goooboooobgon
1054 0 1998 O 66-70 66

EREEICLI2REBYMOAESHEN
— BOLTEHATRIRE/ARTOSTSLIZDOVNT—

F HEFZ 8
A AKRFEXEERICARER
T 156 FRIERH H A XKk FK 3-25-40
03-3329-1151 / toda@math.chs.nihon-u.ac.jp

HSEL MR [Bar89] I23 T, Barrington 1%, B¥kd OEEOREEME 5 KOZMREED L THETS
EX40DFE/ A F7Ol T ML THEBTESZEEZRLE. &6IT, ZORBROIIRE LT, £EDHF
AR Gt L TCHRBEORENE VIO EER LTS, 2EL, ZOLEDE/ A FFRT T L0
EX Tz, @G)DUHTR-TWE. ABTIE, EEOFKAMEICONTS s RORREDOLEGLE
CRICHERBROIDZ L HBRARB. 61, B IERXIEN] BT/ A K077 205ERNCET
AHBOBRAETRLTNWAZEEBRRS.

F—0—F HEEEHK, 4— v B, EHISE RERE B E/AF

Complexity Analysis of Boolean Functions via Regular Languages

Some observations on M-Programs over Groups

Seinosuke TODA
Department of Applied Mathematics,

College of Humanities and Science, NTHON University
3-25-40 Sakurajyosui, Setagaya-ku, Tokyo 156
03-3329-1151 / toda@math.chs.nihon-u.ac.jp

Abstract In a seminal paper, Barrington [Bar89] showed a lovely result that a Boolean circuit of depth
d can be simulated by an M-program of length at most 4% working over the alternating group of degree
five. He further showed that, for all nonsolvable groups G, a Boolean circuit of depth d can be simulated
by an M-program of length at most (4/G|)¢ working over G. In this note, we improve the upper bound
on the length from (4/G|)? to 4¢. We further observe that the “nonnilpotent” notion of groups precisely
exhibits a boundary on whether M-programs can compute any Boolean functions.

keywords computational complexity theory, automaton theory, Boolean function, group, monoid

1. Preliminaries

We assume that the readers are familiar with
Boolean circuits. We only note that our circuits
consist of NOT-gates, AND-gates with fan-in
two, OR-gates with fan-in two, and input gates
with each of which a Boolean variable is associ-
ated. In this section, we first give the definition
of M-programs over groups.

Definition 1.1. Let G be a group-and n a pos-
itive integer. We define a monoid-instruction(an
M-instruction for short) « over G to be a three-
tuple (i,a,b) where 7 is a positive integer, and
both a and b are elements in G. We define an
monoid-program(M-program for short) P over G
to be a finite sequence (i1, a1, b1), (42, ag, b2), . . .,
(ik, ak, bx) of M-instructions over G. For this M-
program P, we call the number of M-instructions
the length of P and denote it with ¢(P). Fur-
thermore, we call the maximum value among
11,1%9,...,1% the input size of P and denote it
with n(P).

We suppose any M-program P to compute
a Boolean function in the following manner.
Let n be the input size of P and let ¥ =
(r1,Ta,. .. ,9:,;) € {0,1}"™ be a vector of Boolean
values that is given as an input to P. Then,
we define the walue of an M-instruction v; =
(45,a4,b5) in P, denoted by v;(£), as follows:

) aj if:rj =0
_’)’](.’E) - { bj if Zj =1

We further define the value P(Z) of the M-
Y1(Z)72(F) - - W (E).
Then we say that P computes a Boolean func-
tion f : {0,1}" — {0,1} if, for all Z € {0, 1}",
if f(Z) = 0, then P(Z) = eg, and otherwise,
P(Z) # eg, where eg denotes the identity ele-
ment of G. _ "

program P by P(Z) =

We further assume that the readers are fa-
miliar with elementary notions in group theory.

67

Thus, we only give a breif definition for the no-
tions of solvable/nonsolvable groups and nilpo-
tent /nonnilpotent groups.

