the base points of Λ , so that we obtain a fibration $f_1: S_1 \to \mathbf{P}^1$ of curves of genus g. We assume that this fibration has a section. Then we take some base change $f: S \to B$ of $S_1 \to \mathbf{P}^1$ by a surjective morphism $B \to \mathbf{P}^1$ of curves defined over \mathbf{Q} .

Let Γ denote the generic fibre of f. Then Γ is a curve over $\mathbf{Q}(B)$. Hence we can consider the Mordell-Weil rank of Γ over $\mathbf{Q}(B)$, which we denote by r. Then, by the specialization theorem of Néron, Silverman, Tate (cf. [N1], [L], [Se]), we obtain that there exists a finite subset Σ in the set of all rational points $B(\mathbf{Q})$ on B such that $r_b \geq r$ if $b \in B(\mathbf{Q}) \setminus \Sigma$. Therefore it is enough to find Λ and $B \to \mathbf{P}^1$ such that Γ has large r.

Néron [N2] claimed that he can construct:

(I) (g = 1) a pencil Λ of cubic curves with $r \ge 11$ (B is an elliptic curve)

(II) $(g \ge 2)$ a pencil Λ of degree g + 2 with $r \ge 3g + 7$ (B is an elliptic curve), and gave an outline of the construction. But he did not publish the precise proof.

Néron's claim for (I) was reproved and made effective by Shioda [Sh1] in 1991 applying his theory of Mordell-Weil lattices (MWL). Our purpose of this paper is to verify Néron's claim (II) applying Shioda's theory of MWL for higher genus fibration developed in [Sh2] and [Sh3].

In §2, we examine Néron's original construction. This part was done with Shioda ([Sh-U]). It turns out that Néron's claim is not completely correct, and that his original method proves only the existence of families with $r \ge 3g + 6$. After §3 we modify Néron's method and construct families of curves of genus $g \ge 3$ with $r \ge 3g + 7$.

In the meantime Shioda [Sh4] succeeded in constructing families of curves of any genus $g \ge 2$ with $r \ge 4g + 7$ over \mathbf{P}^n by a completely different method.

2 Néron's original construction.

In what follows all varieties are defined over the complex number field C if otherwise not mentioned. For a variety defined over Q, a rational point means a Q-rational point.

Let g be an arbitrary integer greater than one. To construct families of curves of genus g, Néron claimed the following:

Claim 2.1 (Néron [N2]) (See Figure 1) We can choose on \mathbf{P}^2 i) three distinct lines L_1, L_2, L_3 defined over \mathbf{Q} with a common point O, ii) g distinct rational points P_1, \ldots, P_g , none of which lie on any line L_k , and iii) three rational points R_k on L_k (k = 1, 2, 3) different from O, satisfying the following conditions:

(a) There exists an irreducible curve C_{∞} of degree g + 2 defined over \mathbf{Q} such that O is a g-ple point and P_1, \ldots, P_g are double points of C_{∞} , and C_{∞} is tangent to L_k at R_k for each k.

(b) There exists an irreducible curve C_0 of degree g + 2 defined over \mathbf{Q} such that O is a g-ple point of C_0 , and the intersection point $C_0 \cap C_\infty$ consists of O, P_1, \ldots, P_g and other 2g + 4 rational points Q_1, \ldots, Q_{2g+4} which are distinct and different from O, P_i, R_k for every i and k, and $C_0 \cap L_k$ consists of two distinct rational points R'_k , R''_k which are different from O and R_k for each k.

Let $\tilde{\mathbf{P}} \to \mathbf{P}^2$ be the blow-up of \mathbf{P}^2 at O. Then the projection of \mathbf{P}^2 from O induces a fibration $p: \tilde{\mathbf{P}} \to \mathbf{P}^1$, whose fibres correspond to the lines on \mathbf{P}^2 passing through O.

