秩序構造とSubgrid-scaleエネルギー生成機構の相関

東京工業大学工学部機械宇宙学科 堀内 潔

1. はじめに

Large eddy simulation (LES)では、計算格子にかかる以下のスケール (Subgrid scale (SGS)) の粗視化を、フィル ター操作を施すことにより行うが、格子で解像されたスケール(Grid scale)とSGS 間のエネルギー伝達は、SGS production 項

$$P_{ij} = -\tau_{ij} \overline{S}_{ij} , \tau_{ij} = \overline{u_i u_j} - \overline{u_i} \overline{u_j} , \overline{S}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right)$$
(1)

を介して行われる、LESではこの伝達の正確な予測が肝要となる.ここに、^{τ}*ii*はSGS ストレス、 \overline{u} *i*は速度 *ui*のGrid scale 成分を示す.この伝達についての過去の研究は、伝達方向が順方向(Forward scatter)のみでなく、 逆方向の伝達(Backward scatter)も顕著に生じることを示した.^[1]本研究の目的は、特にこのBackward scatterの生 成を伴う主要なSGS エネルギー生成機構を解明し、この機構を正確に予測できるSGSモデルの検証を行い、さ らに、このモデルを用いるLESを行うことにより、この機構の動的な解析を行う点にある.

2. SGS エネルギー生成機構の抽出

本研究では、非圧縮性チャネル流のDNSデータ(壁面摩擦速度とチャネル半幅に基づいたレイノルズ数を 180とし、x, y, z 方向に、各々、128, 129, 128 の格子点を用いた)のX-Zの一様な2方向にGaussianフィルターを施し、32 x 129 x 32 の格子点数のLESデータを生成した.このデータから、 $\tau_{ij} \ge P_{ij}$ 項の厳密値を算出した.

図1、2は、各々 P_{ij} 項の平均値とroot-mean square (rms)値のy分布を示す. 図中には、Grid scale 速度の変動成分によるSGS production 項

$$P_{ij}^{*} = -\tau_{ij} \left(\overline{S}_{ij} - \langle \overline{S}_{ij} \rangle \right)$$
⁽²⁾

のi=1, j=2 成分の分布も含めた.ここに、〈〉は、X-Z平面内の平均を示す. P_{ij} 項の平均値では、 P_{12} 項が 最も大きい値を示すが、変動成分によるproduction 項 P_{12}^{*} の値は減少し、 P_{12} 項中では、平均速度の勾配によ る成分が主要であることがわかる. P_{11} の平均値は壁近傍で負値となり、平均としても、Backward scatterとな っていることがわかる. rms 値の分布においては、 P_{11} 項が最大となっており、空間的に大きな変動をしてい ることがわかるが、 P_{12} 項の変動は比較的小さい. ^[2]

図3は、 P_{ij} 項をForwardとBackward scatter に分離した平均値を示すが、 P_{11} 項では、ほぼ等分に両scatter

図3 Forward とBackward scatter項の面平均値のv分布

が生じていることがわかり、それらの総和は、壁近傍では負となっており、顕著なBackward scatter は、 P_{11} 項において生成されていることが見てとれる.したがって、本研究では、主要なSGS エネルギー生成機構の抽出を P_{11} 項の解析に基いて行う.同時に、この解析により、Backward scatter 生成を伴う機構の抽出も行える. 図3は、顕著なBackward scatter が $y_+ \sim 12$ で起きることを示しているため、抽出は $y_+ = 12$ の*X-Z* 平面において行った.DNSデータの解析から、大きな強度をもつ P_{11} 項が生じる事象の数は、単一時間ステップあたり、10程度であることがわかった.このため、こうした事象の十分なアンサンブル平均を取るため、十分間隔を隔てた10時刻のデータにたいし、VISA (Variable-interval spatial-averaging) 法^[3]を適用した.VISA法においては、Forward scatterを伴う事象は、

$$T(p_t) = \int_{p_t}^{+} f P(f) \, df \, / \, \int_{-}^{+} \left| f P(f) \right| \, df$$