Definition 1.2. Let G be any finite group. For
any two elements a,b of G, we define the com-
mutator of a and b to be the element represented
as a~!b7!ab and denote it by [a,b]. We further
define the commutator subgroup of G to be the
subgroup of G generated by all commutators in
G, and we denote it by D(G).

Then, we inductively define D;(G), for all in-
tegers ¢ > 0, as follows: Dy(G) = G, and for
all ¢ > 1, Dy(G) = D(D;—1(G)). We say that
G is solvable if D;(G) = {eg} for some i > 0,
where ec denotes the identity element of G. If
G is not solvable, we say that it is nonsolvable.
It is easy to show that D;11(G) is a subgroup of
D;i(G) for all 4 > 0. Hence, we see that, for all
finite groups G, G is nonsolvable if and only if
there exists a subgroup H such that H # {ec}
and H = D(H). We will use this fact later.

We further define FE;(G) indeuctively as fol-
lows: Ey(G) = G, and for all ¢+ > 1, E;(G) is
a subgroup of G that is generated by all ele-
ments in {[g, a] 9 € G,a € E,_1(G)}. We
say that G is nilpotent if E;(G) = {eg} for some
1 > 0, where e denotes the identity element of
G. Otherwise, we say it to be nonnilpotent. It is
obvious that D;(G) is a subset of E;(G) for all
1 > 0. Thus, we see that all nilpotent groups are
solvable. P’

2. On nonsolvable groups

To show our result, we use the following lem-
mas. The first lemma was implicitly used by
Barrington in order to show that for all circuits
C of depth d, the Boolean function computed by
C can be computed by an M-program of length
at most 4% working over the alternating group
of degree 5.)

Lemma 2.1. Let G be a finite group and let eg

be the identity element of G. Suppose that there

exists a subset W of G satisfying the following
two conditions:

(&) W # {ech,

(b) for all elements w € W, there are two
elements a,b € W with w = [a, b].

and

Then, for an arbitrary element w € W and all
Boolean circuits C of depth d, there exists an M-
program P, over G that satisfies the conditions
below. '
(1) P, is of length at most 4% and is of
the same input size as C.
(2) For all inputs Z € {0,1}" where n
is the input size of both C and Py,
Py, (%) = eg if C(£) = 0, and P, (%) =
w otherwise.
Proof. We show this lemma by an induction
on the depth of a given circuit C. When the
depth of C is 1 (that is, the Boolean function

computed by C is either an identity function or

its negation), it is obvious that an M-program
consisting of single M-instruction computes the
same function. Thus we have the lemma in this
case. v

Now assume, for some d > 1, that we have the
lemma for all Boolean circuits of depth at most
d — 1 and all elements w € W. Suppose further
that C is of depth d, it is of input size n, and
g is the output gate of C. We below consider
three cases according to the type of the gate g.

Suppose g is a NOT-gate. Let h be a unique
gate that gives an input value to g and let Cj, de-
note the subcircuit of C whose output gate is h.
Note that C}, is of depth at most d—1. Then, by
inductive hypothesis, there exists an M-program
Q. that satisfies the following conditions.

(3) Qu is of length at most 4! and is of
input size at most n.

(4) For all inputs Z € {0,1}", Qu(Z) =
ec if Ch(Z) =0, and Qy(Z) = w oth-
erwise.

From this Q,,, we construct an M-program @,,-1
such that:

68

(5) Q-1 is of length at most 4%~ and is
of input size atmost n, and
(6) for all inputs Z € {0,1}", Q,-1(%) =
eg if Ch(f) =0, and Qw~1(f) =w!
otherwise.
To construct Q,-1, we may first replace each
M-instruction (ij,aj,b;) by (ij,ajTl bj_l) and
may further reverse the sequence of those M-
instructions. Finally, we define P, to be
an M-program obtained from Q-1 by replac-
ing its first M-instruction, say (1, c1,d1), with
(i1, wer,wdy). Then, we can easily see that P,
is of length at most 44~! and hence satisfies the
conditions (1). We can further see that P, sat-
isfies the condition (2) above from its definition.