Figure 1: Curves on \mathbf{P}^2

It is clear that C_{∞} is a rational curve. Hence the morphism p restricted to C_{∞} defines a morphism of degree two between rational curves. Therefore there do not exist three fibres of p which are tangent to C_{∞} at its smooth points. On the other hand, we can verify the statement in Claim 2.1 except the existence of the third line L_3 . Let Λ denote the pencil on \mathbf{P}^2 spanned by C_{∞} and C_0 . Then we follow the diagram in §1. For the base change $S \to B$ we take the successive base changes of $S_1 \to \mathbf{P}^1$ by L_1 and L_2 . Then we can show:

Theorem 2.2 The rank of the Jacobian variety J of the curve Γ of genus g over $\mathbf{Q}(B)$ is at least 3g + 6.

Moreover we can prove that the base curve B has infinitely many rational points. Hence we obtain:

Theorem 2.3 There exists a non-empty open subset B_0 of $B(\mathbf{Q})$ such that $\{\Gamma_b\}_{b\in B_0}$ is an infinite family of curves of genus g over \mathbf{Q} with rank at least 3g + 6.

Remark. Néron claimed that one can construct a family of curves of genus g over \mathbf{Q} with rank r at least 3g + 7 from the fibration $\mathbf{P}^2 \to \mathbf{P}^1$ defined by Λ by changing the base three times with respect to the curves L_1 , L_2 and L_3 in Claim 2.1. Hence the rank of curves we can construct via Néron's method is reduced by one.

For the detail of this section we refer to [Sh-U].

3 Construction of new pencils Λ .

In what follows we assume $g \geq 3$.

We take $S_0 = \mathbf{P}^1 \times \mathbf{P}^1$ in the diagram in §1 and let $\pi_i : S_0 \to \mathbf{P}^1$ be the projection to the *i*-th factor (i = 1, 2). Let F and G be a general fibre of π_1 and π_2 respectively. Then any complete linear system on S_0 is of the form |mF + nG| for some m and n. We note dim |mF + nG| = mn + m + n if $m, n \ge 0$. For any point P on S_0 , we denote by F_P the member in |F| which passes through P.

Let Γ_1 be an irreducible curve in |F+G| defined over \mathbf{Q} and take two different rational points U and V on Γ_1 . Then there exists an irreducible curve Γ_2 in |2F+G| which is defined over \mathbf{Q} and passes through U and V. The curves Γ_1 and Γ_2 meet also at the third point, say W. For the sake of simplicity, we take Γ_2 so that W is different from Uand V. Take $F_1, \ldots, F_{g-3} \in |F|$ defined over \mathbf{Q} such that $F_1, \ldots, F_{g-3}, F_U, F_V$ and F_W are different from each other. Moreover take a general rational point Q_1 on Γ_2 and let G_0 denote the member in |G| passing through Q_1 , and R_k the intersection point $F_k \cap G_0$ $(1 \leq k \leq g - 3)$. We may assume $Q_1 \notin \Gamma_1$; $U, V \notin G_0$; and $R_1, \ldots, R_{g-3} \notin \Gamma_1, \Gamma_2$. Let U_1 [resp. V_1] denote the rational point $F_U \cap G_0$ [resp. $F_V \cap G_0$]. Let P_1, \ldots, P_{g+2} [resp. Q_2, \ldots, Q_{g+4}] be general rational points on Γ_1 [resp. on Γ_2] such that no two points among $P_1, \ldots, P_{g+2}, Q_1, \ldots, Q_{g+4}, R_1, \ldots, R_{g-3}, U, V, W$ lie on a same fibre of π_1 .

$$\Lambda' = |(g+1)F + 2G - P_1 - \dots - P_{g+2} - Q_1 - \dots - Q_{g+4} - R_1 - \dots - R_{g-3}|.$$

Since dim $\Lambda' \ge 2$, there exists a curve C in Λ' which is defined over \mathbf{Q} and passes through U_1 and V_1 . Note that CG = g + 1, CF = 2, $C\Gamma_1 = g + 3$, $C\Gamma_2 = g + 5$. Define rational points R_{g-2} , R'_k $(1 \le k \le g - 2)$, P_{g+3} , Q_{g+5} , U_2 and V_2 by the following equations as

0-cycles:

$$CG_{0} = Q_{1} + U_{1} + V_{1} + R_{1} + \dots + R_{g-3} + R_{g-2}$$

$$CF_{k} = R_{k} + R'_{k} \quad (1 \le k \le g - 2)$$

$$C\Gamma_{1} = P_{1} + \dots + P_{g+2} + P_{g+3}$$

$$C\Gamma_{2} = Q_{1} + \dots + Q_{g+4} + Q_{g+5}$$

$$CF_{U} = U_{1} + U_{2}$$

$$CF_{V} = V_{1} + V_{2},$$

where we set $F_{g-2} = F_{R_{g-2}}$. The configuration of the curves and the points defined above is shown in Figure 2.

