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1. INTRODUCTION

The simple groups of 2-rank two were classified about 1970 by Alperin, Brauer,
Gorenstein, Walter, and Lyons. See for example Alperin-Brauer-Gorenstein [3]. The-
2-groups of rank two which can be Sylow 2-subgroups of finite simple groups are

(1) dihedral 2-groups (including four-groups);
(2) semidihedral 2-groups;
(3) wreathed 2-groups;
(4) special 2-group which is a Sylow 2-subgroup of SU(3,4).
All finite groups with these Sylow 2-subgroups above were determined in those works.

The cohomology algebras of finite simple groups of 2-rank two have been known,
depending on the classification theorems and on the fact that the cohomology algebras
of some classical groups were calculated. A nice overview of these results is in the
work by Adem-Milgram [1]. A

TABLE 1. Finite simple groups of 2-rank 2 and cohomology algebras

Sylow 2-subgroup | Simple Groups Cohomology Algebras
(non-abelian)
dihedral PSL(2,q), q odd kg2, (3,03]/(¢0) -
A7
semidihedral PSL(3,q), ¢ =3 (mod 4) | k[B3,74, 5]/ (8% — 62)
PSU(3,q), g=1 (mod 4)
M11 ' )
wreathed PSL(3,q), ¢=1 (mod 4) | k[83, ps,05,06]/(63,62)
PSU(3,q), ¢ =3 (mod 4)
special of order 64 | SU(3,4)

Remark 1.1. In Table 1 the subscript of a cohomology class indicates the degree. For
example p4 is of degree 4, og is of degree 6, and so on.

From the late 1980’s the mod 2 cohomology algebras of those finite groups with
dihedral, semidihedral, and quaternion Sylow 2-subgroups have been calculated:
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(1) dihedral and quaternion case by Martino-Priddy [21], 1991; by Asai-Sasaki [5],
1993, '
(2) semidihedral case by Martino [20], 1988; by Sasaki [24], 1994.

The works by Martino and Priddy dealt with the classifying spaces, and, as a
consequence, obtained the cohomology algebras. On the other hand, the works by
Asai and Sasaki depend on the theory of cohomology varieties of modules and on
the modular representation theory of finite groups. Especially the theory of relative
projectivity of modules played a crucial role. The theory of projectivity of modules
relative to subgroups is fundamental in the theory of modular representations of fi-
nite groups. In [17] R. Knérr introduced the notion of projective covers of modules
relative to subgroups. In the works [4] and [5] an injective hull of the trivial module
relative to subgroups gave almost all information of the cohomology algebras. In [23]
T. Okuyama introduced the notion of projectivity of modules relative to “modules”.
In the work [24] an injective hull of the trivial module relative to modules was es-
sentially important. (Carlson pointed out in his lecture note [11] that the definition
of projectivity relative to modules is just a special case of the relative homological
algebra that can be defined for a projective class of epimorphism.) '

The purpose of this report is to show that our method can be applied to finite
groups whose Sylow subgroups are ‘

(1) extraspecial p-groups of order p? and of exponent p;
(2) wreathed 2-groups.

This work was done with Professor Tetsuro Okuyama.

For H a subgroup of a finite group G and an element ¢ in H*(G, k) we shall often
~write (g or (g for the restriction resy ¢.

2. RELATIVE PROJECTIVITY OF MODULES

2.1. Projectivity relative to subgroups. First we state some results concerning
projectivity of Carlson modules relative to subgroups. The following lemma is easy
to prove and well known. This can be used to show divisibility by a homogeneous
element.

Lemma 2.1. Let
E,:0—k— Q7 Y(L,) L o (k) — 0
be the extension corresponding to an element p in H™ (G, k). Suppose that the Carlson
module L, is relatively H-projective, where H is a set of subgroups of G. If an element
¢ in H" (G, k) satisfies
resy f*(§) =0 for every H in H,

where f* : Ext}£" (k, k) — Extfg(L,, k), then there exists an element n in H™(G,k)
such that v
&= |
The Green correspondence is one of the important tools for analyzing indecompos-

able modules. The theorem below is of fundamental importance in investigation of
indecomposable direct summands of Carlson modules by Green correspondence.
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Theorem 2.2. Let p in H"(G, k) be a homogeneous element. Let U be an indecom-
posable direct summand of the Carlson module L, of p with vertex D. Let H be a
subgroup of G containing the normalizer Ng(D) and let V be a Green correspondent
of U with respect to (G, D, H). Then the Green correspondent V is a direct summand
of the Carlson module L(,,) of the restriction pg = resy p to the subgroup H; more-
over the multiplicity of the direct summand U in L, is the same as the multiplicity
of Vin L.