において $T(p_i) = 0.1$ となるような p_i をしきい値として選択した.ここに、P(f) は、 P_{11} のProbability density を示す. 同様に、Backward scatterを伴う事象は、

$$T(p_t) = \int_{-}^{p_t} f P(f) df / \int_{-}^{+} |f P(f)| df$$

において $T(p_t) = -0.1$ として抽出した.これらの事象が抽出されると、全ての速度場を、事象の抽出点が $y_{+}=$ 1 2 の*X-Z* 平面の中央になるよう移動し、全ての事象の重ね合せを行った.^[3]

図4は、こうして抽出されたBackward scatter事象の重ね合せを示すが、中央の Backward scatterが生成されている領域の 周囲に、Forward scatterの領域が存在し ていることが見てとれる.(以下、実線 は正値を点線は負値を表す.)こうした 分布は、Forward とBackward scatterが図 5のように、四重極状に分布している ことを仮定すれば、整合的に説明できる.^[1]

図6は、渦度ベクトルの、下流方向成分(ω_x)、および、壁に垂直な方向の成分(ω_y)の成す角度 θ の $y_{+}=12$ の*X-Z*平面におけるヒストグラムを示すが、 $\theta =\pm 90$ に集中しており、主要な渦は壁面に垂直 に分布していることがわかる.そこで、前述のVISA法により抽出された大きなForward scatterを生じる事象に 伴う^{ω_y}を、同様に重ね合せることにより、図5のような四重極状のSGS エネルギー生成機構に伴う渦構造を 抽出したのが、図7である.図5の第2象現と第4象現に存在するForward scatterを重複して重ね合せるため、

X およびZ 方向に位相のずれた2つの ω_y が重ね合されているが、その断面は楕円形状であること、および、 正符号の ω_y の両側に負符号の ω_y が存在していることがわかる. 同様に抽出された速度場も、位相のずれた2 つの速度場が重ね合されている.

そこで、こうした重ね合せの除去のために、まづ、2つの変数fとgの空間2点相関関数

$$Q_{fg}(r) = \int f(x') g(x' + r) dx'$$

を算出する.次に、この2点相関関数とfのConvolution

$$G(x) = \int Q_{fg}(r) f(x'-r) dr = \int dk \int dk' \int dk'' \widetilde{g}(k) \widetilde{f}(k') \widetilde{f}(k'') \delta(k-k') \delta(k+k'') e^{ikx} - \int dk' |\widetilde{f}(k)|^2 \widetilde{g}(k) e^{ikx}$$

を算出する.このConvolutionは、上式最終項にみるとおり近似的に gのフーリエ変換となっており、定性的にはgの抽出を行える.

こうして得られたForward scatterを伴う⁽⁰⁾yの分布を図8に示すが、壁面近傍のストリーク構造に沿って、 Kelvin-Helmholtz型の不安定性により、局所的に大きな強度をもつ⁽⁰⁾yが形成されていることがわかり、この渦 に沿って顕著なForwardとBackward scatterの生成が起きている.なお、図8に示した⁽⁰⁾yは、 $y_+ \sim 60$ 程度ま で相似な楕円状の形状で分布している.この2次元性を利用して、 $y_+ = 12$ の*X-Z*平面における⁽⁰⁾yから得 られた流れ関数の分布を求めたが、⁽⁰⁾yが楕円断面を有しているため、図9に示したとおり、流れ関数と⁽⁰⁾yの 分布には差異が生じ、強い非線形性を示している.こうした楕円形状の渦は、混合層流におけるbraid 領域の rib 渦についても見い出されている.^[1]こうした統計平均により抽出された渦構造が、必ずしも1つ1つの realization において観察される訳ではない点には注意しなければならないが、平均としても楕円形状が検出さ れることから、各々の事象も楕円に近い断面形状を有していると考えられる.

図9 流れ関数の等高線図

3. 一般化スケール相似則モデル

本節においては、前節で抽出された顕著なForward とBackward scatterの生成を伴う構造の高精度予測が可能 なSGSモデルについて検討する.