Figure 2: Curves on $S_0 = \mathbf{P}^1 \times \mathbf{P}^1$

Lemma 3.1 If P_1, \ldots, P_{g+2} and Q_2, \ldots, Q_{g+4} are general, then C is irreducible, and hence the points R_{g-2} , R'_k , P_{g+3} , Q_{g+5} , U_2 and V_2 is well-defined. Moreover the following conditions are satisfied:

- (1) $R_k \neq R'_k (1 \le k \le g 2).$
- (2) $U_1 \neq U_2, V_1 \neq V_2.$

 $\mathbf{59}$

(3) No two points among $P_1, \ldots, P_{g+3}, Q_1, \ldots, Q_{g+5}, R_1, \ldots, R_{g-2}, U, V, W$ lie on a same fibre of π_1 .

Proof. Set $\Lambda_1 = |(g+1)F + 2G - Q_1 - R_1 - \cdots - R_{g-3} - U_1 - V_1|$. Since Λ_1 contains $|F + 2G| + F_{Q_1} + F_1 + \cdots + F_{g-3} + F_U + F_V$ and $|(g+1)F + G| + G_0$, we see that Λ_1 has no fixed component. Moreover we have dim $\Lambda_1 \ge 2g + 5$. Hence, if P_1, \ldots, P_{g+2} on Γ_1 and Q_2, \ldots, Q_{g+4} on Γ_2 are general, then we can find an irreducible member C in Λ_1 passing through these points.

Next, let us consider the restrictions of Λ_1 to G_0 , Γ_1 and Γ_2 . We have that $\Lambda_1|_{G_0} = Q_1 + R_1 + \cdots + R_{g-3} + U_1 + V_1 + |F||_{G_0}$, $\Lambda_1|_{\Gamma_1}$ is base point free, and that the base point of $\Lambda_1|_{\Gamma_2}$ is scheme-theoretically equal to the single point Q_1 . Therefore, if P_1, \ldots, P_{g+2} , Q_2, \ldots, Q_{g+4} are general so that C is general in Λ_1 , then the conditions (1), (2), (3) are satisfied. Clearly C can be taken to be defined over \mathbf{Q} .

Assume that $P_1, \ldots, P_{g+2}, Q_2, \ldots, Q_{g+4}$ are general as in Lemma 3.1. Let $\Lambda = \{C_t\}_{t \in \mathbf{P}^1}$ be the subspace of Λ' spanned by $C_0 = C$ and $C_{\infty} = \Gamma_1 + \Gamma_2 + F_1 + \cdots + F_{g-2}$. We see that the base points of Λ is scheme-theoretically equal to $P_1 + \cdots + P_{g+3} + Q_1 + \cdots + Q_{g+5} + R_1 + \cdots + R_{g-2} + R'_1 + \cdots + R'_{g-2}$.

Lemma 3.2 If P_1, \ldots, P_{g+2} and Q_2, \ldots, Q_{g+4} are general, then every member C_t in Λ with $t \neq \infty$ is irreducible.

Proof. Let D be a reducible member in Λ .

Step 1. Suppose $D \ge \Gamma_1$: Set $D = \Gamma_1 + D_1$. Then D_1 is a member of

$$\Lambda_2 := |gF + G - Q_1 - \dots - Q_{g+5} - R_1 - \dots - R_{g-2} - R'_1 - \dots - R'_{g-2}|$$

