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1 Introduction
Let $G$ be a finite group and $p$ be an element of $\pi(G)=$ { $p$ : prime $\underline{|}p$ divides $|G|$ }.
Put $\tilde{B}_{p}(G)=$ { $U$ : p–subgroup $\subseteq G|O_{p}(N_{G}(U))=U$ } and $B_{p}(G)=B_{p}(G)-\{1\}$ . An
element of $B_{p}(G)$ is called a p–radical subgroup of G. $B_{p}(G)$ plays an important role in
the various fields. For example, $\triangle(B_{p}(G))$ gives us a valuable information when we verify
the Dade’s conjecture for $G$ . Here $\triangle(B_{p}(G))$ is a simplicial complex whose vertex set is
$B_{p}(G)$ , and its simplex is each chain of elements of $B_{p}(G)$ with respect to natural inclusion
in $B_{p}(G)$ . $\triangle(B_{p}(G))$ is called the $p \frac{-}{}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}1$ complex of $G$ . Furthermore it is known that
the alternating-sum decomposition of mod $p$ cohomology of $G$ is

$\tilde{H}^{n}(G, \mathrm{Z}_{p})=\sum(-1)\dim(\sigma)\tilde{H}^{n}(G_{\sigma}, \mathrm{Z}_{p})\sigma\in\triangle(\beta_{p}(G))/G$ ’

where $n$ is any non-negative integer $G_{\sigma}$

} is the stabilizer of a simplex a, and $\triangle(B_{p}(G))/G$

is a set of the representatives of $G$-orbits of $\triangle(B_{p}(G))$ (See [5]). Hence the calculation
of a group cohomology reduces to the calculation of smaller groups. On the other hand,
$\triangle(B_{p}(G))$ can be regarded as a geometry for $G$ . Recently, for a sporadic simple groups $G$ ,
$\triangle(B_{p}(G))$ is investigated in this direction very much, and it is closely connected with the
essential $p$-local geometry for G. $\triangle(B_{p}(G))$ is determined by S. D. Smith, S. Yoshiara and
et al. for some sporadic simple groups $G$ and $p\in\pi(G)$ . The purpose of this note is to
announce [3], namely determination of $B_{2}(Co_{1})$ up to conjugacy, where $Co_{1}$ is the Conway
simple group.

2 Known and new results about $p$-radical subgroups

The following lemma is one of the most basic results on p–radical subgroups.

Lemma 1 ([4; Lemma1.10]) Let $G$ be a finite group and $p\in\pi(G)$ . If $U\in B_{p}(G)$ with
$N_{G}(U)\subseteq M$ , where $M$ is a subgroup of $G$ , then $O_{p}(M)\subseteq U.$ In particular, If $O_{p}(M)\neq U$

then $U/O_{p}(M)\in B_{p}(M/.O(pM))$ .

Lemma 1 implies that we can find p–radical subgroups inductively.
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Corollary 1 Let $G$ be a finite simple group, $M$ be a maximal subgroup of $G$ and $p\in\pi(M)$ .
If $O_{p}(M)\neq 1$ then $B_{p}(M)=\{o_{p}(M), U|U/O_{p}(M)\in B_{p}(M/O_{p}(M))\}$ .

Theorem 1 ([1]) Let $G$ be a group of Lie type over a field of characteristic $p$ . Then
$B_{p}(G)=$ { $O_{p}(U)|G\supseteq U=parab_{\mathit{0}}liC$ subgroup}.

Proposition 1 For $H$ and $K$ are finite groups and $p\in\pi(H\cross K)_{f}\tilde{B}_{p}(H\cross K)=\{V\cross$

$K|V\in\overline{B}_{p}(H),$ $W\in\tilde{B}_{p}(K)\}$ holds.

Proposition 2 Let $A$ be a finite group with a normal subgroup $G$ of a prime index $p$ .
Then for any $U\in B_{p}(A),$ $U\cap G=\{1\}$ or $U\cap G\in B_{p}(G)$ .

In this case we have $\{U\in B_{p}(A)|U\subseteq G\}\subseteq B_{p}(G)$ . On the other hand, for $U\in B_{p}(A)$

with $U\not\in G$ , there exists an element $x\in G$ such that $U=(U\cap G)\langle x\rangle$ . We can easily
see that $U_{1}=U\cap G\in\tilde{B}_{p}(G)$ and $|U$ : $U_{1}|=p$ . Hence it suffices to determine $B_{p}(G)$

essentially.

Proposition 3 Let $G$ be a finite group of Lie type over a field of characteristic $p_{\dot{a}}$ and $\sigma$

be a field automorphism of $G$ of order $p$ . Then $\{U\in B_{p}(G\langle\sigma\rangle)|U\subseteq G\}=B_{p}(G)$ .