2.2. Projectivity relative to modules. In the rest of this section we deal with
the theory of projectivity relative to modules. See Okuyama [23] or Carlson [11] for
details. '

Definition 2.1. For V a kG-module let
P(V) = {X | X is a direct summand of V ® A for some kG-module A }.

A module in P(V) is said to be P(V)-projective or projective relative to P(V). It is
also said to be V-projective or projective relative to V for short. A module is said to
be P(V)-injective, injective relative to P(V), V-injective or injective relative to V if
it is P(V')-projective. :

Definition 2.2. An exact sequence £ : 0 — A Iy B 25 ¢ — 0 of kG-modules
is said to be P(V)-split (or V-split for short) if V@ E:0 — veAryvep &
V ® C — 0 splits.
Definition 2.3. Let M be a kG-module. A short exact sequence £ : 0 — X —
R — M — 0 is called a P(V)-projective cover of M if

(1) R is P(V)-projective; |

(2) Eis P(V)-split; ,

(3) the kernel X has no P(V)-projective direct summand.
If the exact sequence E above is a P(V)-projective cover of M, then the kernel X is
denoted by Qp(1)(M). A P(V)-projective cover is also called a V-projective cover
and the kernel is also denoted by Qy(M). Similarly the notion of a P(V')-injective
hullis defined. If F: 0 — M — S — Y — 0 is a P(V)-injective hull of M, then
the cokernel Y is denoted by Q;(lv) (M).

Theorem 2.3. Every kG-module has a P(V)-projective cover, which is uniquely
determined up to isomorphism of sequences.

The following lemma is of fundamental importance in investigation of the projec-
tivity relative to modules by Green correspondence.

Lemma 2.4. Let X be a kG-module. Let
0 _'*Q’P(X)(M) — R—M —0
be a P(X)-projective cover of a kG-module M and let U be an indecomposable direct

summand of R with vertex D. Let H be a subgroup of G containing the normalizer
Ng(D) and let V be a Green correspondent of U with respect to (G, D, H). We let

moreover
0— Q’P(XH)(MH) — S — Mg —0
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be a P(Xy)-projective cover of the restriction M. Then the Green correspondent
V is a direct summand of S; moreover the multiplicity of V in S is the same as the
multiplicity of U in R.

Definition 2.4 (Carlson [11])." An element ¢ in H"(G, k) — {0} is said to be pro-
ductive if the exact sequence

E¢: 00—k ——)val(LC) — Q”‘l(k) —0
is a P(L¢)-injective hull of the trivial module k, or equivalently the extension E is

a P(L¢)-projective cover of the syzygy Q" (k). This condition is equivalent to the
condition that ¢ Extjo(L¢, L¢) = 0.

It is known that any homogeneous element of odd degree is productive when the
prime p is odd (See for example Benson [6] Proposition 5.9.6 (ii)). However, for p = 2
no such general facts are known.

For a homogeneous element ¢ in H*(G, k) and a subgroup H of G we see that
Lyg = L,y) @ (projective). The lemma below is a kind of converse of this fact and
is useful to show a productive element in the cohomology algebra of a subgroup of a
finite group G containing a Sylow normalizer to be stable under G.

Lemma 2.5. Let S be a Sylow p-subgroup of a finite group G and let H be a
subgroup of G containing the normalizer Ng(S). Suppose that an element p in
HT"(H,k) is productive, namely, the extension '

0— kg — QHL,) — Q" (kg) — 0
is a P(L,)-projective cover of the syzygy Q7 (km). Assume that there exists a
kG-module X such that o
Xu ~ L, ® (projective). |
Then there exists a productive element p in H" (G, k) such that
| resy p = p.
3. SYSTEM OF PARAMETERS OF COHOMOLOGY ALGEBRAS

We first state a theorem of Carlson on system of parameters of cohomology algebras
and a corollary, which is a key fact for investigation of the projectivity relative to
subgroups of Carlson modules.