$$\subset |gF + G - Q_1 - \dots - Q_{g+4} - R_1 - \dots - R_{g-3}|.$$

Since dim $|gF + G - Q_1 - R_1 - \dots - R_{g-3}| = g + 3$, and since Q_2, \dots, Q_{g+4} are general with respect to Q_1, R_1, \dots, R_{g-3} , we have either dim $\Lambda_2 = 0$ or Γ_2 is a fixed component of Λ_2 . Also in the former case Γ_2 is a fixed component of Λ_2 , because $\Gamma_2 + F_1 + \dots + F_{g-2}$ always belongs to Λ_2 . Hence we obtain $D = \Gamma_1 + \Gamma_2 + D_2$ with $D_2 \in |(g-2)F - R_1 - \dots - R_{g-2} - R'_1 - \dots - R'_{g-2}|$. Then it follows that $D_2 = F_1 + \dots + F_{g-2}$, and so $D = C_{\infty}$. Step 2. If $D \geq \Gamma_2$, then we obtain $D = C_{\infty}$ as in Step 1.

Step 3. Suppose $D = D_1 + D_2$ with $D_1 \in |mF + G - \sum_{i \in I} P_i - \sum_{j \in J} Q_j - \sum_{k \in K} R_k|$, $D_2 \in |(g + 1 - m)F + G - \sum_{i \notin I} P_i - \sum_{j \notin J} Q_j - \sum_{k \notin K} R_k|$ where $1 \leq m \leq g + 1$, $I \subset \{1, \dots, g + 3\}$, $J \subset \{1, \dots, g + 5\}$, $K \subset \{1, \dots, g - 2\}$: We have dim |mF + G| + 1 dim |(g+1-m)F+G| = 2g+4. Since the 2g+5 points $P_1, \ldots, P_{g+2}, Q_2, \ldots, Q_{g+4}$ are general on Γ_1 or Γ_2 , we deduce that $D \ge \Gamma_1$ or Γ_2 .

Step 4. Suppose $D = F' + D_1$ with $F' \in |F|$:

Case 1. $F' = F_{P_i}$ for some $i \ (1 \le i \le g+2)$: Then D_1 is a member of

$$\begin{split} \Lambda_3 &:= |gF + 2G - \sum_{\substack{1 \le l \le g+3\\ l \ne i}} P_l - \sum_{\substack{1 \le j \le g+5\\ l \ne i}} Q_j - \sum_{\substack{1 \le k \le g-2\\ l \ne i}} R_k - \sum_{\substack{1 \le k \le g-2\\ l \ne i}} P_l - \sum_{\substack{2 \le j \le g+4\\ l \ne i}} Q_j|. \end{split}$$

Since dim $|gF + 2G - Q_1 - \sum_{1 \le k \le g-3} R_k| = 2g + 4$, it follows as in Step 1 that Λ_3 contains Γ_1 or Γ_2 as a fixed component.

Case 2. $F' = F_{Q_j}$ for some j $(2 \le j \le g+4)$: In this case we have $D_1 \in |gF + 2G - Q_1 - \sum_{1 \le k \le g-3} R_k - \sum_{1 \le i \le g+2} P_i - \sum_{\substack{2 \le l \le g+4 \\ l \ne j}} Q_l|$, and hence $D_1 \ge \Gamma_1$ or Γ_2 as in Case 1.

Case 3. $F' = F_k$ for some k $(1 \le k \le g-3)$ or $F' = F_{Q_1}$: We set $R_0 = Q_1$. Then we have $D_1 \in |gF + 2G - \sum_{\substack{0 \le l \le g-3 \\ i \ne k}} R_l - \sum_{1 \le i \le g+2} P_i - \sum_{2 \le j \le g+4} Q_j|$, and hence $D_1 \ge \Gamma_1$ or Γ_2 .

Case 4. $F' \neq F_{P_i}(1 \leq i \leq g+2), F_{Q_j}(1 \leq j \leq g+4), F_k(1 \leq k \leq g-3)$: Then we have $D_1 \in |gF + 2G - Q_1 - \sum_{1 \leq k \leq g-3} R_k - \sum_{1 \leq i \leq g+2} P_i - \sum_{2 \leq j \leq g+4} Q_j|$. However, if $P_1, \ldots, P_{g+2}, Q_2, \ldots, Q_{g+4}$ are general, then this linear system is empty since $\dim |gF + 2G - Q_1 - \sum_{1 \leq k \leq g-3} R_k| = 2g + 4$.