3 Application
We consider the case $G=Co_{1}$ and $p=2$ . Let $(\Lambda, q)$ be the Leech lattice, that is, $(\Lambda, q)$

is the 24-dimensional even unimodular lattice which has no vector $\mathrm{v}$ with $q(\mathrm{v})=2$ . Let
Aut $(\Lambda, q):=$ {a $\in O(\mathrm{R}^{24},$ $q)|\Lambda^{\sigma}=\Lambda$ }. $\mathrm{A}\mathrm{u}\mathrm{t}(\Lambda, q)$ is called the Conway group, which
will be $\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{d}.0$ . Its center $Z=Z(\cdot 0)$ is of order 2, and the factor group $Co_{1}$ $:=$

$.0/Z$ is a simple group, which is also called the Conway group. The following remark is
straightforward from our definitions

Remark 1 Let $G$ be a finite group and $p\in\pi(G)$ . If $U\in B_{p}(G)$ with $N_{G}(U)\subseteq M$ , where
$M$ is a subgroup of $G$ , then $U\in B_{p}(M)$ .

The local subgroups of $Co_{1}$ have been classified by Curtis [2].

Theorem 2 ([2; Theorem2.1]) For any elementary abelian 2-subgroup $E$ of $\cdot 0_{f}N_{0}.(E)/Z$

is contained in a conjugate of one of the following seven groups.

$L_{1}=2_{+}^{1+8}$ $\Omega_{8}^{+}(2)$ $L_{4}=2^{11}$ : $M_{24}$ $L_{7}=(A_{6}\cross PSU_{3}(3));2$

$L_{2}=2^{4+12}(S_{3}\cross 3Sp_{4}(2))$ $L_{5}=Co_{2}$

$L_{3}=2^{2+12}:(S_{3}\chi L4(2))$ $L_{6}=(A_{4}\cross G_{2}(4)):2$

Remark 1 and Theorem 2 imply $B_{2}(C_{\mathit{0}_{1}})\subseteq\{U^{g}|g\in Co_{1}, U\in B_{2}(L_{\mathrm{i}})(1\leq i\leq 7)\}$. We
can determine $\mathcal{B}_{2}(L_{i})$ systematically by using the results in the previous section as follows.

$B_{2}(L_{i})(1\leq i\leq 5)$ : It suffices to determine 2-radical subgroups of $\Omega_{8}^{+}(2),$ $S_{3}$ ,
$3Sp_{4}(2),$ $L_{4}(2),$ $M_{24}$ and $Co_{2}$ by Corollary 1 and Proposition 1. We can find them from
[4], [6] and Theorem 1.
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$B_{2}(L_{i})(i=6,7)$ : Essentially it suffices to determine 2-radical subgroups of $A_{4},$ $A_{6}$

$G_{2}(4)$ and $PSU_{3}(3)$ by Propositions 1, 2 and 3. The cases $A_{4}$ and $A_{6}$ are straightforward.
We can easily determine $B_{2}(G_{2}(4))$ and $B_{2}(PSU_{3}(3))$ by Theorem 1.

Now we find the candidates for $B_{2}(G)$ , that is, we find $B_{2}(L_{i})(1\leq i\leq 7)$ . Next we
have to examine which element of $B_{2}(L_{i})$ actually belongs to $B_{2}(G)$ for each $i(1\leq i\leq 7)$ .
However when we examine we need detailed arguments. Then we have the following result.

$B_{2}(C_{\mathit{0}_{1}})$ consists of exactly 30 classes, and the representatives and the normalizers of
them in $Co_{1}$ are as shown in TABLE 1, where $\{P_{i}\}_{1\leq i\leq}15$ and $\{N_{i}\}_{1\leq i}\leq 7$ are the sets of
representatives of $B_{2}(o_{8}^{+}(2))$ and $B_{2}(L_{4}(2))$ respectively.

Table 1: $B_{2}(co1)$

representative $T$ $N_{C\circ_{1}}(T)$

$R=2_{+}^{1+8}$ $R^{\cdot}O_{8}^{+}(2)$

R. $P_{i}(1\leq i\leq 15)$ R. $N_{O_{8(2}^{+}}()Pi)$

$E=2^{11}$ $E:M_{24}$

$Q=2^{4+}12$ $Q^{\cdot}(S_{3}\cross 3S_{6})$

$Q:S=2^{4+12}$ : 2 $Q(S\mathrm{x}3S_{6})$

$Q_{1}=2^{2+12}$ $Q_{1}$ : $(s_{3}\mathrm{X}L_{4}(2))$

$Q_{1}$ : $N_{i}(1\leq i\leq 7)$ $Q_{1}$ : $(S_{3}\cross N_{L_{4}()}2(.N_{i}))$

$V=2^{2}$ $(A_{4^{\cross}}G2(4))$ : 2
$V$ : $\langle\sigma\rangle=2^{2}$ : 2 $(V\cross G_{2}(2))$ : $\langle\sigma\rangle$

$F=2^{2}$ $(S_{4^{\mathrm{X}}}PsUU_{3}(3)):2$

Remark. Let $G$ be a finite group and $p\in\pi(G)$ . A p–subgroup chain $C$ : $P_{0}<P_{1}<$

.. . $<P_{n}$ is called a radical p–chain of $G$ if it satisfies $P_{0}=O_{p}(G)$ and $P_{i}=O_{p}( \bigcap_{j=}^{i}(0^{N_{G}})P_{j})$

for all $i$ . We can easily determine all the radical 2-chains of $Co_{1}$ up to conjugacy by using
Theorem 1, Proposition 1, [6] and the main result of this note.
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