Suppose next that g is an AND-gate (with fan-
in two). Let hy and hy are gates of C that give
input values to g, and let C; and C; denote the
subcircuits of C' whose output gates are h; and
ho respectively. Furthermore, let a and b be el-
ements of W such that w = [a, b]. Note that C}
and Cy are of depth at most d — 1. Then, by
inductive hypothesis, we have two M-programs
Q. and @ such that:

(7) both Q, gand Qp are of length at
most 4%~ and they are of input size
at most n, and

(8-1) for all inputs Z € {0,1}", Q.(%) =
eq if C1(Z) = 0, and Q,(Z) = a oth-
erwise, and

(8-2) for all inputs £ € {0,1}", Qy(Z) =
eg if C2(Z) = 0, and Qp(Z) = b oth-
erwise.

Then, we define Py, by Py = Qa-1, Qp-1, Qa, @b,
where @Q,-1 and Q-1 denote M-programs ob-
tained from @, and Q,, respectively, by using
the same method as mentioned in the previous
paragraph. It is not difficult to see that P, sat-
isfies the conditions (1) and (2) above. Thus we
have the lemma in this case.

Suppose g is an OR-gate. In this case, we can
obtain a desired M-program by using De Mor-
gan’s Law and the technique mentioned above.

We leave the detail to the reader. &

From this lemma, we may show that any finite
nonsolvable group has a subset W satisfying the
conditions (a) and (b) mentioned above. In fact,
we will show that the conditions exactly charad-
cterize the nonsolvability of groups.

The following lemma is obtained by a simple
calculation.

Lemma 2.2. Let G be any finite group and let
a,b,c be any elements in G. Then, we have the
following equations.

(1) ¢ a,blc = [c"tac,c™ b

(2) [ab,c] = b~ [a,c]blb,c].

(3) [a,bc] = la, blc. '

[a,c]c™

By using the above equations repeatedly, we
can easily obtain the following lemma. We leave
the detailed proof to the reader.

Lemma 2.3. Let G be any finite group, let V
be a subset of G such that V = Uycgg™'Vy,
by, be any elements of

and let ay,...,ak, b1,...,

V. Then, the commutator [a; - - - ak, b1 - - - bry] is
represented as a product of commutators of ele-

ments in V. 'y

Lemma 2.4. For all finite groups G, G is non-
solvable if and only if G satisfies the conditions
(a) and (b) mentioned in Lemma 2.1, that is,
there exists a subset W of G such that:
(a) W # {ec} where eg denotes the iden-
tity element of G,
(b) for all elements w € W, there are two
elements a,b € W with w = [a, b].
Proof. Suppose that there exists a subset W
of G satisfing (a) and (b) above. Then, it is
wasy to see, from (b) above and the definition of
D;(G), that W is a subset of D;(G) for all « > 0.
Combining this with (b) 'above, we have D;(G)
{eg} for all 7 > 0. Hence G is nonsolvable.
Conversely, suppose that G is nonsolvable.
Let H be a subgroup of G satisfying that H #

and

69

{ec} and H = D(H).
exists since G is nonsolvable.
S be a subset of H that generates H, and let
us define U by U = Ugeq g 1Sg. Then, we in-
ductively define a subset V; of G, for all integers

Such a subgroup surely
Furthermore, let

1> O; as follows.

VWw=U, Viy1={ab : a,beV;} (i>0).