4 Base change and configuration of the reducible fibres and sections.

Let Λ be the pencil defined in §1 such that Lemmas 3.1 and 3.2 hold.

Let $h_1 : S_1 \to S_0$ be the resolution of the base points of Λ and let $f_1 : S_1 \to \mathbf{P}^1$ be the morphism defined by Λ . Then S_1 is obtained by blowing up the 4g + 4 points P_i, Q_j, R_k, R'_k . For any divisor D on S_0 , we denote its strict transform to S_1 also by the same letter D. Moreover we denote the exceptional curves of h_1 by the same letters as the corresponding points on S_0 . They are sections of f_1 . (See Figure 3.)

On S_1 , the rational curves F_U and F_V are double sections of f_1 . Let ι_U [resp. ι_V] denote the induced morphism F_U [resp. F_V] $\hookrightarrow S_1 \xrightarrow{f_1} \mathbf{P}^1$. Then ι_U [resp. ι_V] has two branch points. One of them is $t = \infty$. Let t_U [resp. t_V] denote the other branch point. Then t_U and t_V are rational points and $t_U, t_V \neq 0$. Let u be a coordinate of $F_U \cong \mathbf{P}^1$

such that ι_U is defined by $u^2 = t - t_U$. Consider the base change $S'_2 := S_1 \times_{\mathbf{P}^1} F_U \to F_U$ of $f_1: S_1 \to \mathbf{P}^1$ by $\iota_U: F_U \to \mathbf{P}^1$. The induced morphism $S'_2 \to S_1$ is of degree two and its branch locus is $D_{\infty} + D_{t_U}$. Hence S'_2 has a singularity over each singular point of D_{∞} and $D_{t_{U}}$. Let $S_{2} \to S'_{2}$ be the minimal resolution of the singularities of S'_{2} and $f_2: S_2 \to F_U, h_2: S_2 \to S_1$ the induced morphisms. The fibration f_2 corresponds to the pencil $\{\tilde{D}_u\}_{u\in F_U}$ induced from the pencil $\{D_t\}_{t\in \mathbf{P}^1}$ on S_1 by h_2 . Let F'_U and F'_V denote the strict transform of F_U and F_V by h_2 respectively. Then F'_U is a sum of two sections of f_2 . If $t_U \neq t_V$, then F'_V , is an irreducible rational curve with a node on $f_2^{-1}(\infty)$. Let B be the normalization of F'_V and let $S' := S_2 \times_{F_U} B \to B$ be the base change of $f_2 : S_2 \to F_U$ by $B \to F'_V \hookrightarrow S_2 \xrightarrow{f_2} F_U$. The singularity of S' corresponds to the singularity of the branch locus $h_2^{-1}(D_{t_V}) = \tilde{D}_{\sqrt{t_V - t_U}} + \tilde{D}_{-\sqrt{t_V - t_U}}$ of the induced morphism $S' \to S_2$. Let $S \to S'$ be the minimal resolution of the singularities of S' and $f: S \to B, h: S \to S_1$ the induced morphisms. If $t_U = t_V$, then we take $S = S_2$, $B = F_U$, $f = f_2$ and $h = h_2$. Then we obtained a new fibration $f: S \to B$ of curves of genus g. Note that B is a rational curve. On S, the strict transforms of both of F_U and F_V by h are sum of two sections of f, which we denote by $F_U^{(1)} + F_U^{(2)}$ and $F_V^{(1)} + F_V^{(2)}$ respectively. We denote the strict transforms of D_t , Γ_1 , Γ_2 , F_k , P_i , Q_j and R_k by h or h_2 by the same letters D_t , Γ_1 , Γ_2 , F_k , $P_i, Q_j \text{ and } R_k.$

