0000000000
1057 0 1998 0 120-124 120

Varieties of modules and p-blocks of finite
groups |

Akihiko Hida (FRHE BIE)
Faculty of Education
Saitama University

1 Introduction

Let G be a finite group and k an algebraicaly closed field of characteristic
p > 0. For a finitely generated kG-module M, we denote the closed subvariety
of Vg(k) defined by the annihilator of Exty;(M, M) in H*(G, k) by Vg(M),
where Vg(k) is the maximal ideal spectrum of the cohomology ring H* (G, k).
In this note, we consider varieties of indecomposable modules in a p-block of
kG. It is known that for any homogeneous closed subvariety V' of Viz(k), there
is a kG-module M such that Vg(M) = V. On the other hand, if M is an inde-
composable kG-module, then the variety Vg(M) is connected (as a projective
variety)([C]). Our main result is.the following.

Theorem Let B be a block of kG with defect group D. Let V be a connected
homogeneous closed subvariety of Vg(k). Then V = V(L) for some indecom-
posable kG-module L in B if and only if V = resg (W) for some connected
homogeneous closed subvariety W of Vp (k). .

Here, we say V is connected if it is connected as a projective variety.

In section 4, we study extensions of graded modules over a graded algebra
A, which is a twisted algebra (in the sence of [Z]) of the group algebra of an
elementary abelian 2-group. We state some results on the complexity c(M)
and the rate of growth of Ext’ (M, M) for a graded A-module M. It is known
that these are equal if A is a group algebra.

92  Varieties of modules in B

Let B be a block of kG and D a defect group of B. We denote by Vp the
union of varieties of all finitely generated kG-modules in B. It is easy to see
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that Vg = resgp(Vp(k)), where resg?, is the map induced by the restriction,
H*(G,k) — H*(D, k). Moreover, there is a finitely generated kG-module
M in B such that Vg(M) = Vg. If V is a connected homogeneous closed
subvariety of Vg, then V is not necessarily a variety of some indecomposable
kG-module in B. The problem is that, in general, V' does not come from a
connected homogeneous closed subvariety of Vp (k) (see Example 2.4).

Theorem 2.1 Let H be a subgroup of G, M a kG-module and V' a connected
homogeneous closed subvariety of Vg(k). Suppose that the trivial kH-module
is a direct summand of M as a kH-module. If V = resgy (W) for some
connected homogeneous closed subvariety W of Vy(k), then there exists an
indecomposable kG-module L such that Vg(L) = V and Homyg(M, L) # 0.

Now, we consider the varieties of kG-modules in a block B. Since the varieties
of kG-modules in B is contamed in Vg, we consider only such a variety.

Corollary 2.2 Let B be a block of kG with defect group D. Let V be a
connected homogeneous closed subvariety of Vg. Then V = Vg(L) for some
-indecomposable kG-module L in B if and only if V = resg p(W) for some
connected homogeneous closed subvariety W of Vp(k). '

Proof. Suppose that there exists an indecomposable kG-module L in B such
that Vg(L) = V. Then there exists an indecomposable kD-module N such
that L|N 19 and N|L |p. So we have that resg’,(Vp(N)) = V. Conversely,
suppose that there exists a connected homogeneous closed subvariety W of
Vb (k) such that resg’p (W) = V. Note that there exists a kG-module M in
B such that k|M |p. By Theorem 2.1, there exists an 1ndecomposable kG-
module L such that Vg(L) = V and HomkG(M L) # 0. In particular, L
belongs to B. ' o

Let V be a connected homogeneous closed subvariety of Vg (k). If H is a Sylow
p-subgroup of G, then it is easy to see that V = resg % (W) for some connected
homogeneous closed subvariety W of Vg (k). So we have,

Corollary 2.3([H1]) Let V be a connected homogeneous closed subvariety of
Ve (k). Then there exists an indecomposable kG -module L such that Vg(L)
and Homgg(k, L) # 0.

Example 2.4 Let p = 2. Let G be a 2-nilpotent group generated by
Ty Yy 24, U,V (l = 17 2)
with relations,

2 .3 _ 2_2 2 Ti _
ri"yi_z ’U,—’U—l Y yza
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=1, Y =y, 2 = 2,
lai, b)) = [ai, 23] = [a3,0] = [v,u] = 1,
(a,b=1z,y,2, 1 <i#j<2).