Let G be a finite group of p-rank r and let S be a Sylow p-subgroup of G, where
p is a prime number. For i =1,...,7 let

Hi(G) = {Cg(E) | S > E is elementary abelian of rank i }.
Let k£ be a field of characteristic p.
Theorem 3.1 (Carlson [10] Proposition 2.4). The cohomology algebra H*(G, k)

has a homogeneous system { (1,...,(, } of parameters with the property that for every
1=1,...,r

>t H*(H, k).
HecH(G)
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Coi‘ollary 3.2 (Okuyama). Ifa homogeneous system {(1,...,(, } of parameters is
taken as in the theorem above, then the tensor product L¢, ® : -+ ® L¢,_, is Hr(G)-
projective. A

In particular, if r = 2, then L¢, is Ha(G)-projective and the element ¢y is regular
in H*(G, k). '

The following theorem shows that a system of parameters can be obtained from a
productive cohomology element when the p-rank is two.

Theorem 3.3. Let G be a finite group of p-rank two. Let p in H"(G,k) be a regular
element in H*(G, k). Assume that the element p is productive, that is, the extension

E,:0 — kg — QY(L,) 5 QY (kg) — 0

~is a P(L,)-injective hull of the trivial kG-module kg and that for a number s with

s>r—1 :
Q°(L,) = L,. .

Then there exists an inverse image o in Ext{,(k, k) of QtLf . Q*"(L,) — k by

the induced homomorphism f* : Ext{,(k, k) — Ext{; (L,, k). The elements o and

p form a system of parameters for the cohomology algebra H*(G, k).

4. EXTRASPECIAL p-GROUPS

Let p be an odd prime. In this section we consider the cohomology algebra of an-

extraspecial p-group
| P=(a,b|a® =t =a,b]" = 1,[[a,b],a] = [[a,d],0] = 1)

of order p?® of exponent p; especially we shall choose a system of parameters whose
members are universally stable. The mod p cohomology algebra of P was calculated
by Leary [18]. Tezuka-Yagita [26] investigated the p-parts of integral cohomology
algebras of finite groups G having P as Sylow p-subgroups. Tezuka-Yagita [25] studied
the mod p cohomology algebra of the general linear group GL(3, F,), whose Sylow
p-subgroup is our P above. We apply our results on relative projectivity of modules
stated in Sections 2 and 3 to the p-group P and finite groups with P as Sylow p-
subgroups.

4.1. System of parameters.

Definition 4.1. Let
¢ = [a, b].

Then Z(P) = (c). Fori,0<i<p—1, let |

E; = (ab',c); a; = ab’, b; =b.
Let

Es = (b,¢); 0o = b, bo = a.

We put

Q={0,1,...,p—1lo0}; E={E;|1€Q}.
The set £ is the collection of elementary abelian subgroups of P of rank two. We
note that Cp(E) = E for E in &; hence Ho(P) =¢£.
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Theorem 3.1 and Corollary 3.2 say that there exists a system { &1, &> } of parameters

such that
(1) &2 € Ypee try H(E, k);
(2) L, is &-projective;
(3) & is regular in H*(P, k).

Of course there are many choices of system of parameters as above. The cohomol-
ogy classes which we define below are good ones because of Lemma 4.1, Theorems 4.2
and 4.3. We have to mention that they and their properties would be seen or verified
by similar arguments to those in the papers [18], [25], or [26].

Definition 4.2. For i with 0 < i < p—1, regarding H'(E;, k) as Hom(E;, k), let
Ai =a;, pi =0}
We also let
Aso = =055 Hi = D%
For ¢ in 2 we let
o = A(N), vi = Alpa),

where A : HY(E;, k) — H?(E;, k) is the Bockstein homomorphism. Then the element
b; acts on these elements as follows:

o’

P by _
i =, Y = T+

Definition 4.3. Let
' v = normf_(vs0) € H*(P, k).

For i in Q let ’
| G =trh (Y1) € B2~V (P k)

C=ZQ-

and define

We define moreover ‘
p=1P1—(Pe HQ”(”"I)(P, k),
o =vP~I¢ € HXP*~1(P, k).