In order to calculate the height pairing in the next section, we need the configuration of all reducible fibres and sections P_i , Q_j , R_k , $F_U^{(1)}$ and $F_V^{(1)}$ of $f: S \to B$. From Lemma 3.2, the reducible fibres of f are fibres over D_{∞} and possibly those over D_{t_U} and D_{t_V} . In this section we consider the reducible fibres on S_2 , which are $\tilde{D}_{\infty} = f_2^{-1}(\infty)$ and possibly $\tilde{D}_0 = f_2^{-1}(0)$. We see (cf. Figure 3) that the fibre D_{∞} on S_1 has 2g - 1 A_1 -singularities. Let E_k and E'_k denote the exceptional curves on S_2 over the singular points $\Gamma_1 \cap F_k$ and $\Gamma_2 \cap F_k$ respectively of D_{∞} $(1 \le k \le g - 2)$ and we denote the exceptional curves over U, V and W by the same letters U, V and W. Then the configuration of curves near $\tilde{D}_{\infty} = \Gamma_1 + \Gamma_2 + \sum_{k=1}^{g-2} (F_k + E_k + E'_k) + U + V + W$ is as in Figure 4.

Let T_U be the unique point of F_U on S_1 over t_U . Since $F_U D_{t_U} = 2$, T_U is at worst a double point of D_{t_U} . Hence the point on S'_2 over T_U is an A_{n_U} -singularity for some n_U (we set $n_U = 0$ if C_{t_U} is non-singular at T_U and so S'_2 is non-singular over T_U). Moreover, if D_{t_U} is singular at T_U , then a single blow-up at T_U separates the strict transforms of F_U and D_{t_U} . Set

$$n_U = \begin{cases} 2m_U & \text{if } n_U \text{ is even} \\ 2m_U - 1 & \text{if } n_U \text{ is odd.} \end{cases}$$

The exceptional set $h_2^{-1}(T_U)$ is a chain of $n_U(-2)$ -curves, which we denote by $E_{U,1} + \cdots + E_{U,n_U}$. Then $F_U^{(1)}$ and $F_U^{(2)}$ meet only $E_{U,1}$ or E_{U,n_U} . We may assume that $F_U^{(1)}E_{U,1} = 1$

Figure 4: Curves on S_2 near \tilde{C}_{∞}

and $F_U^{(2)}E_{U,n_U} = 1$. The configuration of curves near $h_2^{-1}(T_U) \subset \tilde{D}_0$ is as in Figure 5, where the number attached to each component $E_{U,l}$ is the multiplicity of $E_{U,l}$ in \tilde{D}_0 .

5 Calculation of the height pairing.

Let $f: S \to B$ be the fibration of genus g obtained in §2. This fibration is defined over \mathbf{Q} . Let Γ denote the generic fibre of f and J the Jacobian variety of Γ . Then Γ and J are defined over the function field $\mathbf{Q}(B)$ of B. The Mordell-Weil group M of J is defined as the group $J(\mathbf{Q}(B))/\tau Tr(\mathbf{Q})$ (modulo torsion), where (Tr,τ) is the $\mathbf{Q}(B)/\mathbf{Q}$ -trace of J. The sections $P_i, Q_j, R_k, F_U^{(l)}$ and $F_V^{(l)}$ of f are defined over \mathbf{Q} and hence can be regarded as points of $\Gamma(\mathbf{Q}(B))$. We may take Q_{g+5} as the zero-section of f and so the origin of J. Then $P_i, Q_j, R_k, F_U^{(l)}, F_V^{(l)}$ are also regarded as points of $J(\mathbf{Q}(B))$. We will show that the 3g + 7 points $P_1, \ldots, P_{g+3}, Q_1, \ldots, Q_{g+4}, R_1, \ldots, R_{g-2}, F_U^{(1)}$ and $F_V^{(1)}$ are independent in M by applying the theory of Mordell-Weil lattices for higher genus fibration developed in [Sh2] and [Sh3]. What we have to show is that the determinant of the matrix of the height pairing of these 3g + 7 points is not zero.

Recall that the height pairing is calculated as follows: Let T be the subgroup of the Néron-Severi group NS(S) of S generated by the zero-section Q_{g+5} , a general fibre of f and all components of fibres of f which are disjoint from Q_{g+5} . For any section P of f, let $\varphi(P)$ denote the **Q**-divisor on S such that (i) $\varphi(P) \equiv P \pmod{T \otimes Q}$ and (ii) $\varphi(P) \perp T$. Then for two sections P and Q of f, defined over \mathbf{Q} , the height pairing of the points in M corresponding to P and Q is equal to $-\varphi(P)\varphi(Q)$.