Horiuti^[5]は、一般化スケール相似則モデル
$$\overline{fg} - \overline{fg} \sim C\left(\overline{fg} - \overline{fg}\right)$$

を提案し、 τ_{ij} のGermano^[6]による分解に基いて、Modified cross term C_{ij}^{m} を、

$$C_{ij}^{m} \sim C_{C} \left\{ \left(\overline{\overline{u_{i}} u_{j}} + \overline{u_{i}} \overline{\overline{u_{j}}} \right) - \left(\overline{\overline{u_{i}} u_{j}} + \overline{u_{i}} \overline{\overline{u_{j}}} \right) \right\}$$

Modified SGS Reynolds stress $R_{ij}^{\mu} \notin$

$$R_{ij}^{m} \sim C_{B} L_{ij}^{R}, \quad L_{ij}^{R} = \left\{ \overline{(\overline{u_{i}} - \overline{\overline{u_{i}}})(\overline{u_{j}} - \overline{\overline{u_{j}}})} - \overline{(\overline{u_{i}} - \overline{\overline{u_{i}}})} \right\}$$

と近似するモデルを提案した.したがって、このモデルでは τi は

$$\tau_{ij} \sim C_L \left[\left(\overline{\overline{u_i u_j}} - \overline{\overline{u_i}} \, \overline{\overline{u_j}} \right) - \left(\overline{\overline{\overline{u_i u_j}}} - \overline{\overline{\overline{u_i}}} \, \overline{\overline{\overline{u_j}}} \right) \right] + C_B L_{ij}^R$$

と近似される. Ciff 項のモデルは、

$$C_{ij}^{m} \sim C_{C} \left\{ L_{ij}^{C} - L_{ij}^{R} \right\}, \ L_{ij}^{C} = L_{ij}^{m} - \left(\overline{\overline{u}_{i}\overline{u}_{j}} - \overline{\overline{u}_{i}} \, \overline{\overline{u}_{j}}\right)$$

となり、 L_{ij}^{R} 項の係数は負となる. このモデルとSmagorinsky モデルを線形結合したモデル (Dynamic threeparameter mixed model)の部分集合として、Dynamic Smagorinsky モデル (DSM)^[7]、Dynamic mixed model (DMM)、 Salvetti *et al.*^[8]によるDynamic two-parameter mixed model (DTM $C_L - C_S$)、および、DTM $C_B - C_S$ ^[5]

$$\tau_{ij} \sim L_{ij}^m + C_B L_{ij}^R - 2 C_S \Delta^2 |\overline{S}| \overline{S}_{ij}$$

が得られる.

本研究では、これらのモデルをより統一的に解釈するため、以下のような一般化スケール相似則モデルを考 える.上記のモデルは、 $\tau_{ij} = \overline{u_i u_j} - \overline{u_i u_j}$ において、 u_i を下記のように近似し代入することにより直接 的に得られる.

$$\begin{array}{lll} u_i \rightarrow & \overline{u}_i & \vdots \tau_{ij} \sim & (\overline{\overline{u}_i \overline{u}_j} - \overline{\overline{u}_i} \ \overline{\overline{u}_j}) & (\text{DMM}) \\ u_i \rightarrow & \sqrt{C_L} \ \overline{u}_i & \vdots \tau_{ij} \sim & C_L \left(\overline{\overline{u}_i \overline{u}_j} - \overline{\overline{u}_i} \ \overline{\overline{u}_j} \right) & (C_L - C_S \text{ model}) \end{array}$$

 $u_i \rightarrow \overline{u_i} + \sqrt{C_B u_i} : \tau_{ij} \sim L_{ij}^m + C_B L_{ij}^R \qquad (C_B - C_S \text{ model})$

上記3モデルの比較から、DMMにおいては、SGS 成分 u_i の近似が全く行われていないこと、 C_L - C_S モデルにおいては、SGS 成分 u_i が $\overline{u_i}$ に比例すると仮定されていることが見てとれる. このモデルにおいては、 τ_{ij} の分解は直接おこなっていないが、 C_B - C_S モデルに対応する代入において、Modified cross term C_i^m に 相当する項は、

$$C_{ij}^{m} \sim \sqrt{C_B} \left\{ L_{ij}^{C} + L_{ij}^{R} \right\}$$

と近似され、 L_{ij}^{R} 項の係数は正となる。 C_{ij}^{m} と L_{ij}^{K} 項が高い正の相関を有することを考慮すると、このモデル 化が従来のモデルより適切と考えられる。ただし、 C_{B} - C_{S} モデルの導出に関しては、変更を生じない。