Note that

o€ Z trE H2XO*-V(E, k).
Eeg

For E = E; in £ we shall often omit subscript 7 of the cohomologies ~; and o;.

Lemma 4.1. For E in £ one has

v v p—1
resg p = H (v = no), resE0=—(a H(fy—z'a)) .

neF 2 \Fp 1€Fp
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For E; in € the factor group P/E; = (b; ), where b; = E;b;, acts on the set
{Ly-na|n€F2\Fp} |
by conjugation as follows
Ly_p =L
y—no ¥=(n+1l)a-
This action induces the action of P/E; = (b; ) on the set F,2 \F) such that n% =147
for n in Fp2 \ Fp. Thus, if we write (Fp2 \ F;,)/P for the quotient set of F2 \ Fp under

thlS actlon then a complete set of representatxves of the conjugatlon on{Ly_n|ne€
02 \ Fp } can be written as

{L’Y—na |n € (Fp2 \FP)/P}'
Using Lemma 4.1 and Corollary 3.2, we can show the following.

Theorem 4.2. (1) The set {p,0} is a system of parameters of the cohomology
algebra H*(P, k).
(2) The Carlson module L, is £-projective. In fact the module L, decomposes as

follows:
L= B L,."

E€& ne(F,2\Fp)/P
(3) The element p is regular in H*(P, k).

4.2. Finite grdup with P as a Sylow p-subgroup. In the rest of this section we
let G be a finite group with P as a Sylow p-subgroup. We can show that the elements
p and o are the restrictions from any such G. Namely

Theorem 4.3. The cohomologies p and ¢ are universally stable.

Definition 4.4. Since the cohomologies p and ¢ are universally stable, there exits
an element 5 in H2PP~1)(G, k) such that :

resp(p) = p
and an element & in H2P*~1(G, k) such that
resp(c) = o.

Definition 4.5. The Carlson module L5 of the element p is projective relative to
Ha(G) = {Cg(E) | E € £} by Corollary 3.2. The centralizer Cg(E) of E in £ has
a normal p-complement; hence Lz is £-projective. Theorem 4.2 implies an indecom-
posable direct summand of L; has vertex some F in £ and source some L,_;q, 7 in
F,: \ F,. For E in £/G we write

(x{F)ie1®)y

for the set of indecomposable direct summands of Lz whose vertices are E; we denote
by X(E) their direct sum. Then we have

P x®.

E€E/G
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Theorem 4.4. The Carlson module L; decomposes as follows:

O @ x°,

E€&/GieI(B)
| where if i # j, then Xi(E) and X J(E) have different sources.
Definition 4.6. Let ’ |
Yi(E) be a Green correspondent of Xi(E) with respect to (G, E,'NG(E)).

By Theorem 2.2 the kNg(E)-module Y(E) is an indecomposablé direct summand of
the Carlson module L, of the restr1ct1on P = resyg(g) p With mult1phc1ty one. Let

us denote by Y (&) the direct sum of these modules:
Y® = P v®.
i€ I(E)

- Proposition 4.5. One has '

| (Y®)G = XB) @ (projective) .
Corollary 4.6. One has |

’ Extio(Ls k) = €D Extiy,m P, k).

Eeg/G
In particular
dim H"*#(P-D(G, k) = dim H™(G, k) + Y dimExt}y, (E)(Y( ), k).
EcE/G

Therefore we have to investigate the module Y (E), which is a direct summand of
the Carlson module L of p' = resy,(g) 0-

Definition 4.7. We write { Ly_po | ¢ € (B)} for a set of complete set of repre-
sentatives of the action of the factor group Ng(E)/Cg(E) on the set { Ly_nqa | 7 €

sz \Fp}

For i in I(E) the module Y;(E) would be investigated in the following way. We -
omit the superscript (£) and subscript ; in what follows, namely, we write ¥ for an
indecomposable direct summand of L, with vertex E and source Ly_yq-

(1) First investigate
Hy={9 € NG(E) | Ly—no® = Ly—na }- .
(2) Denote by L¢ the extension of Ly_pq to Cg(E) in a natural way. Let

Lcf = @ M;
J

be an indecomposable decomposition of the induced module LoH7. The module
Y is the induced module ]WjNG(E) of some indecomposable M;.
(3) Determine Mj.
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5. WREATHED 2-GROUPS

Let .
S={(a,bt]|a® =t =t*=1, ab=ba, tat =b), n>2

be a wreathed 2-group. »
Let k& be a field of characteristic 2 containing a cubic root of unity. We shall

consider the cohomology algebras H*(G,k) of finite groups G having S above as
Sylow 2-subgroups.