First we consider the case of $t_U = t_V$. Let us define T_V , n_V , m_V and $E_{V,1} + \cdots + E_{V,n_V}$ for V in the same way as T_U etc. for U. We may assume that $F_V^{(1)}E_{V,1} = 1$ and $F_V^{(2)}E_{V,n_V} = 1$. Let \tilde{D} be a general fibre of f. Then the group T is generated by Q_{g+5} , \tilde{D} , Γ_1 , F_1 , \ldots , F_{g-2} , $E_1, E'_1, \ldots, E_{g-2}, E'_{g-2}, U, V, W, E_{U,1}, \ldots, E_{U,n_U}$ and $E_{V,1}, \ldots, E_{V,n_V}$. (In fact \tilde{D}_0 has also components other than $C_{t_U} = C_{t_V}, E_{U,1}, \ldots, E_{U,n_U}, E_{V,1}, \ldots, E_{V,n_V}$ if D_{t_U} has singular points other than T_U and T_V . But the other singular points produce no effect on the calculation of the height pairing of the sections above. Hence we may assume that D_{t_U} is singular at worst only at T_U and T_V .) Since the morphism $S \to S_1$ is generically two to one, we have $P_i^2 = Q_j^2 = R_k^2 = -2$. Moreover we can calculate $F_U^2 = F_V^2 = -2$, $\Gamma_1^2 = \Gamma_2^2 = -(g+1), F_k^2 = E_k^2 = E_k'^2 = -2$ and $D_{t_U}^2 = -(m_U + m_V)$. From these and Figures 4 and 5, we obtain the configuration of curves on S with their self-intersection numbers we need. As an example we show in Figure 6 one of the cases, in which n_U is even and n_V is odd.

 $(2) \ n_U = 2m_U - 1$

Figure 5: Curves on S_2 near $h_2^{-1}(T_U)$

Figure 6: Sections and reducible fibres on $S(t_U = t_V, n_U = 2m_U, n_V = 2m_V - 1)$

67

In any case we can deduce:

where we set h = 1/(g+4). Hence the determinant of the height pairing for P_1, \ldots, P_{g+3} , $Q_1, \ldots, Q_{g+4}, R_1, \ldots, R_{g-2}, F_U^{(1)}$ and $F_V^{(1)}$ is:

4-4h	2-4h · ·	$\cdot 2-4h$	2	2	••••	2	$2 - 2h^{-1}$	2 - 2h	• • •	2 - 2h	2-2h	2-2h
2 - 4h	4-4h · ·	$\cdot 2-4h$	2	2	••••	2	2 - 2h	2-2h		2 - 2h	2-2h	2-2h
	· · ·		:	÷	•	÷						•
2-4h	$2-4h$ \cdots	$\cdot 4-4h$	2	2	•••	2	2-2h	2-2h	• • •	2-2h	2 - 2h	2-2h
2	$2 \cdots$	· 2	4	2	•••	2	2	2	••••	2	2	2
2	$2 \cdots$	· 2	2	4	•••	2	2	2	• • •	2	2	2
	•	:	:	:	· ···	:		•		:		•
2	$2 \cdots$	· 2	2	2	•••	4	2	2	• • •	2	2	2
2 - 2h	2-2h · ·	$\cdot 2-2h$	2	2	• • • •	2	3 - h	2-h	•••	2-h	2-h	2-h
2 - 2h	2-2h · ·	$\cdot 2-2h$	2	2	••••	2	2-h	3-h		2-h	2-h	2-h
	•		:	÷		÷	÷	•	•••	•	•	• •
2 - 2h	$2-2h$ \cdots	$\cdot 2-2h$	2	2	•••	2	2-h	2-h	•••	3-h	2-h	2-h
2-2h	2-2h · ·	$\cdot 2-2h$	2	2	• • •	2	2-h	2 - h	•••	2-h	$\frac{7}{2} - h - \frac{n_U}{n_U + 1}$	2 - h
2 - 2h	$2-2h$ \cdots	$\cdot 2-2h$	2	2	•••	2	2-h	2 - h		2-h	2-h	$\frac{7}{2} - h - \frac{n_V}{n_V + 1}$

which is equal to

$$2^{2g+6} \frac{\left(3 - \frac{2n_U}{n_U+1}\right)\left(3 - \frac{2n_V}{n_V+1}\right)}{g+4} \neq 0.$$