ここで、一般化スケール相似則モデルの、前節で得られたForward とBackward scatterの生成を伴う機構の予測 精度を検証する.このため、前節のConvolution により得られた速度場を各モデルに代入し、⁷*i* を得た上で

 $\mathbf{230}$

- 図10 P₁₁項の厳密値の等高線図
- 図11 P 11 項の CB Cs モデルによる予測値

 P_{11} 項を算出する.図10、11は、各々、DNSの厳密値と $C_B - C_S$ モデルによる予測値の、 $y_{+}= 12$ の *x-z*平面における P_{11} 項の分布を示すが、Forward とBackward scatterが隣接して存在する構造がよく再現されている.

そこで、こうした構造の動的な発展を解析す るため、 $C_B - C_S$ モデルによるLES計算を行っ た.上述のConvolutionにより得られた速度場に 平均速度を重ね合せ初期条件を与えた.図12 は、壁面摩擦速度の時間変化を示す.比較のた め、Forward scatterが支配的でBackward scatter をあまり伴わないP 12 項において、顕著な Forward scatterを生成する事象の、上述と同一の 方法による抽出から得られた速度場を初期条件 としたLESの結果を示した.P 12 項に基いた場 合が、比較的はやく定常状態に達するのにたい

し、 P_{11} 項に基いた場合の定常状態への漸近はおそい. これは、 P_{11} 項に基いた場合が顕著なBackward scatter を伴うためと考えられる.

図13および14は、各々、 P_{11} 項および P_{12} 項に基いた場合の、初期条件の全SGS production 項のヒストグラムを示す。 P_{11} 項の場合、 P_{12} 項の場合に比較してBackward scatterの占める割合が大きい. 図15および16に示した = 0.2 における各々 P_{11} 項および P_{12} 項に基いた場合のヒストグラムにみるとおり、時間が経過するにつれ、全SGS production項のヒストグラムは相似な分布に漸近する.

図13 SGS production 項のヒストグラム

図14 SGS production 項のヒストグラム

4. Filter 関数とスケール相似則モデルの整合性

ー般に、スケール相似則モデルは、SGS応力の近似精度の高いモデルであることが知られている.本節では、 この原因を探る. Gaussian あるいはTop-hat filter のような実空間で局所的なsupportをもつ関数によるフィルタ ー操作を施した場合、Grid scale と重複するSGS成分が存在し、SGS成分 u_i は、resolved 成分 $u_i'^{<}$ と unresolved 成分 $u_i'^{>}$

$$u'_{i} = u'_{i} + u'_{i}$$

$$u'_{i} : \hat{u}_{i} (k) \text{ for } k_{x} \text{ and } k_{z} < \pi / \Delta$$

$$u'_{i} : \hat{u}_{i} (k) \text{ for } k_{x} \text{ or } k_{z} > \pi / \Delta$$

に分解できる. ここに、 $\hat{u_i}'(k)$ は、 u_i' のFourier 空間での値を示す. この分解をSGS Reynolds stress 項に代入すると、

$$\overline{u_i'u_j'} = \overline{u_i' < u_j' <} + \overline{u_i' < u_j' >} + u_i' > u_j' <} + \overline{u_i' > u_j' >}$$

の3項に分解できる.表1は、各項の $u_i u_j$ 全体にたいする相関係数 (C.C.) 、平均値の比 (Rave) およ びrms値の比 (Rrms) を示す.この表から、第1項のresolved 成分同士の相関が支配的であることがみてとれ る.したがって、この場合resolved 成分の正確な近似がモデルを構成する上で重要である.表2の各項とスケ ール相似則モデル (Bardina およびFiltered-Bardinaモデル^[1]) による近似値の相関係数は、特に第1項で高い

	$\overline{u_i' < u_j' <}$			$\overline{u_i' < u_j' > + u_i' > u_j' <}$			$\overline{u_i'} u_j'$		
(i,j)	C.C.	Rave	Rrms	C.C.	Rave	Rrms	C.C.	Rave	Rrms
(1,1)	0.89	0.74	0.69	0.53	0.	0.31	0.82	0.26	0.27
(1,2)	0.84	0.92	0.72	0.53	0.	0.41	0.41	0.084	0.33
(2,2)	0.87	0.62	0.54	0.57	0.	0.34	0.83	0.38	0.39
(3,3)	0.87	0.71	0.65	0.54	0.	0.33	0.77	0.29	0.32