5.1. System of Parameters.

Definition 5.1. Let

e
c=ab, z=a?

1 2"1—1 ’ 2'n_—1
, y="5b"

and let
' E={(z,y), F={(z1t).
Then { E,F} is a complete set of representatives of the conjugacy classes of four-
groups in S. Their centralizers are
Cs(E) = (a) x (b), Cs(F)= (e} x (t).
We set
(a) x(b)=U, (c)x(t)=V.
Then we have
Ha(S)={U, V}.
By Theorem 3.1 and Corollary 3.2, the cohomology algebra H*(S, k) has a homo-
geneous system { {1, &2 } of parameters such that
(1) & € try H*(U, k) + tr5, H*(V, k);
(2) L¢, is {U, V }-projective;
(3) & is regular in H*(S, k).
In the rest of this report the subscript of a cohomology class indicates the degree.
For example a3 is of degree 2, vy is of degree 4, and so on.

Definition 5.2. Let
ao € infU H2(U/(b),k), B2 € infY H2(U/(a),k)
x2 € inf¥ H2(V/(t), k), 2 € inf¥ H2(V/{c), k).

Let

7 € infS HY(S/U, k)

(o = trd ag € H%(S, k)

vy = nOrmg as € H4(S, k)
and let

pa=T1F + (G + s

o = (7'12 + (2) 4.
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Then we have

Theorem 5.1. (1) The set { ps, 06} is a homogeneous system of parameters of
H*(S,k). | .
(2) o6 € try, HS(U, k) + try HS(V, k);
(3) The Carlson module L,, is { U, V }-projective. In fact

LP4 = Laz+wﬁzs D LX2+W1/1257

where w = /1 € k.
(4) The element p4 is regular in H*(S, k).

The element py4 is universally stable. To show this, we use the theory of projectivity
of modules relative to “modules”. First we see

Theorem 5.2. The element p4 is productive. Namely, the extension
0—k—Q 'L, — Q% —0

induced by the element py in H*(S, k) is a P(L,)-injective hull of the trivial module

5.2. Finite group with S with a Sylow 2-subgroup. Let G be a finite group
which has S as a Sylow 2-subgroup. Structure of these groups had been deeply
investigated in Brauer-Wong [9], Brauer [8], and Alperin-Brauer-Gorenstein [2].

The fusion of 2-elements can be described by behavior of several involutions and
. subgroups. Among them we use four-groups and their normalizers. The reason is of
course Theorem 3.1 by Carlson and Corollary 3.2.

The fusion of 2-elements in G is indicated in Table 2.

TABLE 2. Fusion of 2-elements

a: Ng(E)(/CG(ES') =~ Z/2Z b: Ng(EZ)/Cg()E) il 53
T z) T~z
ILExF| SNG =8 =(abl) SNG = {a,b)
(x = t)
2&(E~)F’ SNG' = (abt,zt) SNG'=S
T~

Following Alperin-Brauer-Gorenstein [2], we call a group of type 1b a “D-group”;
a group of type 2a a “Q-group”; a group of type 2b a “Q D-group”.

The cohomology algebra of the wreathed 2-group is calculated by Nakaoka’s theo-
rem. The cohomology algebras of finite groups with wreathed Sylow 2-subgroups are
obtained below. In the following the cohomology algebras of other types of groups
are stated as subalgebras of that of the wreathed Sylow 2-subgroup S.

Theorem 5.3. Let G be a finite group with S as a Sylow 2-subgroup.