Next let us assume that $t_U \neq t_V$. Then there exist two fibres of $f: S \to B$ over each of the fibres $D_{\infty}, D_{t_U}, D_{t_V}$ of $f_1: S_1 \to \mathbf{P}^1$. Moreover the morphism $h: S \to S_1$ is of degree 4, and hence all sections $P_1, \ldots, P_{g+3}, Q_1, \ldots, Q_{g+4}, R_1, \ldots, R_{g-2}, F_U^{(1)}$ and $F_V^{(1)}$ have self-intersection number -4. From these we see that the matrix of the height pairing of the sections above is obtained from that for the case $t_U = t_V$ by multiplying every entry by 2. Thus it follows that its determinant is:

$$2^{5g+13}\frac{(3-\frac{2n_U}{n_U+1})(3-\frac{2n_V}{n_V+1})}{g+4} \neq 0.$$

Therefore we have proved:

Theorem 5.1 The rank of the Jacobian variety J of the curve Γ of genus g over $\mathbf{C}(B)$ is at least 3g + 7.

6 Rational points on the base curve.

Let us prove that the base curve B of our fibration $f: S \to B$ defined in §2 has infinitely many rational points so as to show that f induces an infinite family of curves of genus g over Q. From $\mathbf{Q}(F_U) = \mathbf{Q}(t)(u)$ and $\mathbf{Q}(F_V) = \mathbf{Q}(t)(v)$ where $u^2 = a(t - t_U)$ and $v^2 = b(t - t_V)$ for some $a, b \in \mathbf{Q}^{\times}$, we have

$$\mathbf{Q}(B) = \mathbf{Q}(u, v), \quad bu^2 - av^2 + ab(t_U - t_V) = 0.$$

Then what we need to show is that B has at least one rational point. Remember that on S_0 , D_0 meets F_U [resp. F_V] at two rational points U_1 and U_2 [resp. V_1 and V_2]. Let $(0, u_1)$ and $(0, v_1)$ be the coordinates of U_1 and V_1 on S_1 respectively. Then we have $u_1^2 = -at_U$ and $v_1^2 = -bt_V$, and so $bu_1^2 - av_1^2 + ab(t_U - t_V) = 0$, hence we are done.

For any $b \in B$, let Γ_b denote the fibre of $f: S \to B$ over b. If b is a rational point, then Γ_b is a curve defined over **Q**. Therefore, by the specialization theorem of Néron, Silverman, Tate (cf. [N1], [L], [Se]), we obtain the following:

Theorem 6.1 There exists a non-empty open subset B_0 of $B(\mathbf{Q})$ such that $\{\Gamma_b\}_{b\in B_0}$ is an infinite family of curves of genus g over \mathbf{Q} with rank at least 3g + 7.

References

[L] Lang, S.: Fundamentals of Diophantine Geometry. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo (1983).

- [N1] Néron, A.: Problèmes arithmétiques et géométriques rattachés a la notion de rang d'une courbe algébrique dans un corps. Bull. Soc. Math. France 80 (1952) 101-166.
- [N2] Néron, A.: Propriétés arithmétiques de certaines famillies de curbes algébriques.
 Proc. Int. Cong. Math., 1954, Amsterdam, vol. III 481-488.
- [Se] Serre, J-P.: Lectures on the Mordell-Weil Theorem. Vieweg, Braunschweig-Wiesbaden (1989).
- [Sh1] Shioda, T.: An infinite family of elliptic curves over **Q** with large rank via Néron's method. Invent. Math. 106 (1991) 109-119.
- [Sh2] Shioda, T.: Mordell-Weil lattices for higher genus fibration. Proc. Japan Acad.
 68A (1992) 247-250.
- [Sh3] Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. To appear in Proc. of Warwick Conference.
- [Sh4] Shioda, T.: Constructing curves with high rank via symmetry. To appear in Amer. J. Math..
- [Sh-U] Shioda, T. and Umezu, Y.: On Néron's construction of curves with high rank. Preprint.