表1 各項の全体に	たいする相関係数	(C.C.) 、	平均値の比	(Rave)	およびrms値の比	(Rrms)
-----------	----------	----------	-------	--------	-----------	--------

	ū	i' <uj'<< th=""><th>$\overline{u_i' < u_j'}$</th><th>$+ u_i' + u_j' <$</th><th colspan="3">$\overline{u_i'^{}} u_j'^{}$</th></uj'<<>	$\overline{u_i' < u_j'}$	$+ u_i' + u_j' <$	$\overline{u_i'^{}} u_j'^{}$		
(i,j)	Bardina	Filtered-Bardina	Bardina	Filtered-Bardina	Bardina	Filtered-Bardina	
(1,1)	0.79	0.93	0.097	0.12	0.41	0.55	
(1,2)	0.76	0.90	0.047	0.051	- 0.033	- 0.043	
(2.2)	0.75	0.92	0.084	0.14	0.33	0.47	
(3,3)	0.76	0.91	0.10	0.14	0.28	0.42	

表2 各項とBardina およびFiltered-Bardinaモデルによる近似値の相関係数

値を示している. 同様な結果は、Top-hat filter を用いても得られた. 以上の結果は、スケール相似則モデルが Gaussian あるいはTop-hat filter と整合していることを示すと共に、その高精度性の理由を与える. また、2節 に示した顕著なBackward scatter が生成される原因も示唆する.

ところで、この結果は、SGS成分 u_i のうちresolved 成分 $u_i'^{<}$ を正確に近似できれば、より正確なスケール 相似則モデルを導出できる可能性を示唆する.その一つの方法は、 $\overline{u_i}$ にたいしDe-filter を行うモデル (De-filtered model)

$$u_i \sim \sqrt{C_D} \ G^{-1}(\overline{u_i}) = \sqrt{C_D} \ u_i^{<} : \tau_{ij} \sim C_D \left(\overline{u_i^{<} u_j^{<}} - \overline{u_i^{<} u_j^{<}} \right)$$

である.ここに、 C_D はモデル定数で、SGSも含めた全成分を近似するため、1以上の定数である.Shah and Ferziger ^[10]は、こうした考え方に基き、Top-hat filter を差分法により定義しDe-filter を行うモデルを提案した. Geurts^[11]は、より厳密なDe-filter の方法を提案した.本研究では、Gaussian filter により厳密にDe-filter を施し た上で、Smagorinsky モデルを付加し、定数 $C_D \geq C_S$ をDynamic に決定するモデルを考える.

 $C_B - C_S モデルとの比較を行うと、 <math>C_B - C_S \in \mathcal{F}$ ルでは SGS成分 u_i の近似を $u_i \sim \overline{u_i} = (\overline{u_i} - \overline{u_i})$ と近 似しているのにたいし、De-filtered modelでは、 $u_i \sim u_i \leq u_i = (u_i - \overline{u_i})$ と近似している. Taylor 展開を用いた場合、両者の初項は係数を除き同一となり、SGS成分の類似な近似となっていると考えられる.

図17は、チャネル流において、モデルにより得られた、GS、 T_{12} 、および、粘性項を含めた全 Reynolds shear stress の面平均値のy分布を示すが、 C_L - C_S モデルによる近似値は、厳密値に比べ過小な予測を与える が、 C_B - C_S モデルは、厳密値と良い一致を与える. これにたいし、De-filtered modelの結果は、壁面近傍では 厳密値と一致するものの、壁から離れると C_L - C_S モデルよりも過小な予測を与える.

壁近傍での C_D の面平均値は約0.8、ms値は約1.6、壁から離れた位置での C_D の平均値は約1.0、 ms値は約0.7、 $\sqrt{C_S}$ の面平均値は約0.28、ms値は約0.5となった. C_S の値は、 C_B - C_S モデル における値よりもかなり大きく、Smagorinsky モデルの占める割合は、De-filtered modelによる値の約2/3と なった.また、平均値に比べrms値がかなり大きく、図17のDe-filtered modelの結果にみるとおり、細かな振 動を見せており、Reynolds stressも空間的に大きな変動を示した.