32

(1) If G is of type 1a, then
H*(G,k) ~ H*(S,k)
= k[C1, 71, G2, 2, G35 vl /(CF, 44, G5, 7C1, 7C2, 73, v2C1, v2Ca, (1.G3 — Covi).-
(2) If G is a D-group, then
H*(G, k) = k[, 12,63, p4, 05, 06),
where ‘
03 = Tiva + (102 + G, pa =71 + (5 +va, 05 = T2va + (1ps + (2C3, 06 = (71 + C2)va.
(3) If G is a Q-group, then ,
H*(G,k) = k[C1,02,03, pa];
where :
o9 = 7'12 + (a.
(4) If G is a QD-group, then
- H*(G,k) = k[93,p4,95,06].
Remark 5.1. The elements (i, vo, and (3 above will be stated in subsection 5.5.

To show that the element ps in H*(S, k) is universally stable, we show the following

Theorem 5.4. There exists a kG-module X such that
Xg = L, & (projective).
Using Theorem 5.4, Lemma 2.5, and lemma 2.4, we can show

Theorem 5.5. There exists a productive element p in H*(G, k) such that

~

ressp=p, Ly=X.

5.3. QD-groups. Our proof of Theorem 5.4 is slightly complicated. So we sketch
our argument only for QD-groups G; namely suppose, in this subsection, that the
four-groups F and F are conjugate in G and the quotient group Ng(E)/Cg(E) is
isomorphic with S3. Let H be the subgroup of Ng(F) of index two containing the
centralizer Cg(E). We may assume that there exists an element h in H such that

a" = b, " = ab.
Suppose for the moment that there exits an element p in H*(G, k) such that
ress p = p.

Then an indecomposable direct summand X of the Carlson module Lz would have

vertex U and a source Lg,4+43, SO that X would be the Green correspondent of
an indecomposable direct summand X’ of the Carlson module L, of the restriction
p' = resy,g)p with vertex U and a source Lq,+up,- We write N = Ng(E) and
C = Cg(E). We know that the centralizer Cg(E) has a normal 2-complement:

Ce(E) =U x O(Cg(E)).



33

Let o
€= ag + whs.
Since Cg(F) = UxO(Cg(E)), the Carlson module L, can be extended to C=Cg(E ).
- We denote by Lc the extension of L, to Cg (E):
LC|U ~ L, LCIO(C@(E)) = trivial module.

Because the module X’ belongs to the principal kN-block, the module X’ is a direct
summand of the induced module LY. The induced module LN can be analyzed
by Clifford theory. First we have _
‘ H={zeN|LI~L, }

Thus if L = Y M; is an indecomposable decomposition, then the induced modules
M;Ns are indecomposable and LN = S M;N. Indeed the induced module Lo¥
decomposes as follows. ,

Lemma 5.6. For i = 0,1,2, let k; be the one-dimensional kH-module on which U
acts trivially and the element h acts as multiplication by w*. Then the induced module
L has a decomposition
Lo = Moo My & M,

of indecomposable kH-modules My, M, My such that

(1) Myjy = Le, 1=0,1,2;

(2) M;s are periodic of period six;
(3) Mi~My®ki, 1 =0,1,2;
(4) |

Mo/ rad My = ks & ky, soc My = k1 & ky;
Q(My)/ rad Q(My) = ko D k1, socQ(Mo) = ko ® ko;
(5) Q2(Mp) = My, Q*(M;) = My, Q*(Ms) = M.
The indecomposable kN-module X’ would be one of M;Vs; we put, say,
X'= M.

Since the module M;" would be a direct summand of Ly, the module M; would be
a direct summand of the Carlson module L, of the restriction p” = resg o',

Now let us return to construction of the kG-module X.
Lemma 5.7. The cohomology ps is Ng(E)-stable.
Definition 5.3. Let us take p’ in H*(Ng(E), k) such that

ress p' = p.
Then we have
o =1trg p.
We also let '
p’' =resgp.

