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On the cohomblogy of finite Chevalley groups

and free loop spaces of classitying spaces
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~Abstract

1 notations

Let p be a prime and F, be the finite field with ¢ elements. Let Gz be
a Chevalley group scheme such that C-rational points Gz(C) is a simply
connected complex Lie group when we change its topology. Hereafter we
denote Gz(K) (resp. Gz(C)) by G(K) (resp. G) for a field K. We also
denote its classifying space by BG and define the free loop space LBG of BG
and the loop space QBG of BG by

LBG ={l|l: S* - BG} and QBG ={l]|l(1) =%l € LBG},

where S* is the unit circle on the complex number C and * is a base point
of BG. It is well known that QBG is weakly homotopy equivalent to G.

2 vresults and comments

Theorem . Let F, be a finite field with ¢ = p" elements and | be a prime
number that divides ¢ — 1 but does not divide the order of the Weyl group of
G. Then we have an ring isomorphism

H*(LBG, Z/l) = H*(G(F,), Z/1) = H'(BG, Z/l) ® H'(G, Z/l).

We can prdve the theorem immediately from Kleinerman [3] and Kono- -
Kozima [4].



55

Remark . Our theorem is partial. Here we indicate an example.

Theorem (Fong-Milgram [1],Kono-Kozima [4]). Let G, be an ezcep-
tional Lie type G3. Then we have a ring isomorphism

H*(LBG,,Z/2) = H*(Go(F,),Z/2)
for 4]g — 1.

We propose a question : Let [ be a prime number such that [ (resp. 4)
divides ¢ — 1 if [ is odd (resp. even). Then we have a ring isomorphism

H*(LBG,Z/l) = H*(G(F,), Z/1)
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