So G 2 ((S5 % C’g) [ C3) x Cy, where we denote the symmetric group of degree |
3 by Ss and a cyclic group of order 2 by C,. We set

D =<1zy,21,20,u>, E=<zu,z1 >, F=<x,2 >,

V = resg5(Ve(k)) U resg, = (Vr(k)).

Then G has a 2-block B with defect group D. Moreover, V is a connected
~ homogeneous closed subvariety of V. But there exists no connected homoge-

neous closed subvariety W of Vp(k) such that V' = resgp(W). So there exists
no indecomposable kG-module L in B such that Vg(L) =V

3 Some associated primes in H*(G, k)

Let G be a p-group. The complexity ¢(M) of a finitely generated kG-module
M is the smallest nonnegative integer ¢ such that

lim dimz 2" (M)

n—00 net

It is known that ¢(M) = dimVg(M) = dimH*(G,k)/I(M) where I(M) is
the annihilator of H*(G, M) in H*(G, k) ([B,Chapter 5]). So there exists a
minimal associated prime P of H*(G, M) such that dimH*(G,k)/ P = c¢(M)
([M, Theorem 6.5]). Since P is an associated prime ideal, there exists a
homogeneous element z € H*(G, M) such that P = ann z. In particular,
dimH*(G,M)/ann z = c¢(M). ‘

= 0.

Definition Let G be a p-group and M a finitely generated kG-module.
Suppose that 1 < i < ¢(M). We define m;(M) to be the smallest integer
m > 0 such that dimH*(G, k)/ann z > i for some z € H™(G, M). Then we

have ‘
ml(M) S mg(ﬂ/_/) S s S mc(M)(.M) < 00

by the above argument.
Example 3.1 (1)Let p = 2 and G = (C; x C,. If M is a nonprojective

indecomposable kG-module, then M is either periodic or isomorphic to 2" (k)
for some n € Z. If M is periodic, then m;(M) = 0. On the other hand, we
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have my(Q"(k)) = max{n, 0}.
(2)Let p=2 and G = C, x Cy x Cy. Fix any positive mteger n. Then,

sup{mq(M)|M : f.g.kG-module, c(M) = 3,dim M < n} < 00.

Question 3.2 Let G be a p-group. Fix n,i > 0. Then,
| sup{m;(M)|M : f.9.kG-module,i < c¢(M),dimyM <n} <oco 7

4 Extensions of modules over some graded
algebras

In this section, we assume that p = 2. Let
A=k<zy,...,0r > /(2% asziz; + ajz25,1 < 4,5 < 1)

for a; € k,a; # 0. Then A is a finite dimensional local selfinjective graded k-
algebra with deg z; = 1 (see [H2],]Z] for more details). For a finitely generated
A-module M, we define the rate of growth y(Ext’} (M, M)) of Ext, (M, M) to
be the smallest nonnegative integer s such that ‘

lim dimExt’ (M, M)

n—00 ns

Then, 0 < y(Exty(M,M)) <c(M) <r

= 0.

Theorem 4.1 Let M be a finitely generated graded A-module. If
- y(Exty (M, M)) =0, then c(M) < 1/2. ’

Remark (1)If a; = 1 for every ¢, then A is a group algebra of an elementary
abelian 2-groups. In this case, v(Ext} (M, M)) = c¢(M).
(2)([H2])If we take ay,...,a, suitably, then A satisfies the following.

(*)For any 1 < s < /2, there exists a graded A-module M such that c(M) = s
and v(Ext (M, M)) =0.

Suppose that r =3 IfMisa graded A-module and ¢(M) = 3, then
~v(Ext (M, M)) > 1 by Theorem 4.1. Using Example 3.1(2), we can prove
the following.

Proposition 4.2 Suppose that r = 3. If M is a graded A-module with
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c(M) = 3, then y(Exty (M, M)) > 2.

Question 4.3 Suppose that r = 3. If M is a graded A-module with c(M) = 3,
then v(Exty (M, M)) =3 7

Suppose that Example 3.1(2) is true if we replace mq(M) by ma(M). Then
the equality in Question 4.3 holds.
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