Then we have
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Proposition 5.8. The Carlson module L, has a decomposition

Lp” =M ) Mt
of indecomposable kH -modules M and M such that
(1) My =~ L¢;
(2) MNU = LES;
(3) M is periodic of period six;
(4) |
M/rad M = k; & k2, soc M = kg @ ky;

Q(M)/rad QM) = ky ® ko, socQ(M) = k1 & ky;
Q%(M)/rad Q%(M) = ko @ k1, soc Q*(M) = kz @ ko;
(5) Fori>0 - |
Q3(M)/ rad Q3 (M) ~ Q1(M)/ rad @ (M);
| soc U3 (M) =~ soc Q' (M). '
Definition 5.4. Let
| X' =MV
The indecomposable kN-module X’ has vertex U and source L.
By our definition of the indecomposable kN-module X' we have

Proposition 5.9. (1) The indecomposable kN-module X !is periodic of period six.
(2) Xt =LS.
(3) The indecomposable kN-module X' is a direct summand of L.

Using the proposition above and the assumption that the four-groups E and F are
conjugate, we obtain

Proposition 5.10. It follows that

X% = L, (mod projective).
We can now define the kG-module X.

Definition 5.5. Let : :
X be a Green correspondent of X' with respect to (G, U, Ng(E)).

By means of Propositions 5.9, 5.10 and the properties of the Green correspondence
we see that the kG-module X is the desired one. :

Theorem 5.11. We have
(1) the kG-module X is periodic of period six;
(2)
_ : X%=Xe (projective);
(3) B |
Xs = L, ® (projective).
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G | X
p=p" X'=MVN
g =py  Lpy=MoM
L, p L
L, €

Remark 5.2. When the four-groups E and F are not conjugate in G, the kG-module
X in Theorem 5.4 is not indecomposable.

5.4. Relative injective hull of the trivial module. We resume our situation that
G is a finite group with wreathed Sylow 2-subgroup S. The element p4 is productive
by Theorem 5.5. The Lz-injective hull '

0 — kg — QL) — (k) — 0

gives us much information about the cohomology algebra. First we can deduce the
followmg theorem from Theorem 3.3.

Theorem 5.12. The element o is universally stable. Namely there exists an e]ement
o6 € H5(G, k) such that

resg 0g = O¢.
Consequently the set

{ P4, 06 }
is a homogeneous system of parameters for H*(G, k) for every G.

Second we can obtain dimension formulae for the cohomology groups H*(G,k).
Applying the cohomology functor Extig(—, k) to the extension

0— kg — Q7 1L; — QPkg — 0,
we obtain the short exact sequences
0 —> Homyg(Qk, k) — Homya (27 L,,4, k) — 0,
0 — Extig(k, k) — Extggl(mk,k) — ExtPEl(Q” 1L54, k) — 0, n>0.
In particular we have a formula '
d1mExt"+4(k k) = dim Exth(k k) + dim Ext}g(Ls,, k)
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and we can compute dim Ext}~(Lz,,k) by our construction of the module X = L;.
For example, if G is a Q@ D-group, then

| 0 ifn=0 (mod3)
dimExt{;(Lz,,k) =<1 ifn=1 (mod 3)
1 fn=2 (mod 3)

We can also calculate dimExti;(k,k), n = 1,2,3, so that we obtain dimension
formulae for H*(G, k). , : :

We have obtained a system of parameters { ps,0¢} and established dimension
formulae for the cohomology groups H*(G,k). We have to get generators of the
cohomology algebras over the subalgebra k[py, G-

5.5. Generators of Cohomology Algebras. First let us state generators of the
cohomology algebra of the wreathed 2-group S. The cohomology algebra H*(S, k)
has {o2(= 72 + (3), pa} as a system of parameters. Hence we can take generators
of degree up to 4. In fact, H*(S, k) is generated over the subalgebra k[0, p4] by 71,
which was defined in Section 2, and the elements (1,2, (3 € H*(S, k). To state these
elements, let a1 € infY HY(U/(b),k); and let us define '

G =t oq € HY(S, k),
vy = normg a; € H2(S, k),
(3 = tri(ag) € H3(S, k).

When the four-groups E and F' are not conjugate in G, the cohomology algebras
H*(G,k) and H*(Ng(E), k) are isomorphic. This can be seen by comparing the di-
mensions of the cohomology groups. On the other hand, when E and F are conjugate,
one can take an element gg € Cg(c) such that E9° = F and U%° NS = V. Then we
can determine the stable elements by considering the subspaces

{£€ H*(S,k) | £y =¢&v}, n<4

Of course the element gg above plays an important role throughout in our investigation
for those groups in which E and F' are conjugate.
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