De-filtered modelの精度は、 $C_B - C_S \in \mathcal{F}$ ルに 比べ必ずしも高くないが、この主要な原因は、 Filterを施した速度場が滑らかに変動するのにた いしDe-filterを施した速度場では、変動が大き くなるためと考えられる.実際のLES 計算への 適用を考えると、一般のLESにおいては、高波 数成分の計算精度は低いため、De-filtered model の欠点は、より顕著になるものと考えられ、De -filtered modelの実用的な利用可能性には疑問が 残る.このため、SGS成分の近似には、 $C_B - C_S$ モデルで採用された ($\overline{u_i} - \overline{u_i}$) 項によるFiltered

図17 全 Reynolds shear stress面平均値のy分布

field の情報を利用する方が有利と考えられる. ただし、De-filtered modelの低精度性のもう一つの原因として、 このモデルでは Cutoff filter を利用して Test field を定義する必要があるため、定数をDynamic に決める際、 Vreman *et al.* ^[12]による定式化を用いたこともあげられる.

5. まとめ

Grid scale とSGS 間のエネルギー伝達の解析を行い、特に、Backward scatterを伴う構造について解析し、こう

した構造を高精度に予測可能なSGS モデルの検証を行った.

まず、チャネル流DNSデータを用いて、SGS エネルギー生成項の厳密値を計算し、Grid scale とSGS 間のエ ネルギー伝達においては、総和としてはForward scatter が支配的なものの、Grid scale の変動成分とSGS 間のエ ネルギー伝達においては顕著なBackward scatterが生じ、特に i=1、 j=1 成分の生成項において著しいことを示し た. 次に、このBackward scatter の生成と壁面に垂直な渦構造が高い相関をもつこと、および、この渦に沿って Forward とBackward scatter が四重極状に隣り合せて生成されることを示した. さらに、VISA法を用いて平均的 な描象として、Backward scatter の生成を伴う構造を抽出し、この構造が、壁面近傍のストリーク構造に沿って 局所的に発生する楕円断面をもつ垂直渦であることを示した.

この垂直渦とこれによるSGS エネルギーの生成機構のSGS モデルによる予測可能性を検証し、一般化スケール相似則モデル、特に、 *C_B* - *C_S* モデル^[5]が高精度であることを示し、このモデルを用いて、上述の渦構造の時間発展の動的な解析を行った.

さらに、スケール相似則モデルが一般に高精度である原因を探り、SGS成分中、格子で解像されたスケール の成分の重要性を指摘し、Filter 関数との整合性を検証した。

本研究の一部は、文部省科学研究費重点領域研究(1)(No. 05240108)によった.ここに記して謝意を表す.

参考文献

[1]K. Horiuti, J. Phys. Soc. Japan, 66, 91 (1997)

[2]K. Horiuti, Annual Research Briefs 1996, Center for Turbulence Research, Stanford University, 211-224 (1996).

[3]U. Piomelli, Y. Yunfang and R.J. Adrian, Phys. Fluids 8, 215 (1996).

[4]K. Horiuti, Proc. of International Symposium on Mathematical Modelling of Turbulent Flows, Tokyo, 164-169 (1995).

[5]K. Horiuti, Phys. Fluids 9, 3443 (1997).

[6]M. Germano, Phys. Fluids 29, 2323 (1986).

[7]M. Germano, U. Piomelli, P. Moin and W.H. Cabot, Phys. Fluids A 3, 1760 (1991).

[8]Y. Zang, R.L. Street and J. Koseff, Phys. Fluids A 5, 3186 (1993).

[9]M.V. Salvetti and S. Banerjee, Phys. Fluids 7, 2831 (1995).

[10]K.B. Shah and J. H. Ferziger, Proc. of the 11th Turbulent Shear Flows Symposium, 16.1-16.6 (1997).

[11]B.J. Geurts, Phys. Fluids 9, 3585 (1997).

[12]B. Vreman, B. Geurts, H. Kuerten, Phys. Fluids 6, 4057 (1994).