We below show, by induction on ¢, that for
each i > 0,
(i) Vi= UgeGg Vtgy
(ii) V; generates H.
From the definition of U = V}, it is obvious that
Vo satisfies (i). Moreover, Vj generates H since

and

it includes all elements in S = e&lSeg. Assume
V; satisfies (i) and (ii). Since H = D(H), each
element h in H is represented as a product, say
[hl,l, h1)2][h2,1, hgyg] KX [hk,l,‘hk,2], of commuta-
tors of elements of H. Moreover, since V; gen-
erates H, each h;; is represented as a prod-
uct of elements in V;. Hence, the element h
is represented as a product of elements of the
.by] where each a; and each

form [a; -+ ag, by ..

b; are elements in V;. Then, from Lemma 2.3
and the inductive hypothesis that V; generates
H, we have that h is represented as a product
of elements in V;y;. Thus V41 generates H.
From Lemma 2.2(1) and the inductive hypothe-
sis, it follows that V;; satisfies the condition (i)
above.

Since each V; is a subset of G which is finite,
there exists two integers 4,7 > 0 such that ¢ < j
and V; = V;. Then, we define a desired set w
by W = Uf;ﬁ Vi. Since H # {eg} and each
V; generates H, we have W # {eg}. Moreover,
from the definitions of each V; and W, we see
that for all w € W, there are two elements a,b
in W such that w = [a,b)].

lemma. A

Thus we have the

Combining Lemma 2.4 with Lemma 2.1, we
immediately obtain the following theorem:.

Thoerem 2.5. Let G be any finite nonsolvable
group and C any circuit of depth d. Then, the

Boolean function computed by C is computed
by an M-program over G of length at most 4%.

3
3. On nonnilpotent groups

It was shown in [BST90] that for all finite
nilpotent groups G and some integer ng > 0,
no M-program over G can compute the con-
junction of n Boolean variables for all n > ng.
Furthermore, it was shown in the same paper
that for any finite nonnilpotent group G and all
Boolean functions f, an M-program over G can
compute f. These two results intuitively tell us
that the “nonnilpotent” notion privides us with
a boundary on whether M-programs over groups
can compute any Boolean functions. We below
observe this more precisely in a slightly strength-
ened form.

Theorem 3.1.
tent group, let w be any element in G, and let f

Let G be any finite nonnilpo-

be any Boolean funtion with n input variables.
Then, there exists an M-program P, that com-
putes f and is of length at most 3 - 22772 — 27,

e

4. Concluding Remarks

In [CLY94], Cai and Lipton imporved Barring-
ton’s result on the alternating group of degree
5. They showed that any circuit of depth d can
be simulated by an M-program over the group
of length at most 2°¢ where A\ = 1.81.... How-
ever, it is unknown whether their result holds
for all nonsolvable groups. They further showed
a lower bound on the length of M-programs over
groups: for any group G and any M-program
P over G, if P computes the conjunction of n
Boolean variables , then it must be of length at
least Q(nloglogn). Hence, any M-program over
any group simulating a circuit of depth d must
have length asymptotically greater than 2¢.

70

In [Cle90], Cleve showed that for any con-
stant € > 0, a circuit of depth d can be sim-
ulated by a bounded-width branching program
of length 2(119)4, It would be interesting to ask
whether the same result holds for M-programs
Over groups.

References
[Bar89] D.A.Barrington: Bounded-width

polynomial-size branching programs
recognize exactly those languages in
NCL, J. of Computer and System Sci-
ences 38, 150-164, 1989. =

[BST90] D.A.Barrington,

H.Straubing and D.Thérien: Non-
uniform Automata over Groups, In-
formation and Computation 89, 109-
132, 1990.

[BT88] D.A.Barrington and D.Thérien:
Finite Monoids and Fine Structure of
NC!, JACM 35, 1988.

[Cle90] R.Cleve: Towards optmal simula-
tions of formulas by bounded-width
branching programs, in Proc. of the
22th STOC, 271-277, 1990

[CL94] Jin-Yi Cai and R.J.Lipton: Sub-
quadratic simulations of balanced for-
mulae by branching programs, SIAM
J. on Computing 23, 563-572, 1994.

ST88 H.Straubing and D.Thérien: Finite
Automata and Computational Com-
plexity, Lecture Notes in Computer
Science 386, Springer-Verlag, 199-
233, 1988.

